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ABSTRACT: We study the computational complexity of approximately counting the number of
independent sets of a graph with maximum degree �. More generally, for an input graph G = (V , E)

and an activity λ > 0, we are interested in the quantity ZG(λ) defined as the sum over independent
sets I weighted as w(I) = λ|I|. In statistical physics, ZG(λ) is the partition function for the hard-core
model, which is an idealized model of a gas where the particles have non-negligible size. Recently,
an interesting phase transition was shown to occur for the complexity of approximating the partition
function. Weitz showed an FPAS for the partition function for any graph of maximum degree � when
� is constant and λ < λc(T�) := (� − 1)�−1/(� − 2)�. The quantity λc(T�) is the critical point
for the so-called uniqueness threshold on the infinite, regular tree of degree �. On the other side, Sly
proved that there does not exist efficient (randomized) approximation algorithms for λc(T�) < λ <

λc(T�) + ε(�), unless NP=RP, for some function ε(�) > 0. We remove the upper bound in the
assumptions of Sly’s result for � �= 4, 5, that is, we show that there does not exist efficient randomized
approximation algorithms for allλ > λc(T�) for� = 3 and� ≥ 6. Sly’s inapproximability result uses
a clever reduction, combined with a second-moment analysis of Mossel, Weitz and Wormald which
prove torpid mixing of the Glauber dynamics for sampling from the associated Gibbs distribution on
almost every regular graph of degree � for the same range of λ as in Sly’s result. We extend Sly’s result
by improving upon the technical work of Mossel et al., via a more detailed analysis of independent
sets in random regular graphs. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 45, 78–110, 2014
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1. INTRODUCTION

For a graph G = (V , E) and activity λ > 0, the hard-core model is defined on the set I(G)

of independent sets of G where set I ∈ I(G) has weight w(I) := λ|I|. The so-called partition
function for the model is defined as:

ZG(λ) :=
∑

I∈I(G)

w(I) =
∑

I∈I(G)

λ|I|.

The Gibbs distribution μ is over the set I(G) where μ(I) = w(I)/ZG(λ). The case λ = 1 is
especially interesting from a combinatorial perspective, since the partition function is the
number of independent sets in G and the Gibbs distribution is uniformly distributed over
the set of independent sets.

The hard-core model has received considerable attention in several fields. In statistical
physics, it is studied as an idealized model of a gas where the gas particles have non-
negligible size so neighboring sites cannot simultaneously be occupied [1, 3]. The activity
λ corresponds to the fugacity of the gas. The model also arose in operations research in the
study of communication networks [7].

We study the computational complexity of approximating the partition function. Valiant
[15] proved that exactly computing the number of independent sets of an input graph
G = (V , E) is #P-complete. Greenhill [4] proved that even when the input is restricted to
graphs with maximum degree 3, it is still #P-complete. Hence, our focus is on approximating
the partition function.

Weitz [16] gave an FPAS (fully polynomial-time approximation scheme) for the partition
function of graphs with maximum degree � when � is constant and λ < λc(T�) :=
(� − 1)�−1/(� − 2)�. The activity λc(T�) is the critical activity for the threshold of
uniqueness/non-uniqueness of the infinite-volume Gibbs measures on the infinite �-regular
tree [7]. Recently, Sly [11] proved that, unless NP = RP, for every � ≥ 3, there exists
a function ε(�) > 0 such that for graphs with maximum degree � there does not exist
an FPRAS (fully-polynomial time randomized approximation scheme) for the partition
function at activity λ satisfying:

λc(T�) < λ < λc(T�) + ε(�). (�)

It was conjectured in Sly [11] and Mossel et al. [10] that the inapproximability result holds
for all λ > λc(T�). We almost resolve this conjecture, that is we prove the conjecture for
all � with the exception of � ∈ {4, 5}.

Theorem 1. Unless NP=RP, there does not exist an FPRAS for the partition function of
the hard-core model for graphs of maximum degree at most � at activity λ when:

• � = 3 and λ > λc(T3) = 4; or
• � ≥ 6 and λ > λc(T�); or
• � = 4 and λ ∈ (λc(T4) = 1.6875, 2.01538] ∪ (4, +∞); or
• � = 5 and λ ∈ (λc(T5) = 256/243, 1.45641] ∪ (1.6875, 2.01538] ∪ (4, +∞).

Sly’s work utilizes earlier work of Mossel et al. [10] which studied the Glauber dynamics.
The Glauber dynamics is a simple Markov chain (Xt) that is used to sample from the Gibbs
distribution (and hence to approximate the partition function via now standard techniques,
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see Refs. [6, 12]). For an input graph G = (V , E) and activity λ > 0, the state space of
the chain is I(G). From a state Xt ∈ I(G), the transitions Xt → Xt+1 are defined by the
following stochastic process:

• Choose a vertex v uniformly at random from V .
• Let

X ′ =
{

Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ).

• If X ′ ∈ I(G), then set Xt+1 = X ′, otherwise set Xt+1 = Xt .

It is straightforward to verify that the Glauber dynamics is ergodic, and the unique stationary
distribution is the Gibbs distribution. The mixing time Tmix is the minimum number of steps
T from the worst initial state X0, so that the distribution of XT is within (total) variation
distance ≤ 1/4 of the stationary distribution. The chain is said to be rapidly mixing if the
mixing time is polynomial in n = |V |, and it is said to be torpidly mixing if the mixing time
is exponential in n (for the purposes of this paper, that means Tmix = exp(�(n))). We refer
the reader to Levin et al. [8] for a more thorough introduction to the Glauber dynamics.

Mossel et al. [10] proved that the Glauber dynamics is torpidly mixing, for all � ≥ 3, for
graphs with maximum degree � when λ satisfies (�). This result improved upon earlier work
of Dyer et al. [2] which held for larger λ, but not down to the critical activity λc(T�). The
torpid mixing result of Mossel et al. [10] follows immediately (via a conductance argument)
from their main result that for a random �-regular bipartite graph, for λ satisfying (�), an
independent set drawn from the Gibbs distribution is “unbalanced” with high probability.

The proof of Mossel et al. [10] is a technically involved second moment calculation
that Sly [11] calls a “technical tour de force.” Our main contribution is to improve upon
Mossel et al.’s result, most notably, extending it to all λ > λc(T�) for � = 3. Our improved
analysis comes from using a slightly different parameterization of the second moment of
the partition function, which brings in symmetry, and allows for simpler proofs.

To formally state our results for independent sets of random regular graphs, we need
to partition the set of independent sets as follows. For a bipartite graph G = (V1 ∪ V2, E)

where |V1| = |V2| = n, for δ > 0, for i ∈ {1, 2}, let

Iδ
i = {I ∈ I(G) : |I ∩ Vi| > |I ∩ V3−i| + δn}

denote the independent sets that are unbalanced and “biased” towards Vi. Let

Iδ
B = {I ∈ I(G) : |I ∩ Vi| ≤ |I ∩ V3−i| + δn}

denote the set of nearly balanced independent sets.
Let G(n, �) denote the probability distribution over bipartite graphs with n + n vertices

formed by taking the union of � random perfect matchings. Strictly speaking, this distribu-
tion is over multi-graphs. However, for independent sets the multiplicity of an edge does not
matter so we can view G(n, �) as a distribution over simple graphs with maximum degree
�. Moreover, since our results hold asymptotically almost surely (a.a.s.) over G(n, �), as
noted in Ref. [10, Section 2.1], by standard arguments (see the note after the proof of [9, The-
orem 4]), our results also hold a.a.s. for the uniform distribution over bipartite �-regular
graphs.
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Theorem 2. For � = 3 and any λ > λc(T�), there exist a > 1 and δ > 0 such that,
asymptotically almost surely, for a graph G chosen from G(n, �), the Gibbs distribution μ

satisfies:

μ(Iδ
B) ≤ a−n min {μ(Iδ

1), μ(Iδ
2)}.

Therefore, the Glauber dynamics is torpidly mixing.

This proves Conjecture 2.4 of Ref. [10] for the case d = 3. For � ≥ 4 we can extend
Mossel et al.’s results to a larger range of λ than previously known.

Theorem 3. For all � ≥ 4 there exists ε(�) > 0, for any λ where λc(T�) < λ <

λc(T�) + ε(�), there exist a > 1 and δ > 0 such that, asymptotically almost surely, for a
graph G chosen from G(n, �), the Gibbs distribution μ satisfies:

μ(Iδ
B) ≤ a−n min{μ(Iδ

1), μ(Iδ
2)}.

Therefore, the Glauber dynamics is torpidly mixing. The function ε(�) satisfies:

• If � ≥ 6, ε(�) ≥ λc(T�) − λc(T�+1).
• For � = 5, ε(5) ≥ .402912.
• For � = 4, ε(4) ≥ .327887.

In the following section we look at the first and second moments of the partition function.
We then state two technical lemmas (Lemma 10 and Lemma 11) from which Theorems 1,
2 and 3 easily follow using work of Sly [11] and Mossel et al. [10]. In Section 4 we prove
the technical lemmas. Some of our proofs use Mathematica to prove inequalities involving
rational functions, this is discussed in Section 2.5.

2. OVERVIEW

Proceeding as in Refs. [10, 11], roughly speaking, to prove Theorems 1, 2 and 3 we need
to prove that there exist graphs G whose partition function is close to the expected value
[where the expectation is over a random G ∼ G(n, �)]. At the heart of the argument lies a
careful analysis of the first two moments of the partition function. The aim of this Section
is to give a brief technical overview of the analysis. For more details, the reader is referred
to Refs. [10, 11].

In Section 2.1, we define the quantities which will be prevalent throughout the text. In
Sections 2.2 and 2.3, we revisit the first and second moments and state our main technical
Lemma. We then prove Theorems 1, 2 and 3 in Section 2.4. In Section 2.5, we clarify our
use of computer assistance for the proofs of some technical inequalities.

2.1. Phase Transition Revisited

Recall, for the infinite �-regular tree T�, Kelly [7] showed that there is a phase transition
at λc(T�) = (� − 1)�−1/(� − 2)�. Formally, this phase transition can be defined in the
following manner. Let T� denote the complete tree of degree � and containing � levels. Let
p� denote the marginal probability that the root is occupied in the Gibbs distribution on T�.
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Note, for even � the root is in the maximum independent set, whereas for odd � the root is
not in the maximum independent set. Our interest is in comparing the marginal probability
for the root in even versus odd sized trees. Hence, let

p+ = lim
�→∞

p2� and p− = lim
�→∞

p2�+1.

One can prove these limits exist by analyzing appropriate recurrences. The phase transition
on the tree T� captures whether p+ equals (or not) p−. For all λ ≤ λc(T�), we have p+ = p−,
and let p∗ := p+ = p−. On the other side, for all λ > λc(T�), we have p+ > p−. Mossel
et al. [10] exhibited the critical role these quantities p+ and p− play in the analysis of the
Gibbs distribution on random graphs G(n, �).

2.2. First Moment of the Partition Function

Let G ∼ G(n, �). For α, β ≥ 0, let

Iα,β
G = {I ∈ IG | |I ∩ V1| = αn, |I ∩ V2| = βn},

that is, α is the fraction of the vertices in V1 that are in the independent set and β is the
fraction of the vertices in V2 for an independent set of a bipartite graph G. We consider only
values of (α, β) in the region

R = {(α, β) | α, β ≥ 0 and α + β ≤ 1},

since it is straightforward to see that for a graph G ∼ G(n, �), it deterministically holds
that Iα,β

G = ∅ whenever (α, β) /∈ R. For (α, β) ∈ R, define also

Zα,β
G =

∑
I∈Iα,β

G

λ(α+β)n,

i.e., Zα,β
G is the total weight of independent sets in Iα,β

G . The first moment of Zα,β
G is

EG[Zα,β
G ] = λ(α+β)n

(
n

αn

)(
n

βn

) ((
(1−β)n

αn

)
( n
αn

)
)�

≈ exp(n�1(α, β)),

where

�1(α, β) = (α + β) ln(λ) + H(α) + H(β) + �(1 − β)H

(
α

1 − β

)
− �H(α),

and H(x) = −x ln x − (1 − x) ln(1 − x) is the entropy function. The asymptotic order of
EG[Zα,β

G ] follows easily by Stirling’s approximation.
The first moment was analyzed in the work of Dyer et al. [2]. We use the following

lemma from Mossel et al. [10] that relates the properties of the first moment to p∗, p+ and
p−. The most important aspect of this lemma is that in the non-uniqueness region EG[Zα,β

G ]
is maximized when α �= β ([2]) and more specifically for (α, β) = (p+, p−) ([10]).
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Lemma 4 (Lemma 3.2 and Proposition 4.1 of Mossel et al. [10]). The following holds:

1. the stationary point (α, β) of �1 over R is the solution to β = φ(α) and α = φ(β),
where

φ(x) = (1 − x)

(
1 −

(
x

λ(1 − x)

)1/�
)

, (1)

and the solutions are exactly (p+, p−), (p−, p+), and (p∗, p∗) when λ > λc(T�), and
the unique solution is (p∗, p∗) when λ ≤ λc(T�);

2. when λ ≤ λc(T�), (p∗, p∗) is the unique maximum of �1 over R, and when λ >

λc(T�), (p+, p−) and (p−, p+) are the maxima of �1 over R, and (p∗, p∗) is not a
local maximum;

3. all local maxima of �1 satisfy α + β + �(� − 2)αβ ≤ 1;
4. p+, p−, p∗ satisfy p− < p∗ < p+ and when λ → λc(T�) from above, we have

p∗, p−, p+ → 1/�.

For every � ≥ 3, define the region

R� = {(α, β) | α, β > 0 and α + β + �(� − 2)αβ ≤ 1}.
Part 3 of Lemma 4 establishes that the local maxima of �1 lie in R�. Note that for � ≥ 3,
we have R� ⊂ R. Hence, the local maxima for all � ≥ 3 lie in the interior of R.

2.3. Second Moment of the Partition Function

The second moment of Zα,β
G satisfies [10]

EG[(Zα,β
G )2] ≈ exp(n · max

γ ,δ,ε
�2(α, β, γ , δ, ε)),

where

�2(α, β, γ , δ, ε) = 2(α + β) ln(λ) + H(α) + H1(γ , α) + H1(α − γ , 1 − α) + H(β)

+ H1(δ, β) + H1(β − δ, 1 − β) + � (H1(γ , 1 − 2β + δ) − H(γ )

+ H1(ε, 1 − 2β + δ − γ ) + H1(α − γ − ε, β − δ) − H1(α − γ , 1 − γ )

+H1(α − γ , 1 − β − γ − ε) − H1(α − γ , 1 − α)) , (2)

and H(x) = −x ln(x)−(1−x) ln(1−x), H1(x, y) = −x(ln(x)− ln(y))+(x−y)(ln(y − x)−
ln(y)).

To make �2 well defined, the variables have to satisfy (α, β) ∈ R and

γ , δ, ε ≥ 0, α − γ − ε ≥ 0, β − δ ≥ 0, 1 − 2β + δ − γ − ε ≥ 0,

1 − α − β − ε ≥ 0, β − δ + ε + γ − α ≥ 0.
(3)

Lemma 4 tells us that in the non-uniqueness region (which is the region of interest
in this paper) the first moment is maximized when (α, β) is (p+, p−) [or symmetrically,
(p−, p+)]. To show that these unbiased configurations dominate the Gibbs distribution with
high probability (as desired for Theorems 2 and 3) we will apply the second moment method,
as used in Ref. [10].
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To that end, we need to analyze the second moment for (α, β) = (p+, p−), and show that
EG[(Zα,β

G )2] = O((EG[Zα,β
G ])2). To do that we need to show that for for (α, β) = (p+, p−),

EG[(Zα,β
G )2] is roughly determined by uncorrelated pairs of configurations. This crux of

this is to show that �2 is maximized when γ = α2 and δ = β2, which is detailed in the
upcoming condition which was proposed in Ref. [11].

Condition 1 (Condition 1.21 of Sly [11]). There exists a constant χ > 0 such that when
|p+ − α| < χ and |p− − β| < χ then gα,β(γ , δ, ε) := �2(α, β, γ , δ, ε) achieves its unique
maximum in the region (3) at the point

(γ ∗, δ∗, ε∗) = (α2, β2, α(1 − α − β)).

As mentioned earlier, Condition 1 implies that for (α, β) = (p+, p−), EG[(Zα,β
G )2] =

O((EG[Zα,β
G ])2). While the implicit constant in the latter equality is bigger than one, an appli-

cation of the small graph conditioning method [5,17] shows that for (α, β) = (p+, p−), Zα,β
G

is concentrated around its expected value (up to a multiplicative arbitrarily small polynomial
factor). This yields a lower bound on the partition function Zα,β

G for (α, β) = (p+, p−). On
the other hand, it is straightforward to an upper bound on the partition function for balanced
configurations α = β. Consequently, one obtains Theorems 2 and 3 as detailed below in
Section 2.4, which implies that the Gibbs distribution is unbalanced with high probability.
Sly [11] uses random regular bipartite graphs as a gadget in his reduction and utilizes this
bimodality property of the Gibbs distribution.

Before stating our new results on when Condition 1 holds, it is useful to remind the
reader the previously known values of λ for which Condition 1 holds:

• � ≥ 3, and λc(T�) < λ < λc(T�) + ε(�) for some (small) ε(�) > 0, ([10, Lemma
6.10, Lemma 5.1]);

• � = 6 and λ = 1, (Ref. [11, Section 5]).

Let λ1/2(T�) be the smallest value of λ such that φ(φ(1/2)) = 1/2 (φ is the function
defined in Lemma 4). Equivalently, λ1/2(T�) is the minimum solution of(

1 + (1/λ)1/�
)1−1/� (

1 − (1/λ)1/�
)1/� = 1. (4)

The following Lemma is the technical core of this work.

Lemma 5. Condition 1 holds for

1. � = 3 and λ > λc(T�), and
2. � > 3 and λ ∈ (λc(T�), λ1/2(T�)],
Lemma 5 is proved in Section 4. As a corollary of Lemma 5 we get that Condition 1

holds for the range of λ specified in Theorems 2 and 3.

Corollary 6. Condition 1 holds for:

1. For � = 3 and λ > λc(T3).
2. For � ≥ 6 and λc(T�) < λ ≤ λ1/2(T�) and λ1/2(T�) > λc(T�−1).

1The numbering in this paper for results from Sly’s work [11] refer to the arXiv version of his paper.
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3. For � = 5 and λc(T5) < λ ≤ λc(T5) + .402912.
4. For � = 4, λc(T4) < λ ≤ λc(T4) + .327887.

Proof. Part 1 is identical to the first bullet in Lemma 5.
Part 2 follows from the second bullet of Lemma 5 and the fact that for � ≥ 6, it holds

λ1/2(T�) > λc(T�−1). To see this, by (4), we have that 1 − (1/λ1/2(T�))1/� > 0, which
implies that λ1/2(T�) > 1. For � ≥ 6, we have λc(T�) < 1. Hence, for � ≥ 7, we have
λ1/2(T�) > λc(T�−1). For � = 6, the claim follows from the fact that λc(T5) = 256/243 <

λ1/2(T6) ≈ 1.23105.
For � = 5, note that

λ1/2(T5) − λc(T5) > 1.45641 − 256/243 > .402912,

which proves Part 3.
For � = 4, note that

λ1/2(T4) − λc(T4) > 2.015387 − 27/16 = .327887,

which proves Part 4.

Theorems 2 and 3 now follow from Corollary 6 as outlined earlier, and detailed in the
following subsection.

2.4. Proofs of Main Theorems

We now proceed to prove Theorems 2 and 3.

Proofs of Theorems 2 and 3. The proof is essentially the same as the proof of [10, Theo-
rem 2.2] with minor modifications. We include the proof for the sake of completeness.

Choose δ > 0 such that for

X := min
|x−p+|≤δ, |y−p−|≤δ

�1(x, y), Y := max
|x−y|≤δ

�1(x, y)

it holds that τ := X − Y > 0. To see that this is possible, note that �1 is continuous and
hence it is uniformly continuous at any closed and bounded region. Since �1 exhibits a
global maximum at (p+, p−), the existence of δ follows.

By Markov’s inequality, we obtain that a.a.s.

μ(Iδ
B) =

∑
x,y:|x−y|≤δ Zx,y

G

ZG
≤ exp(n(Y + τ

4 ))

ZG
. (5)

To bound min{μ(Iδ
1), μ(Iδ

2)}, we need the following result from [10]. While their
result is only stated for (α, β) close to (1/�, 1/�), it can readily be verified (as Sly also
observed, e.g., see the discussion before Lemma 3.4 in Ref. [11]) that their proof holds in
a neighbourhood of (p+, p−), whenever Condition 1 holds.
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Lemma 7 (Theorem 3.4 of Mossel et al. [10]). 2 Let � ≥ 3. Suppose that Condition 1
holds, then for all sufficiently large n there exist (αn, βn) where

αn = p+ + o(1), βn = p− + o(1), and nαn and nβn are integers, (6)

and it holds a.a.s. that

Zαn ,βn
G ≥ 1

n
EG[Zαn ,βn

G ].

For all n large enough, there exist (αn, βn) where |αn − p+| ≤ 1/n, |βn − p−| ≤ 1/n and
nαn and nβn are integers, and therefore (6) holds.

From Lemma 7 and Corollary 6, it follows that a.a.s. Zα,β
G ≥ exp(n(X − τ

4 )) and
consequently

μ(Iδ
1) ≥ exp(n(X − τ

4 ))

ZG
.

Since both �1 and �2 are symmetric with respect to α, β, a similar statement to Lemma 7
holds with the roles of p+, p− interchanged, so that

min{μ(Iδ
1), μ(Iδ

2)} ≥ exp(n(X − τ

4 ))

ZG
. (7)

Combining (5) and (7), we obtain

μ(Iδ
B) ≤ exp

(
−nτ

2

)
min{μ(Iδ

1), μ(Iδ
2)}. (8)

This completes the proof.
The torpid mixing of the Glauber dynamics claimed in Theorems 2 and 3 follows from

(8) by Claim 2.3 in Ref. [2], which is a standard conductance argument.

For Theorem 1, we will use Lemma 5 combined with the work of Sly [11], but we need
one additional ingredient. The following combinatorial result will be used to extend the
inapproximability result for � = 3 to a range of λ for � ≥ 6.

Lemma 8. Let G be a graph of maximum degree � and let k > 1 be an integer. Consider
the graph H obtained from G be replacing each vertex by k copies of that vertex and each
edge by the complete bipartite graph between the corresponding copies. Then,

ZG((1 + λ)k − 1) = ZH(λ).

Proof. Consider the map f : IH → IG that maps an independent set I of H to an inde-
pendent set J of G such that v ∈ J if and only if at least one of the k copies of v in H
are in I .

2The stated version of the theorem differs slightly from the version in Ref. [10]. In particular, in Ref. [10] (α, β)

is fixed, in the sense that it’s independent of n. Here, (α, β) depends on n. In the application of this theorem in the
proof of Theorem 2.2 in Ref. [10], it is unclear how they deduce the existence of a fixed (α, β) and this is why we
modified the statement of the theorem. Their proof of Theorem 3.4 in Ref. [10] still goes through for this slightly
modified version.
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For an independent set J of G the total contribution of sets in f −1(J) to ZH(λ) is ((1 +
λ)k − 1)|J|, since for each v ∈ J we can choose any non-empty subset of its k copies
in H.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Sly’s reduction [11, Section 2] establishes that for any λ > λc(T�)

such that Condition 1 holds and also the following two inequalities hold:

(� − 1)p+p− ≤ (1 − p+)(1 − p−) and p+ <
3

5
(1 − p−), (9)

then there does not exist (assuming NP�=RP) an FPRAS for the partition function of the
hard-core model with activity λ. For the two inequalities in (9), as Sly [11] points out, they
are unnecessary. First off, the inequality (�−1)p+p− ≤ (1−p+)(1−p−) is implied by Part
3 of Lemma 4. And the condition p+ < 3

5 (1 − p−) is used to simplify the proof of Lemma
4.2 in Ref. [11]. For completeness, a slight modification of Sly’s Lemma 4.2 without (9) in
the hypothesis is proved in Section 3.

Corollary 6 establishes that Condition 1 holds for a range of activities λ for each � ≥ 3.
By the discussion above, we obtain that there does not exist (assuming NP �=RP) an FPRAS
for the partition function of the hard-core model with activity

• λ ∈ (λc(T3), ∞] for � = 3.
• λ ∈ (λc(T�), λc(T�−1)] for � ≥ 6.
• λ ∈ (λc(T5), λc(T5) + .402912] for � = 5.
• λ ∈ (λc(T4), λc(T4) + .327887] for � = 4.

Lemma 8 (used with k = 2 and � = 3) implies that there does not exist (assuming
NP�=RP) an FPRAS for the partition function of the hard-core model with activity λ >√

5 − 1 in graphs of maximum degree 6.
The range of λ for � and �−1 where we can prove hardness (that is, (λc(T�), λc(T�−1)])

overlap for � ≥ 6. This is useful since the hardness for �− 1 automatically gives hardness
for �.

Thus for � ≥ 6 we have the hardness result on the set

(λc(T�), λc(T�−1)] ∪ · · · ∪ (λc(T6), λc(T5)] ∪ (λc(T5), λc(T5) + 0.402912] ∪ (
√

5 − 1, ∞)

= (λc(T�), ∞).

This concludes the proof of the theorem for � ≥ 6.
For � = 4, we have the hardness result on the set (λc(T4), 2.01538] ∪ (4, +∞).
For � = 5, we have the hardness result on the set

(λc(T5), 1.45641] ∪ (1.6875, 2.01538] ∪ (4, +∞).

2.5. On the Use of Computational Assistance

We use Mathematica to prove several inequalities involving rational functions in regions
bounded by rational functions. Such inequalities are known to be decidable by Tarski’s
quantifier elimination [14], the particular version of Collins algebraic decomposition (CAD)
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used by Mathematica’s Resolve command is described in Ref. [13]. The algorithms are
guaranteed to return correct answers—they do not suffer from precision issues since they
use interval arithmetic (a real number is represented using an interval whose endpoints are
rational numbers).

3. NON-RECONSTRUCTION REVISITED

In this section, we reprove Lemma 4.2 from Sly [11] without (9) in the hypothesis. This
will allow us to focus on proving Lemma 5.

Recall, T� is the infinite �-regular tree, and p+, p− denote the marginal probabilities that
the root is occupied for the limit of even and odd, respectively, sized trees. Let T̂� denote
the infinite (� − 1)-ary tree rooted at ρ. (Thus, these two trees only differ at the root.) For
� ∈ N, let T̂� denote the tree with branching factor � − 1 and containing � levels. Let q�

denote the marginal probability that the root is occupied in the Gibbs distribution on T̂�.
Analogous to p+ and p−, let

q+ = lim
�→∞

q2� and q− = lim
�→∞

q2�+1.

The densities q+, q− are related to p+, p− by:

q+ = p+

1 − p− , q− = p−

1 − p+ .

There are two semi-translation invariant measures μ̂+ and μ̂− on T̂� obtained by taking
the weak limit of the hard-core measure of even-sized trees T̂2� and odd-sized trees T̂2�+1,
respectively. In these measures μ̂+, μ̂− on the infinite tree, q+ and q−, respectively, are the
marginal probabilities that the root is occupied. These measures μ̂+ and μ̂− can also be
generated by a broadcasting process, see Ref. [11, Section 4].

For v ∈ T̂�, denote by Sv,� the vertices at level � in the subtree of T̂� rooted at v. Let
Xρ,�,+ denote the marginal probability that the root ρ is occupied in an independent set X
generated by the following process: we first sample an independent set X̂ from the measure
μ̂+, then we condition on the configuration X̂S on Sρ,�, and finally we sample an independent
set X from the hard-core measure on T̂� conditioned on XS = X̂S. Note that the configuration
of the vertices in Sρ,� is a random vector, so that Xρ,�,+ is a random variable. Define similarly
Xρ,�,− for μ̂−.

We may extend this definition to an arbitrary vertex v ∈ T̂� at distance D from the
root ρ, by setting Xv,�,+ = Xρ,�,+ if D is even or Xv,�,+ = Xρ,�,− if D is odd. Thus, Xv,�,+ is
the probability that, in an appropriate translation of μ̂+, v is occupied conditioning on the
configuration of Sv,�. Define similarly Xv,�,− for μ̂−.

In Sly [11], it is proved that Xρ,�,+ (Xρ,�,−) is strongly concentrated around q+ (q−,
respectively) under the condition that p+ < 3

5 (1 − p−). This concentration is used by Sly
for establishing the properties of the gadget he uses in his reduction. We need to reprove
the concentration without the condition p+ < 3

5 (1 − p−).

Lemma 9 (see Lemma 4.2 in Sly [11]). When λ > λc(T�), there exist constants
ζ1(λ, �), ζ2(λ, �) > 0, for all sufficiently large �,

P
[∣∣Xρ,�,+ − q+∣∣ ≥ exp(−ζ1�)

] ≤ exp(− exp(ζ2l)).

P
[∣∣Xρ,�,− − q−∣∣ ≥ exp(−ζ1�)

] ≤ exp(− exp(ζ2l)).
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Proof. We follow the proof of Ref. [11]. For a vertex v ∈ T̂�, let N(v) = N1(v) denote its
children, and for i ∈ N, let Ni(v) denote its descendants i levels below. For 1 ≤ i ≤ � and
s ∈ {+, −}, let XNi(v),�−i,s denote the vector {Xw,�−i,s : w ∈ Ni(v)}.

By standard tree recursions, it can be proved that for s ∈ {+, −},

Xv,�,s = h(XN(v),�−1,s) := λ
∏

w∈N(v)(1 − Xw,�−1,s)

1 + λ
∏

w∈N(v)(1 − Xw,�−1,s)
.

In our framework, one may establish a contraction property for h, but it is slightly more
straightforward to look at depth two of the recursion. Note that

1 − Xv,�,s = 1

1 + λ
∏

w∈N(v)(1 − Xw,�−1,s)

so that

Xv,�,s = 1 − 1

1 + λ
∏

w∈N(v)
1

1+λ
∏

z∈N(w)(1−Xz,�−2,s)

= λ

λ + ∏
w∈N(v)

(
1 + λ

∏
z∈N(w)(1 − Xz,�−2,s)

) (10)

=: r(XN2(ρ),�−2,s).

By recursively applying (10), we obtain that

Xρ,�,s =: g(XN2L(ρ),�−2L,s).

Note that r(XN2(ρ),�−2,s) = g(XN2(ρ),�−2,s).
For the rest of the proof, we focus on the case s = + and v being at even distance from

the root ρ, the other cases being almost identical (since we are looking at depth two of the
recursion).

Assume XN2(v),�−2,+, X ′
N2(v),�−2,+ are two vectors which are equal except at one vertex

z∗∈N2(v). To prove the new version of the lemma, it suffices to obtain the following con-
traction property. We will prove for all � sufficiently large, for all v ∈ T̂�, for all pairs
XN2(v),�−2,+, X ′

N2(v),�−2,+ that differ at a single vertex z∗,

|r(XN2(v),�−2,+) − r(X ′
N2(v),�−2,+)| ≤

(
1

(� − 1)2
+ 1

10

)
|Xz∗ ,�−2,+ − X ′

z∗ ,�−2,+|. (11)

To accomplish this, it suffices to prove that for � large enough, it holds that:∣∣∣∣ ∂r

∂Xz∗ ,�−2,+
(XN2(v),�−2,+)

∣∣∣∣ <
1

(� − 1)2
+ 1

10
. (12)

Let w∗ ∈ N(v) be the parent of z∗. Then (12) is equivalent to:

λ2
∏

z∈N(w∗)\{z∗}(1 − Xz,�−2,+)
∏

w∈N(v)\{w∗}
(
1 + λ

∏
z∈N(w)(1 − Xz,�−2,+)

)
[
λ + ∏

w∈N(v)

(
1 + λ

∏
z∈N(w)(1 − Xz,�−2,+)

)]2 <
1

(� − 1)2
+ 1

10
.
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Note that as � → +∞, since v is at even distance from ρ, Xv,�,+ converges almost surely
to q+ (see Ref. [11, Eq. (4.1)] and Ref. [11, proof of Lemma 4.2]). Hence, as � → +∞, we
have that∣∣∣∣ ∂r

∂Xz∗ ,�−2,+
(XN2,�−2,+)

∣∣∣∣ → λ2(1 − q+)�−2
(
1 + λ(1 − q+)�−1

)�−2

[
λ + (

1 + λ(1 − q+)�−1
)�−1

]2 =: γ .

Pick �0 = �0(�, λ) so that for all � ≥ �0 we have that∣∣∣∣ ∂r

∂Xz∗ ,�−2,+
(XN2(v),�−2,+) − γ

∣∣∣∣ ≤ 1

10
.

We will see next that γ = q+q− and hence by Part 3 of Lemma 4, it follows that γ ≤ 1
(�−1)2

which proves (12).
To see that γ = q+q−, note that λ(1 − q+)�−1 = q−

1−q− and λ(1 − q−)�−1 = q+
1−q+ (one

can derive these equalities by p+ = φ(p−), p− = φ(p+), see Part 1 of Lemma 4). It is now
a matter of a few algebra substitutions to check that γ = q+q−.

This proves (11). Recursively applying this relation (11) implies that for all � − L > �0,
for � ≥ 3,

|g(XNL(v),�−L,+) − g(X ′
NL(v),�−L,+)| ≤

(
1

2

)�L/2�
|Xz∗ ,�−L,+ − X ′

z∗ ,�−L,+|. (13)

Having established (13), the rest of Sly’s proof of Lemma 4.2 goes through.

4. ANALYSIS OF THE SECOND MOMENT

In this section, we prove Lemma 5. We break its proof into two slightly easier compo-
nents, namely Lemmata 10 and 11 stated below, depending on the value of p+. Notice that
Lemma 10 determines explicitly a region of (α, β) for which Condition 1 holds.

Lemma 10. Let � ≥ 3 and let (α, β) ∈ R�, α, β > 0, and α, β ≤ 1/2. Then
gα,β(γ , δ, ε) := �2(α, β, γ , δ, ε) achieves its unique maximum in the region (3) at the
point (γ ∗, δ∗, ε∗).

Lemma 11. Fix � = 3 and λ > λc(T�). Let p+ and p− be the corresponding probabilities.
Assume that 1/2 ≤ p+ < 1. There exists a constant χ > 0 such that for |p+ − α| < χ

and |p− − β| < χ , gα,β(γ , δ, ε) := �2(α, β, γ , δ, ε) achieves its unique maximum in the
region (3) at the point (γ ∗, δ∗, ε∗).

Proof of Lemma 5. We begin by proving the second part of the lemma (� > 3 case) and
then we prove the first part (� = 3 case).

Fix any � ≥ 3 and λ > λc(T�). Let p+, p− be the corresponding marginal probabilities
that the root is occupied in the measures μ+, μ−. By the third item of Lemma 4, we have that
(α, β) = (p+, p−) is contained in the interior of R�. Hence, the same holds for every (α, β)

in a small enough neighborhood of (p+, p−). Hence, provided that p+ ≤ 1/2, Lemma 10
verifies the condition for any such point. It is now easy to see that p+ is increasing in λ, and
hence p+ ≤ 1/2 iff λ ∈ (λc(T�), λ1/2(T�)]. This proves the second part of Lemma 5.
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The first part of Lemma 5 is proved analogously. When p+ ≤ 1/2, one uses Lemma 10
as above, while when p+ ≥ 1/2 the condition reduces to Lemma 11.

Thus, we may focus our attention on proving Lemmata 10 and 11. While the analysis at
some point for Lemma 11 requires tighter arguments, the two proofs share many common
preprocessing steps. The rest of this section is devoted to these common preprocessing steps
and the proofs of Lemmata 10 and 11 are given in Section 5.

4.1. The Partial Derivatives

The derivatives of �2 with respect to γ , δ, ε can easily be computed and are also given in
Ref. [10, Proof of Lemma 6.1]:

exp

(
∂�2

∂γ

)
= (1 − 2β + δ − γ − ε)�(α − γ − ε)�(1 − 2α + γ )�−1

(1 − β − γ − ε)�(β − α + γ − δ + ε)�(α − γ )�−2γ
, (14)

exp

(
∂�2

∂δ

)
= (β − α − δ + γ + ε)�(1 − 2β + δ)�−1

(1 − 2β + δ − γ − ε)�(β − δ)�−2δ
, (15)

exp

(
∂�2

∂ε

)
= (1 − 2β + δ − γ − ε)�(α − γ − ε)�(1 − α − β − ε)�

ε�(β − α − δ + γ + ε)�(1 − β − γ − ε)�
. (16)

4.2. Excluding the Boundary of the Region

We argue that for (α, β) ∈ R�, the maximum of gα,β cannot occur on the boundary of the
region defined by (3).

Lemma 12. For every � ≥ 3 and (α, β) ∈ R�, gα,β(γ , δ, ε) := �2(α, β, γ , δ, ε) attains
its maximum in the interior of (3).

Proof. We follow the proof of Lemma 6.1 of Ref. [10] (where the same result is proved
in the special case α = β = 1

�
).

We will prove that gα,β(γ , δ, ε) attains its maximum in the interior of (3) by showing that
at least one derivative in (14)–(16) goes to infinity (+ or − according to the direction), as
we approach one of the boundaries defined by (3) from the interior of (3).

For � ≥ 3, note that (α, β) ∈ R� implies α + β < 1. Without loss of generality, we
assume that α ≥ β. Hence β < 1/2. We have (15) goes to +∞ as δ → 0, and (16) goes to
+∞ as ε → 0. We also have (16) goes to −∞ as γ + ε → α, (15) goes to −∞ as δ → β,
(16) goes to −∞ as γ + ε − δ → 1 − 2β, (16) goes to −∞ as ε → 1 − α − β, and (16)
goes to +∞ as γ + ε − δ → α − β.

When α ≥ 1/2, the condition γ = 0 is not a boundary, as γ ≥ 0 is implied by the
conditions δ ≥ 0, 1 −α −β − ε ≥ 0, and β − δ + ε + γ −α ≥ 0. On the other hand, when
α < 1/2, we have (14) goes to +∞ as γ → 0.

4.3. Eliminating One Variable

Fix �, α, β, γ , δ and view �2 as a function of ε. We maximize with respect to ε. In this
setting, it was proved [10, Lemma 6.3], that the only maximizer of the function �2 in the
interior of (3) is obtained by solving ∂�2

∂ε
= 0 and is given by:

ε̂ := ε̂(α, β, γ , δ) = 1

2
(1 + α − β − 2γ − √

D), (17)
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where

D = (1 + α − β − 2γ )2 − 4(α − γ )(1 − 2β − γ + δ)

= (α + β − 1)2 + 4(α − γ )(β − δ).

Define

η̂ := η̂(α, β, γ , δ) = 1

2
(1 − α + β − 2δ − √

D), (18)

and note that

α − γ − ε̂ = β − δ − η̂ = 1

2
(−(1 − α − β) + √

D),

(α − γ − ε̂)(1 − α − β − ε̂ − η̂) = ε̂η̂.
(19)

The new parameter η̂ (not used in Ref. [10]) is symmetric with ε̂, i.e, the constraints and
formulas we have are invariant under a symmetry that swaps α, γ , ε̂ with β, δ, η̂. This will
allow for simpler arguments (using the symmetry).

From the previous discussion and Eq. (17), we may eliminate variable ε of our consid-
eration. Of course, this introduces some complexity due to the radical

√
D, but still this is

manageable. Let

f (γ , δ) := gα,β(γ , δ, ε̂) = �2(α, β, γ , δ, ε̂).

To prove that (γ ∗, δ∗, ε∗) is the unique global maximum of gα,β in the interior of the region
defined by (3), it suffices to prove that (γ ∗, δ∗) is the unique global maximum of f for (γ , δ)
in the interior of the following region, which contains the (γ , δ)-projection of the region
defined by (3):

0 ≤ γ ≤ α, 0 ≤ δ ≤ β, 0 ≤ 1 − 2β + δ − γ , 0 ≤ 1 − 2α + γ − δ. (20)

Each inequality in (20) is implied by the inequalities in (3), the only non-trivial case being
the last inequality which is the sum of 1 − α − β − ε ≥ 0 and β − δ + ε + γ − α ≥ 0.

The first derivatives of f with respect to γ , δ are

∂f

∂γ
(γ , δ) = � ln W11 + ln W12, (21)

∂f

∂δ
(γ , δ) = � ln W21 + ln W22, (22)

where

W11 = (α − γ − ε̂)ε̂(1 − 2α + γ )

η̂(α − γ )2
= ε̂(1 − 2α + γ )

(1 − α − β − ε̂)(α − γ )
, W12 = (α − γ )2

(1 − 2α + γ )γ
,

W21 = (β − δ − η̂)η̂(1 − 2β + δ)

ε̂(β − δ)2
= η̂(1 − 2β + δ)

(1 − α − β − η̂)(β − δ)
, W22 = (β − δ)2

(1 − 2β + δ)δ
.

Note that the rightmost equalities in the definition of W11 and W21 follow from (18) and (19).
For every � ≥ 3, and (α, β) ∈ R�, we have that (γ ∗, δ∗) is a stationary point of f (this

follows from the fact that for γ = α2 and δ = β2, the inequalities on the right-hand sides in
Lemma 13 become equalities, and from (21), (22) we have that the derivatives of f vanish).
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4.4. Restricting the Region

To determine whether (21) and (22) are zero it will be useful to understand conditions that
make W11, W12, W21, W22 greater or equal to 1. The following lemma gives such conditions.
The proof is given in Section 6.1.

Lemma 13. For every (α, β) ∈ R, and (γ , δ) in the interior of (20),

W11 ≥ 1 ⇐⇒ (1 − α)2δ + β2(2α − 1 − γ ) ≥ 0,

W12 ≥ 1 ⇐⇒ γ ≤ α2,

W21 ≥ 1 ⇐⇒ (1 − β)2γ + α2(2β − 1 − δ) ≥ 0,

W22 ≥ 1 ⇐⇒ δ ≤ β2.

By considering the sign of (21) and (22) and Lemma 13, we have that the stationary
points of f (and hence of gα,β) can only be in

0 < γ ≤ α2, 0 < δ ≤ β2,

(1 − α)2δ + β2(2α − 1 − γ ) ≤ 0, (1 − β)2γ + α2(2β − 1 − δ) ≤ 0, (23)

or

α2 ≤ γ < α, β2 ≤ δ < β,

(1 − α)2δ + β2(2α − 1 − γ ) ≥ 0, (1 − β)2γ + α2(2β − 1 − δ) ≥ 0. (24)

Note that for γ = α2, δ = β2 one has W11 = W12 = W21 = W22 = 1 (Lemma 13 holds
with equalities as well instead of inequalities), so that (α2, β2) is always a stationary point
for f (γ , δ).

4.5. The Hessian

To prove that f has a unique maximum, we are going to argue that f is strictly concave in
each of the regions defined by (23) and (24). It will thus be crucial to study the Hessian of
f .

Let H denote the Hessian of f , i.e.,

H =

⎛
⎜⎜⎝

∂f

∂2γ
(γ , δ)

∂f

∂γ ∂δ
(γ , δ)

∂f

∂δ∂γ
(γ , δ)

∂f

∂2δ
(γ , δ)

⎞
⎟⎟⎠ .

Our goal is to express H in a helpful explicit form. In this vein, it will be convenient to
define the following quantities.

R1 = 1 − α − β

1 − α − β − ε̂ − η̂
, R2 =

√
D

1 − 2α + γ
, R3 = 2(α − γ − ε̂)

α − γ
,

R4 =
√

D

γ
, R5 = 2(1 − β − γ − ε̂)

α − γ
, R6 =

√
D

1 − 2β + δ
,

R7 = 2(α − γ − ε̂)

β − δ
, R8 =

√
D

δ
, R9 = 2(1 − β − γ − ε̂)

β − δ
.
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H can now be written in a relatively nice form with respect to the Ri. Namely,

∂f

∂2γ
(γ , δ) = 1√

D
[(−R1 + R2 + R3)� − R2 − R3 − R4 − R5] , (25)

∂f

∂2δ
(γ , δ) = 1√

D
[(−R1 + R6 + R7)� − R6 − R7 − R8 − R9] , (26)

∂f

∂γ ∂δ
(γ , δ) = ∂f

∂δ∂γ
(γ , δ) = �R1√

D
. (27)

Inspecting the Ri we obtain the following observation.

Observation 14. R1, . . . , R9 are positive when (α, β) ∈ R� and (γ , δ) in the interior
of (20).

Observation 14 and Eq. (27) immediately yield:

Observation 15. For every (α, β) ∈ R�, and (γ , δ) in the interior of (20),

∂f

∂γ ∂δ
(γ , δ) = ∂f

∂δ∂γ
(γ , δ) > 0.

In Section 6.2 we prove the following technical inequality on the Ri.

Lemma 16. For every (α, β) ∈ R, and (γ , δ) in the interior of (20),

R1 > R2 + R3, and R1 > R6 + R7.

Applying Lemma 16 and Observation 14, (25) and (26) give the following straightforward
corollary.

Corollary 17. For every (α, β) ∈ R, and (γ , δ) in the interior of (20),

∂f

∂2γ
(γ , δ) < 0,

∂f

∂2δ
(γ , δ) < 0.

Corollary 17 implies that the sum of the eigenvalues of M is negative. Hence, H is
negative definite iff the determinant of H is negative. We have the following expression for
det(H).

det(H) = ∂f

∂2γ
(γ , δ) · ∂f

∂2δ
(γ , δ) − ∂f

∂γ ∂δ
(γ , δ) · ∂f

∂δ∂γ
(γ , δ)

= 1

D

{
(� − 1)2

[
(−R1 + R2 + R3)(−R1 + R6 + R7) − R2

1

]
+ (� − 1) [(−R1 + R2 + R3)(−R1 − R8 − R9)

+ (−R1 + R6 + R7)(−R1 − R4 − R5) − 2R2
1

]
+ [

(−R1 − R8 − R9)(−R1 − R4 − R5) − R2
1

]}
. (28)
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5. CONCLUDING THE PROOFS OF LEMMATA 10 AND 11

In this section, we give the proofs of Lemmata 10 and 11. We first recap what we have
accomplished in Section 4 for every (α, β) ∈ R�.

1. The function gα,β(γ , δ, ε) attains its maximum in the interior of the region (3). See
Section 4.2.

2. To study the (local) maxima of g in the interior of the region (3), it suffices to study
the maxima of the function f (γ , δ) = gα,β(γ , δ, ε̂) in the interior of the region (20).
More explicitly, if f (γ , δ) has a unique maximum in the interior of the region (20) at
(γ ∗, δ∗) = (α2, β2), then gα,β has a unique maximum in the interior of the region (3)
at (γ ∗, δ∗, ε∗) = (α2, β2, α(1−α−β)). The function f is differentiable in the interior
of the region (20). See Section 4.3.

3. The point (γ ∗, δ∗) = (α2, β2) is always stationary for f . Every stationary point of
f lies in one of the two regions defined by (i) (20) and (23), (ii) (20) and (24). See
Section 4.4.

4. The function f is strictly concave iff det(H) > 0. See Section 4.5.

By the above discussion, if for some (α, β) ∈ R� it holds that f is strictly concave in
each of the regions (i) (20) and (23), (ii) (20) and (24), then gα,β has a unique maximum at
(γ ∗, δ∗, ε∗) = (α2, β2, α(1 − α − β)). Thus, it suffices to check that det(H) > 0 in each of
these regions. This is essentially the way we derive Lemmata 10 and 11.

Hence, the main challenge is proving that det(H) > 0. This can be done slightly more
easily in the region (20) and (23). Indeed, in Section 6.3 we prove the following lemma.

Lemma 18. det(H) > 0 for every � ≥ 3, (α, β) ∈ R�, (γ , δ) in the interior of (20) and
(γ , δ) in (23).

Proving det(H) > 0 in the intersection of the regions (20) and (23) is trickier and is
essentially the reason we do not obtain our hardness result for � = 4, 5. At this point, it is
convenient to split the analysis for each of the lemmas.

5.1. Proof of Lemma 10

In the setup of Lemma 10, we have (α, β) ∈ R� and α, β ≤ 1/2. We suppress the details
of proving det(H) > 0 as a lemma, whose proof we defer to Section 6.4.

Lemma 19. det(H) > 0 for every � ≥ 3, (α, β) ∈ R�, α, β ≤ 1/2, (γ , δ) in the interior
of (20) and (γ , δ) in (24).

Using Lemmata 18 and 19, the proof of Lemma 10 is immediate.

Proof of Lemma 10. Lemma 18 and Lemma 19 imply that f has a unique maximum at
(γ ∗, δ∗) for every � ≥ 3, (α, β) ∈ R�, 1/2 ≥ α, β and (γ , δ) in the interior of (20). This
follows from the fact that det(H) > 0 implies that the Hessian of f is negative definite
in the region of interest, i.e., where gα,β could possibly have stationary points, which in
turn implies that f is strictly concave in the region and hence has a unique maximum. By
the definition of f , it follows that gα,β has a unique maximum at (γ ∗, δ∗, ε∗). For a more
thorough outline, see the beginning of Section 5.
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5.2. Proof of Lemma 11

In the setup of Lemma 11, we have � = 3 and p+ ≥ 1/2. By (1), tedious but otherwise
simple algebra gives that the solution of β = φ(α) and α = φ(β) with α �= β satisfies

α2 − 2α + αβ + 1 − 2β + β2 = 0.

It can also be checked that when 1 > p+ ≥ 1/2, it holds that 0 < p− ≤ (3 −√
5)/4. Define

R′
3 to be the set of pairs (α, β) such that α2 − 2α + αβ + 1 − 2β + β2 = 0, 1/2 ≤ α < 1

and 0 < β ≤ (3 − √
5)/4. Our goal is to show that det(H) > 0 for every (α, β) ∈ R′

3,
(γ , δ) in the interior of (20) and (γ , δ) in (24).

We can rewrite det(H) using the formula in (28) as

det(H) = 1

D
[3R1(U1 + U2) + U1U2]

= U1

D
[3R1(1 + U2/U1) + U2] , (29)

where

U1 = R8 + R9 − 2R6 − 2R7, U2 = R4 + R5 − 2R2 − 2R3.

The following lemma establishes technical inequalities on U1, U2, R1, . . . , R9, which are
crucial in establishing the positivity of det(H). Its proof is given in Section 6.5.

Lemma 20. We have U1 > 0, R4 > R6, R5 > R7, R5 > 4R3, R9 > 4R7, and 3R8/2+R9 >

9R2, for every (α, β) ∈ R′
3, (γ , δ) in the interior of (20) and (γ , δ) in (24).

With Lemma 20 at hand, we can now prove that det(H) is positive.

Lemma 21. det(M) > 0 for every (α, β) ∈ R′
3, (γ , δ) in the interior of (20) and (γ , δ)

in (24).

Proof. Observe that

U1 + 3U2 = (R8 + 2R9/3 − 6R2) + (3R4 − 2R6) + (R9/3 − 4R7/3)

+ (3R5/2 − 2R7/2) + (3R5/2 − 6R3)

> 0,

where the last inequality follows by Lemma 21. Once again by Lemma 21, we have U1 > 0
and hence U2/U1 > −1/3. Thus, (29) gives

det(H) >
U1

D
(2R1 + U2) = U1

D
[R4 + R5 + 2(R1 − R2 − R3)] > 0,

where the last inequality follows from Lemma 16 and Observation 14.

Proof of Lemma 11. As in the proof of Lemma 10, Lemmata 18 and 21 yield that
gα,β(γ , δ, ε) achieves its unique maximum in the region (3) at the point (γ ∗, δ∗, ε∗), for
every (α, β) ∈ R′

3. We next show that gα,β(γ , δ, ε) := �2(α, β, γ , δ, ε) also achieves its
unique maximum in the region (3) at the point (γ ∗, δ∗, ε∗) in a small neighborhood of R′

3.
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First note that �2 is continuous. By Lemma 12, we have for sufficiently small χ > 0,
the maximum of gα,β cannot be obtained on the boundary of the region (3).

Note that the derivatives of �2 are continuous. It follows that for sufficiently small χ > 0,
all stationary points of gα,β have to be close to the point (γ ∗, δ∗, ε∗). We can choose χ such
that det(H) > 0 in the neighborhood of the point (γ ∗, δ∗, ε∗), which implies that gα,β has a
unique stationary point and it is a maximum.

6. REMAINING PROOFS OF TECHNICAL LEMMAS

6.1. Proof of Lemma 13

We define W3 to be the numerator of W11 minus the denominator of W11, and W4 to be the
numerator of W21 minus the denominator of W21; more precisely

W3 = (α − γ − ε̂)ε̂(1 − 2α + γ ) − η̂(α − γ )2, (30)

W4 = (β − δ − η̂)η̂(1 − 2β + δ) − ε̂(β − δ)2. (31)

Substituting the expression for ε̂ and simplifying we obtain

W3 := ((α + β − 1 + √
D)/2)ε̂(1 − 2α + γ ) − η̂(α − γ )2,

W4 := ((α + β − 1 + √
D)/2)η̂(1 − 2β + δ) − ε̂(β − δ)2.

By expanding W3 and W4, we have

W3 = W31 + W32

√
D,

W4 = W41 + W42

√
D,

where

W31 = ((3/2)β − (1/2)β2 − δ − (3/2)αβ + δα)γ

+ β + (5/2)βα2 + (1/2)α3 + (3/2)α − (3/2)α2

− (1/2)β2 − 1/2 + δα − (7/2)αβ − δα2 + β2α,

W32 = αβ − (1/2)βγ − α − (1/2)β + (1/2)α2 + 1/2,

W41 = ((3/2)α − (1/2)α2 − γ − (3/2)αβ + γβ)δ

+ α + (5/2)αβ2 + (1/2)β3 + (3/2)β − (3/2)β2

− (1/2)α2 − 1/2 + γβ − (7/2)αβ − γβ2 + α2β,

W42 = αβ − (1/2)αδ − β − (1/2)α + (1/2)β2 + 1/2.

Note that for every (α, β) ∈ R, W32 > 0 when 0 < γ < α, and W42 > 0 when 0 < δ < β.
To see W32 > 0 note that αβ − (1/2)βγ −α − (1/2)β + (1/2)α2 +1/2 ≥ αβ − (1/2)βα −
α − (1/2)β + (1/2)α2 + 1/2 = (1/2)(1 −α)(1 −α −β) > 0, since α +β < 1; inequality
W42 > 0 is the same (after renaming the variables).

Note that W31 is a linear function in γ and we have

dW31

dγ
= (3/2)β − (1/2)β2 − δ − (3/2)αβ + δα,
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which is positive for all (α, β) ∈ R and 0 < δ < β. To see this note

(3/2)β − (1/2)β2 − δ − (3/2)αβ + δα = (1 − α)((3/2)β − δ) − (1/2)β2

≥ (1 − α)(1/2)β − (1/2)β2 = (1/2)β(1 − α − β) > 0.

Moreover, we have W31 is negative when γ = α, (α, β) ∈ R and 0 < δ < β (after
substituting γ = α into W31 we obtain −(1 − α)(1 − α − β)2/2 < 0). Hence, W31 < 0 for
all (α, β) ∈ R, 0 < γ < α and 0 < δ < β.

By the same proof, we can show that W41 < 0 for all (α, β) ∈ R, 0 < γ < α and
0 < δ < β (note that W31 and W41 are the same after renaming the variables).

Let

W5 = (W31/W32)
2 − D,

W6 = (W41/W42)
2 − D.

Note that the signs of W3 and W5 are opposite, and the signs of W4 and W6 are opposite.
After substituting W31, W32, W41, W42 and simplifications, we obtain

W5 = −4(β − δ)(α − γ )2((1 − α)2δ + β2(2α − 1 − γ ))

(2αβ − βγ − 2α − β + α2 + 1)2
,

W6 = −4(β − δ)2(α − γ )((1 − β)2γ + α2(2β − 1 − δ))

(β2 − δα + 1 − 2β − α + 2αβ)2
.

Hence,

W11 ≥ 1 ⇐⇒ W5 ≤ 0 ⇐⇒ (1 − α)2δ + β2(2α − 1 − γ ) ≥ 0,

and

W21 ≥ 1 ⇐⇒ W6 ≤ 0 ⇐⇒ (1 − β)2γ + α2(2β − 1 − δ) ≥ 0.

FInally, we analyze the conditions for W12 ≥ 1 and W22 ≥ 1. It is straightforward to see
that

W12 ≥ 1 ⇐⇒ (α − γ )2 ≥ (1 − 2α + γ )γ ⇐⇒ γ ≤ α2,

and

W22 ≥ 1 ⇐⇒ (β − δ)2 ≥ (1 − 2β + δ)δ ⇐⇒ δ ≤ β2.

6.2. Proof of Lemma 16

We have

−R1 + R2 + R3 = (β − δ)

(
− 1

α − γ − ε̂
− 1

η̂
+ 1

ε̂

)
−

√
D

ε̂
+

√
D

1 − 2α + γ
+ 2

√
D

α − γ
.

Multiplying by the denominators we let

P1 = (−R1 + R2 + R3)ε̂η̂(1 − 2α + γ )(α − γ )(α − γ − ε̂) = P11 + P12

√
D,
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where

P11 = 1 − (1/2)δα + 17αβ + (9/2)δγ − 5βγ + 21αγβδ − (37/2)α2γβδ − 5αγβδ2

+ (5/2)αγβ2δ + 8γ 2αδβ − 5α − 3β − δ + 10α2 + 3β2 + 3δβ − 10α3 + 5α4 − β3

+ 15αγβ − (13/2)αβδ − (27/2)αγ δ − (5/2)βγ δ − 4α2βδ + (27/2)α2γ δ

− 15α2γβ − 24αγβ2 − 8γ 2βδ + (17/2)αβ2δ − (5/2)β2γ δ − 3αβδ2 + 3βγ δ2

+ (15/2)α3βδ + 4α2βδ2 − (11/2)α2β2δ − (9/2)α3γ δ + 3α2γ δ2 + 5α3γβ

+ 17α2γβ2 + 4αγβ3 − 3γ 2αδ2 − 5γ 2αβ2 + γ 2βδ2 − 3β2δ + 3δ2α − 3δ2γ

− 3α2δ2 + (7/2)α4δ − 8α4β − 15α3β2 − 4α2β3 + 3γ 2δ2 − γ 2β3 − 33α2β

+ (15/2)α2δ − 16αβ2 + 7β2γ − (19/2)α3δ + 27α3β + 28α2β2 + 5γ 2β2

+ 4αβ3 − 2β3γ + δβ3 − (3/2)αβ3δ + (1/2)β3γ δ − α5,

and

P12 = −1 − (1/2)δα − 9αβ − (5/2)δγ + 3βγ − 2αγβδ + 4α + 2β

+ δ − 6α2 − β2 − 2δβ + 4α3 − α4 − 6αγβ + 4αβδ + 5αγ δ − α2βδ

− (5/2)α2γ δ + 3α2γβ + 4αγβ2 + γ 2βδ − (3/2)αβ2δ + (1/2)β2γ δ − αγ δ2 + β2δ

− δ2α + δ2γ + α2δ2 + 12α2β − 2α2δ + 4αβ2 − 2β2γ + (3/2)α3δ

− 5α3β − 4α2β2 − γ 2β2.

The following claim is proved using the Resolve function of the Mathematica system
in Appendix A.2.

Claim 22. P11 > 0 and P12 < 0 for all (α, β) ∈ R and (γ , δ) in the interior of (20).

From Claim 22, we have that P11 − P12

√
D > 0 and hence showing P11 + P12

√
D < 0

is equivalent to showing P2
11 − P2

12D < 0 which in turn is equivalent to showing that
P2 := (P11/P12)

2 − D is negative. We have

P2 = (P11/P12)
2 − D = − (β − δ)2(α − γ )3P21

P2
12

,

where

P21 = −8δα + 20αγβδ − 10α2γβδ + 2αγβδ2 + 12αγβ2δ + 2δ + 2δ2 − 8δβ

+ 4β3 + 34αβδ − 10βγ δ − 44α2βδ + 8αβ2δ − 4β2γ δ − 14αβδ2 − 2βγ δ2

+ 18α3βδ + 6α2βδ2 − 10α2β2δ + 9α2γ δ2 − 16αγβ3 − 18αγ δ2 − 2β2δ − 15δ2α

+ 9δ2γ + 24α2δ2 + 2α4δ + 16α2β3 + 4γ 2β3 + 12α2δ − 8α3δ − 16αβ3 + 8β3γ

− 4δβ3 + 6αβ3δ − 2β3γ δ + 8δ2β + 2β2δ2

+ 8δ3α − 4δ3α2 − 11δ2α3 − 3δ2αβ2 + δ2γβ2 − 4δγ 2β2 − 4δ3.

The following claim is proved using the Resolve function of the Mathematica system
in Appendix A.3.
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Claim 23. P21 > 0 for all (α, β) ∈ R and (γ , δ) in the interior of (20).

From Claim 23, we have that P2 < 0 which implies P11 +P12

√
D < 0 and this completes

the proof of Lemma 16.

6.3. Proof of Lemma 18

We will use the following technical lemma in the proof of Lemma 18.

Lemma 24. For every (α, β) ∈ R, and (γ , δ) in the interior of (20), we have

(−R1 + R2 + R3)(−R1 + R6 + R7) − R2
1 < 0, (32)

(−R1 + R2 + R3)(−R1 − R8 − R9) − R2
1 ≥ 0, (33)

and

(−R1 + R6 + R7)(−R1 − R4 − R5) − R2
1 ≥ 0. (34)

Proof of Lemma 24. We first prove inequality (32). We have that

(−R1 + R2 + R3)(−R1 + R6 + R7) = (R1 − R2 − R3)(R1 − R6 − R7) < R2
1,

where the last inequality uses Lemma 16 and the positivity of the Ri (Observation 14). This
establishes (32).

We next prove (33), noting that inequality (34) follows by an analogous argument. The
left-hand side of (33) multiplied by the denominators and simplified is

P5 = ((−R1 + R2 + R3)(−R1 − R8 − R9) − R2
1)δ(α − γ )ε̂η̂(1 − 2α + γ )

× (α − γ − ε̂)/
√

D

= P51 + P52

√
D,

where

P51 = −1 − 4βγ 2δα + 3δα − 17αβ − 3δγ + 5βγ − 14αβγ δ + 11α2βγ δ + 5α + 3β

− 10α2 − 3β2 − 15αβγ + 9δαγ − 3αβδ + 10α2βδ + 15α2βγ + 24αβ2γ + 3βγ δ

+ 4βγ 2δ − 9δα2γ − 7α3βδ − 5α3βγ − 17α2β2γ − 4αβ3γ + 5β2γ 2α + 3δα3γ

+ 33α2β − 9δα2 + 16αβ2 − 27α3β − 28α2β2 − 7β2γ − 5β2γ 2 + 9δα3 − 4αβ3

+ 8α4β + 15α3β2 + 4α2β3 + 2β3γ + β3γ 2 − 3δα4 + 10α3 − 5α4 + β3 + α5,

and

P52 = 1 − 2δαγ + 6αβγ − 3α2βγ − 4αβ2γ + δα2γ − 4α + 6α2 − 2β − 4α3

+ α4 + β2 + 9αβ − 3βγ − δα + δγ + 2δα2 − 12α2β − 4αβ2 + 5α3β + 4α2β2

+ 2β2γ + β2γ 2 − δα3.

The following claim is proved using the Resolve function of the Mathematica system
in Appendix A.4.
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Claim 25. P51 < 0, P52 > 0 for all all (α, β) ∈ R and (γ , δ) in the interior of (20).

From Claim 25, we have that P52

√
D−P51 > 0 and hence the sign of P5 = P51 +P52

√
D

is the same as the sign of DP2
52 − P2

51 which is the same as the sign of

D − (P51/P52)
2 = 4(β − δ)(α − γ )3

(
(1 − α)2δ + β2(2α − 1 − γ )

)2

P2
52

> 0.

Hence P5 > 0 which implies (33).

Proof of Lemma 18. From α + β + �(� − 2)αβ ≤ 1 we have

(� − 1)2 ≤ (1 − α)(1 − β)/(αβ) =: R11. (35)

Lemma 24 implies that the coefficient of (� − 1) in (28) is positive and the coefficient of
(� − 1)2 in (28) is negative. Hence, also using (35), we have

det(M) ≥ 1

D

{
R11

[
(−R1 + R2 + R3)(−R1 + R6 + R7) − R2

1

]
+ [

(−R1 − R8 − R9)(−R1 − R4 − R5) − R2
1

]}
>

1

D
(−R1R2R11 − R1R6R11 + R1R4 + R1R8 + +R5R9 + R3R7R11

+R1R5 + R1R9 − R1R3R11 − R1R7R11 + R2R7R11 + R3R6R11) .

We will show

−R1R2R11 − R1R6R11 + R1R4 + R1R8 > 0, (36)

and

R5R9 + R3R7R11 + R1R5 + R1R9 − R1R3R11 − R1R7R11 + R2R7R11 + R3R6R11 > 0. (37)

To prove (36), note that

− R1R2R11 − R1R6R11 + R1R4 + R1R8 =√
D(1 − α − β)

1 − α − β − ε̂ − η̂

(
1

γ
+ 1

δ
− (1 − α)(1 − β)

αβ(1 − 2α + γ )
− (1 − α)(1 − β)

αβ(1 − 2β + δ)

)
.

The positivity of (36) follows from the following claim.

Claim 26.

1

γ
+ 1

δ
− (1 − α)(1 − β)

αβ(1 − 2α + γ )
− (1 − α)(1 − β)

αβ(1 − 2β + δ)
> 0,

for every (α, β) ∈ R3 ⊃ R�, (γ , δ) in the interior of (20), and (γ , δ) in (23).
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Proof of Claim 26.(
1

γ
+ 1

δ
− (1 − α)(1 − β)

αβ(1 − 2α + γ )
− (1 − α)(1 − β)

αβ(1 − 2β + δ)

)
αβγ δ(1 − 2α + γ )(1 − 2β + δ)

= −2γ δ + δαβ + γαβ − 4δαβγ − 2δαβ2 + δ2αβ − 2δα2β + 4δα2β2 − 2δ2α2β

− 2γαβ2 − 2γα2β + 4γα2β2 + γ 2αβ − 2γ 2αβ2 + 4γ δβ − 2γ δβ2 + γ δ2β

+ 4γ δα + γ δ2α + γ 2δβ − 2γ δα2 + γ 2δα − γ δ2 − γ 2δ > 0,

where the last inequality is proved using Resolve function of Mathematica system, see
Appendix A.5.

To show (37), we first note that

R5R9 + R3R7R11 + R1R5 + R1R9 − R1R3R11 − R1R7R11 + R2R7R11 + R3R6R11

= √
D

(
4(1 − β − γ − ε̂)

(α − γ )
+ (1 − α)(1 − β)

(1 − 2α + γ )αβ

2(α − γ − ε̂)

β − δ

+ (1 − α)(1 − β)

(1 − 2β + δ)αβ

2(α − γ − ε̂)

α − γ

− 2(α − γ − ε̂)2

(α − γ )(β − δ)

(
1

η̂
+ 1

ε̂

) (
(1 − α)(1 − β)

αβ
− 1 − β − γ − ε̂

α − γ − ε̂

))

>
2
√

D(α − γ − ε̂)

β − δ

(
(1 − α)(1 − β)

(1 − 2α + γ )αβ

− α − γ − ε̂

(α − γ )η̂

(
(1 − α)(1 − β)

αβ
− 1 − β − γ − ε̂

α − γ − ε̂

))

+ 2
√

D(α − γ − ε̂)

α − γ

(
(1 − α)(1 − β)

(1 − 2β + δ)αβ
− α − γ − ε̂

(β − δ)ε̂

×
(

(1 − α)(1 − β)

αβ
− 1 − β − γ − ε̂

α − γ − ε̂

))
.

We will show

(1 − α)(1 − β)

(1 − 2α + γ )αβ
− α − γ − ε̂

(α − γ )η̂

(
(1 − α)(1 − β)

αβ
− 1 − β − γ − ε̂

α − γ − ε̂

)
> 0,

for every (α, β) ∈ R3 ⊃ R�, (γ , δ) in the interior of (20), and (γ , δ) in (23). Then by
symmetry, we have

(1 − α)(1 − β)

(1 − 2β + δ)αβ
− α − γ − ε̂

(β − δ)ε̂

(
(1 − α)(1 − β)

αβ
− 1 − β − γ − ε̂

α − γ − ε̂

)
> 0.

Let

P7 =
(

(1 − α)(1 − β)

(1 − 2α + γ )αβ
− α − γ − ε̂

(α − γ )η̂

(
(1 − α)(1 − β)

αβ
− 1 − β − γ − ε̂

α − γ − ε̂

))
× αβη̂(α − γ )(1 − 2α + γ )

= P71 + P72

√
D,
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where

P71 = (3/2)α2 + 4αβ + (1/2)β2 − αδ − γβ + γ δ + 1/2 − (3/2)α − β + δαβ

+ (3/2)γ αβ + δαβγ − δα2β − (3/2)γ αβ2 − (1/2)γ α2β − γ δβ − γ δα

− (1/2)α3 − (9/2)α2β − (5/2)αβ2 + γβ2 + α2δ + (3/2)α3β + (5/2)α2β2,

and

P72 = (1/2)γ αβ − 1/2 + (1/2)β + α − (1/2)α2 − (1/2)αβ − (1/2)α2β.

The following claim is proved using the Resolve function of the Mathematica system
in Appendix A.6.

Claim 27. P71 > 0 and P72 < 0 for every (α, β) ∈ R3 ⊃ R�, (γ , δ) in the interior
of (20), and (γ , δ) in (23).

From Claim 27 we have that the following expression has the same sign as P7:

(P71/P72)
2 − D = P2

71 − P2
72D

P2
72

,

where

P2
71 − P2

72D > 0.

The last inequality is true for every every (α, β) ∈ R3 ⊃ R�, (γ , δ) in the interior of (20),
and (γ , δ) in (23); it is proved using the Resolve function of the Mathematica system,
see Appendix 6.5.

6.4. Proof of Lemma 19

We first prove the following upper bound on (� − 1)2.

Proposition 28. For every � ≥ 3, (α, β) ∈ R�, (γ , δ) in the interior of (20), and (γ , δ)
in (24), we have

(� − 1)2 ≤ (1 − α)(1 − β)

αβ
<

1 − β − γ − ε̂

α − γ − ε̂

Proof of Proposition 28. The first inequality is straightforward from α + β + �(� −
2)αβ ≤ 1. We next prove that (1 − α)(1 − β)(α − γ − ε̂) < αβ(1 − β − γ − ε̂). We have

αβ(1 − β − γ − ε̂) − (1 − α)(1 − β)(α − γ − ε̂)

= 1

2
(1 − α − β)(1 − α − β + 2αβ − √

D) > 0,

where the last inequality follows from

D = (1 − α − β)2 + 4(α − γ )(β − δ) < (1 − α − β + 2αβ)2.
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The last inequality is true when γ > α2 and δ > β2 (to see this note (1 − α − β + 2αβ)2 −
(1 − α − β)2 = 4(α − α2)(β − β2) > 4(α − γ )(β − δ)).

Let R10 = (1 − β − γ − ε̂)/(α − γ − ε̂). Note that R7R10 = R9, R3R10 = R5.
Lemma 24 implies that the coefficient of (� − 1) in (28) is positive and the coefficient

of (� − 1)2 in (28) is negative. Hence, also using Proposition 28, we have

det(M) ≥ 1

D

(
R10

(
(−R1 + R2 + R3)(−R1 + R6 + R7) − R2

1

)
+ (

(−R1 − R8 − R9)(−R1 − R4 − R5) − R2
1

))
,

>
1

D
(−R1R2R10 − R1R6R10 + R1R4 + R1R8 + R5R9 + R3R7R10 + R2R9 + R5R6) .

We will prove that for every (α, β) ∈ R3 ⊃ R�, α, β ≤ 1/2, (γ , δ) in the interior of (20),
and (γ , δ) in (24),

R1R4 − R1R2R10 + 1

2
(R5R9 + R3R7R10) + R2R9 > 0, (38)

and then by symmetry, we also have

R1R8 − R1R6R10 + 1

2
(R5R9 + R3R7R10) + R5R6 > 0.

The left-hand side of (38) can be written as the sum of the following two terms:

(1 − α − β)
√

D

1 − α − β − ε̂ − η̂

(
1

γ
− 1

1 − 2α + γ

)
, (39)

and
√

D

(1 − 2α + γ )η̂

(
2(1 − α)(1 − α − β − ε̂)

α − γ
− (1 − α − β)2

ε̂

)
. (40)

We have (39) is non-negative, since 1 − 2α ≥ 0.
For (40), we only need to prove

1 − α − β − ε̂

α − γ
>

(1 − α − β)2

ε̂
,

since 1 − 2α ≥ 0. By (19), it is equivalent to prove

1 − α − β − ε̂ − η̂ − (1 − α − β)2 > 0. (41)

To prove (41), we have

1 − α − β − ε̂ − η̂ − (1 − α − β)2 = −(1 − α − β)2 − α − β + γ + δ + √
D,

and

D − (−(1 − α − β)2 − α − β + γ + δ)2

= 2γ + 2δ − 2α2 − 2β2 − 6αδ − 6γβ + 2γ δ − 2βδ − δ2 + 6αβ2 + 6α2β − 6α2β2

− 2αγ − 4α3β + 2α2γ + 2α2δ − 4αβ3 + 2β2γ + 2β2δ − γ 2 + 4αβδ + 4αβγ

+ 2α3 + 2β3 − α4 − β4.
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The following claim is proved using the Resolve function of the Mathematica system
in Appendix A.8.

Claim 29

D − (−(1 − α − β)2 − α − β + γ + δ)2 > 0

for every (α, β) ∈ R, α ≤ 1/2, β ≤ 1/2, (γ , δ) in the interior of (20), and (γ , δ) in (24).

Since −(1 − α − β)2 − α − β + γ + δ < 0, we can conclude that (41) is true. Hence,
we complete the proof of Lemma 19.

6.5. Proof of Lemma 20

We have

R4 − R6 = √
D · 1 − 2β + δ − γ

γ (1 − 2β + δ)
> 0,

where the inequality follows from (20).
We have

R5 − R7 = (1 − α − β)(α + β − γ − δ) + (β − δ − α + γ )
√

D

(α − γ )(β − δ)
.

If β − δ − α + γ ≥ 0, then R5 > R7. We may assume that β − δ − α + γ < 0. To show
R5 > R7, it is equivalent to prove that

(1 − α − β)(α + β − γ − δ) > (α − γ − β + δ)
√

D.

We have

(1 − α − β)2(α + β − γ − δ)2

(α − γ − β + δ)2
− D

= 4(α − γ )(β − δ)(1 − 2β − γ + δ)(1 − 2α − δ + γ )

(α − γ − β + δ)2
> 0,

where the inequality follows from (20).
To show that R5 > 4R3 and R9 > 4R7, it is sufficient to prove that 1 − β − γ − ε̂ >

4(α − γ − ε̂), which follows from Proposition 28.
We next prove U1 > 0. We first prove that R8 > 2R6. We have

R8 − 2R6 = √
D · 1 − 2β − δ

δ(1 − 2β + δ)
≥ √

D · 1 − 3β

δ(1 − 2β + δ)
> 0,

where the first inequality follows from (20) and the last inequality follows from the fact that
β ≤ (3 − √

5)/4. Hence U1 = R8 − 2R6 + R9 − 2R7 > 0.
We next show:

3R8

2
+ R9 > 9R2.
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by the fact that ε̂ := 1
2 (1 + α − β − 2γ − √

D) and (1 − α − β)2 = αβ, the goal is then to
show,

3
√

D

2δ
+

√
αβ + √

D

β − δ
>

9
√

D

1 − 2α + γ
,

i.e.,
√

αβ√
αβ + 4(α − γ )(β − δ)

>
9(β − δ)

1 − 2α + γ
− 3β

2δ
+ 1/2.

Since the above inequality is monotone with respect to γ , so let γ = γmin = α2(1+δ−2β)

(1−β)2 , and
the goal is to show:

√
αβ√

αβ + 4(α − γmin)(β − δ)
>

9(β − δ)

1 − 2α + γmin
− 3β

2δ
+ 1/2,

or equivalently,

1√
1 + 4(1 − γmin/α)(1 − δ/β)

>
9(β − δ)

1 − 2α + γmin
− 3β

2δ
+ 1/2.

Replacing the term γmin in the left-hand side, we get,

1√
1 + 4(1 − α(1+δ−2β)

(1−β)2 )(1 − δ/β)
>

9(β − δ)

1 − 2α + γmin
− 3β

2δ
+ 1/2.

Since α > 1/2 and δ > β2, replace them on the LHS, then our goal can be reduced to

1√
3 − 2δ/β

>
9(β − δ)

1 − 2α + γmin
− 3β

2δ
+ 1/2.

Let X = 1 − 2α +γmin = (1−2α)(1−β)2+α2(1−2β+δ)

(1−β)2 and A = 3β−2δ

β
. So we are going to show

2δX >
√

A(18δ(β − δ) − 3βX + δX),

i.e.,

4δ2X2 > A(18δ(β − δ) − 3βX + δX)2,

when 18δ(β−δ)−3βX+δX > 0. The rest of the proof can be checked by using Mathematica
since they are all polynomial constraints, see Appendix A.9.

APPENDIX: MATHEMATICA CODE

Clear["Global‘*"]

SetSystemOptions["InequalitySolvingOptions" -> "CAD" -> True];
SetSystemOptions["InequalitySolvingOptions" -> "QuadraticQE" -> False];
SetSystemOptions["InequalitySolvingOptions" -> "LinearQE" -> False];
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RR = alpha > 0 && beta > 0 && alpha + beta < 1;
RR3 = alpha > 0 && beta > 0 && alpha + beta + 3*alpha*beta < 1;
Inter22 = gamma > 0 && gamma < alpha && delta > 0 && delta < beta &&

1 - 2*beta + delta - gamma > 0 && 1 - 2*alpha + gamma - delta > 0;
l25 = gamma > 0 && gamma < alphaˆ2 && delta > 0 &&

delta < betaˆ2 && (1 - alpha)ˆ2*delta + betaˆ2*(2*alpha - 1 - gamma) < 0 &&
(1 - beta)ˆ2*gamma + alphaˆ2*(2*beta - 1 - delta) < 0;

u26 = gamma > alphaˆ2 && gamma < alpha && delta > betaˆ2 &&
delta < beta && (1 - alpha)ˆ2*delta + betaˆ2*(2*alpha - 1 - gamma) > 0 &&
(1 - beta)ˆ2*gamma + alphaˆ2*(2*beta - 1 - delta) > 0;

DD = (1 - alpha - beta)ˆ2 + 4*(alpha - gamma)*(beta - delta);

epsilon = 1/2*(1 + alpha - beta - 2*gamma - SQ);
eta = 1/2*(1 + beta - alpha - 2*delta - SQ);

W11 = (alpha - gamma - epsilon)* epsilon*(1 - 2*alpha + gamma)/
(eta*(alpha - gamma)ˆ2);

W12 = (alpha - gamma)ˆ2/((1 - 2*alpha + gamma)*gamma);
W21 = (beta - delta - eta)*eta*(1 - 2*beta + delta)/(epsilon*(beta - delta)ˆ2);
W22 = (beta - delta)ˆ2/((1 - 2*beta + delta)*delta);

R1 = (1 - alpha - beta)/(1 - alpha - beta - epsilon - eta);
R2 = SQ/(1 - 2*alpha + gamma);
R3 = 2*(alpha - gamma - epsilon)/(alpha - gamma);
R4 = SQ/gamma;
R5 = 2*(1 - beta - gamma - epsilon)/(alpha - gamma);
R6 = SQ/(1 - 2*beta + delta);
R7 = 2*(alpha - gamma - epsilon)/(beta - delta);
R8 = SQ/delta;
R9 = 2*(1 - beta - gamma - epsilon)/(beta - delta);
R10 = (1 - beta - gamma - epsilon)/(alpha - gamma - epsilon);
R11 = (1 - alpha)*(1 - beta)/(alpha*beta);

Mathematica Code for Proving Lemma 13

W3 = Expand[Expand[Numerator[W11]/2 - Denominator[W11]/2] /. {SQˆ2 -> DD}];
Exponent[W3, SQ]
W31 = Coefficient[W3, SQ, 0]
W32 = Coefficient[W3, SQ, 1]
Resolve[Exists[{alpha, beta, gamma}, RR && Inter22 && W32 <= 0], Reals]

W4 = Expand[Expand[Numerator[W21]/2 - Denominator[W21]/2] /. {SQˆ2 -> DD}];
Exponent[W4, SQ]
W41 = Coefficient[W4, SQ, 0]
W42 = Coefficient[W4, SQ, 1]
Resolve[Exists[{alpha, beta, delta}, RR && Inter22 && W42 <= 0], Reals]

W5 = FullSimplify[(W31/W32)ˆ2 - DD]
W6 = FullSimplify[(W41/W42)ˆ2 - DD]

Mathematica Code for Proving Claim 22

FullSimplify[((-R1 + R2 + R3) - ((beta - delta)*(-1/(alpha - gamma - epsilon)

- 1/eta + 1/epsilon) - SQ/epsilon + SQ/(1 - 2*alpha + gamma) +

2*SQ/(alpha - gamma))) /. {SQ -> Sqrt[DD]}]
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P1 = Expand[FullSimplify[ExpandAll[((beta - delta)*(-1/(alpha - gamma - epsilon)

-1/eta + 1/epsilon)-SQ/epsilon + SQ/(1 - 2*alpha + gamma) +

2*SQ/(alpha - gamma))*epsilon*eta*(1 - 2*alpha + gamma)*(alpha - gamma)*

(alpha - gamma - epsilon)]]/.{SQˆ2 -> DD, SQˆ3 -> SQ*DD, SQˆ4 -> DDˆ2}];

Exponent[P1, SQ]

P11 = Coefficient[P1, SQ, 0]

Resolve[Exists[{alpha, beta, gamma, delta}, RR && Inter22 && P11 <= 0], Reals]

P12 = Coefficient[P1, SQ, 1]

Resolve[Exists[{alpha, beta, gamma, delta}, RR && Inter22 && P12 >= 0], Reals]

Mathematica Code for Proving Claim 23

P2 = FullSimplify[(P11/P12)ˆ2 - DD];

P21 = -FullSimplify[Numerator[P2]/((beta - delta)ˆ2*(alpha - gamma)ˆ3)]

Resolve[Exists[{alpha, beta, gamma, delta}, RR && Inter22 && P21 <= 0], Reals]

Mathematica Code for Proving Claim 25

P5=Expand[FullSimplify[

Expand[((-R1 + R2 + R3)*(-R1 - R8 - R9) - R1ˆ2)*delta*(alpha - gamma)*

epsilon* eta*(1 - 2*alpha + gamma)*(alpha - gamma - epsilon)/ SQ]/.

{SQ -> Sqrt[DD]}]]/.{Sqrt[alphaˆ2 + (-1 + beta)ˆ2 +

alpha (-2 + 6 beta - 4 delta) + 4 (-beta + delta) gamma]->SQ}

Exponent[P5, SQ]

P51 = Coefficient[P5, SQ, 0]

Resolve[Exists[{alpha, beta, gamma, delta}, RR && Inter22 && P51 >= 0]]

P52 = Coefficient[P5, SQ, 1]

Resolve[Exists[{alpha, beta, gamma, delta}, RR && Inter22 && P52 <= 0]]

FullSimplify[DD - (P51/P52)ˆ2]

Mathematica Code for Proving Claim 26

Resolve[Exists[{alpha, beta, gamma, delta},

FullSimplify[

Expand[(-R2*R11 - R6*R11 + R4 + R8)/SQ*alpha*beta*gamma*

delta*(1 - 2*alpha + gamma)*(1 - 2*beta + delta)]] <= 0

&& RR3 && l25], Reals]

Mathematica Code for Proving Claim 27

P7 = FullSimplify[((1 - alpha)*(1 - beta)/((1 - 2*alpha + gamma)*alpha*beta) -

(alpha - gamma - epsilon)/((alpha - gamma)*eta)*((1 - alpha)*

(1 - beta)/(alpha*beta) - (1 - beta -gamma - epsilon)

/(alpha - gamma - epsilon)))*alpha*beta*eta*(alpha - gamma)*

(1 - 2*alpha + gamma)]

Exponent[P7, SQ]

P71 = Coefficient[P7, SQ, 0]

Resolve[Exists[{alpha, beta, gamma, delta}, RR3 && Inter22 && P71 <= 0], Reals]

P72 = Coefficient[P7, SQ, 1]

Resolve[Exists[{alpha, beta, gamma, delta}, RR3 && Inter22 && P72 >= 0], Reals]
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Mathematica Code for Proving Lemma 18

TP1 = Expand[P71ˆ2 - P72ˆ2*DD]

Resolve[Exists[{alpha, beta, gamma, delta},RR3 && l25 && TP1 <= 0], Reals]

Mathematica Code for Proving Claim 29

TP2 = Expand[DD - (-(1 - alpha - beta)ˆ2 - alpha - beta + gamma + delta)ˆ2]

Resolve[Exists[{alpha, beta, gamma, delta}, RR && alpha <= 1/2 && beta <= 1/2

&& u26 && TP2 <= 0], Reals]

Mathematica Code for Proving Lemma 20

X = ((1 - 2*alpha)*(1 - beta)ˆ2 + alphaˆ2*(1 - 2*beta + delta))/(1 - beta)ˆ2;

A = (2*beta - 2*delta)/beta;

Resolve[Exists[{alpha, beta, gamma, delta},

(1 - alpha - beta)ˆ2 == alpha*beta && alpha > 1/2 &&

alpha < 1 && beta > 0 && beta < 1 && Inter22 && u26 &&

4*deltaˆ2*Xˆ2 <= A*(18*delta*(beta - delta) - 3*beta*X + delta*X)ˆ2 &&

18*delta*(beta - delta) - 3*beta*X + delta*X > 0], Reals]
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