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Abstract

In this paper we consider the problem of designing deadlock-free shortest-path routing algorithms. A design technique based
on acyclic orientations has proven to be useful for many important topologies, e.g., meshes, tori, trees and hypercubes. It was
not known whether this technique always leads to algorithms using an asymptotically optimal number of buffers. We show this
is not the case by presenting a graph of sizeN which has a deadlock-free shortest-path routing algorithm using O(1) buffers, but
every deadlock-free shortest-path routing algorithm based on acyclic orientations requires�(logN / log logN ) buffers.
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1. Introduction

Devising deadlock-free routing algorithms is an
important problem in the network design. A wide
range of different algorithms and design techniques
has been proposed [1,4–11]. In this paper we con-
centrate on an important class of deadlock-free rout-
ing algorithms calledbuffer-reservationalgorithms [2,
3]. Given source, destination and current buffer of a
packet a buffer-reservation algorithm specifies a set of
buffers to which the packet may move. The packet can
move to any buffer from the specified set provided that
it is empty.

It is known that for each network there exists a
deadlock-free routing algorithm using only 2 buffers

per node [8]. However this algorithm suffers from con-
gestion, because it uses only a spanning tree of the net-
work. It is reasonable to consider routing algorithms
using only shortest paths. For such algorithms it was
shown in [2] that there exists a network of sizeN
which requires�(log logN ) buffers per node. It is
also known that for every network of diameterD there
exists a shortest-path deadlock-free routing algorithm
usingD+ 1 buffers per node [9].

A technique for constructing deadlock-free routing
algorithms based on acyclic orientations has proven to
be useful for many important topologies [9]. More-
over only few additional bits of data besides routing
information are required by the algorithms designed
using this technique. Thus a natural question is how
good the technique is in general. We present a graph
of sizeN which has deadlock-free shortest-path rout-
ing algorithm using O(1) buffers per node, but every
deadlock-free shortest-path routing algorithm based
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on acyclic orientations requires�(logN / log logN )
buffers per node. The proofs presented in this paper
can be adapted to obtain the same result for the cube-
connected-cycles graph.

2. Preliminaries

A communication network is modeled by an undi-
rected graphG = (V ,E), where vertices inV repre-
sent nodes and edges inE represent bidirectional com-
munication links. Every edge is considered to com-
prise two opositely oriented arcs.

Given source, destination and the buffer currently
holding the packet a buffer-reservationalgorithm spec-
ifies a set of buffers to which the packet may move.
The packet can move to any of the specified buffers,
provided it is empty. Adeadlockis a situation in which
a set of packets can never reach their destination, be-
cause specified buffers of each packet are occupied by
other packets from the set. A buffer reservation al-
gorithm is calleddeadlock-freeif it does not allow a
deadlock to occur. A routing algorithm is calledshort-
est pathif the packets are always routed along shortest
paths.

Given a graphG an all-to-all path systemP is
a collection of paths connecting every two vertices
in G. An orientation DG of G is a directed graph
obtained fromG by replacing each undirected edge
in G by an arc (i.e.,{u,v} is replaced by either
(u, v) or (v,u)). An orientation is calledacyclic
if it doesn’t contain a cycle. Anorientation cover
of a path systemP is a sequence of orientations
DG1, . . . ,DGs such that every pathp ∈ P can be
written as a concatenation ofs pathsp1, . . . , ps where
pi is a path inDGi for i ∈ [s]. An acyclic orientation
cover is an orientation cover consisting of acyclic
orientations.

Let P be a shortest-path all-to-all path system of a
graphG. If an acyclic orientation cover forP of size
s exists, then there exists a shortest-path deadlock-free
routing algorithm using onlys buffers per vertex [9].
A routing algorithm designed using this technique is
said to bebased on acyclic orientations. If there is no
restriction on how a routing algorithm was designed
then it is said to useplain buffers.

3. A gap between acyclic orientations and plain
buffers

In this section we present a graph which has
shortest-path deadlock-free routing algorithm using
only O(1) plain buffers per vertex, but every shortest-
path deadlock-free routing algorithm based on acyclic
orientations requires�(logN / log logN ) buffers per
vertex.

Consider the following machineMn:

5
0 1 1 0 · · · 1 1

It has a working tape withn cells and a head which
can be positioned above any cell. Each cell contains
one binary digit. In one step the head can change the
content of the scanned cell (shuffle) or it can move to
the left or to the right neighboring cell. Thestateof the
machineMn is the position of the head and the content
of the tape.

Definition 1. Let Gn be the graph with vertices
corresponding to states of the machineMn and edges
connecting two vertices iff the corresponding states
are reachable in one step ofMn.

Remark 2. If the tape of the machine was wraparound
the resulting graph would be the cube-connected-
cycles graph. It is possible to show the same results
for this graph with slightly more complicated proofs
and worse constants.

3.1. Upper bound for plain buffers

Theorem 3. There exists a shortest-path deadlock-
free routing algorithm of the graphGn using only
8 buffers per vertex.

Proof. Let u,v be any two vertices of the graphGn.
Moving along a shortest path fromu to v corresponds
to changing the stateu to the statev using the minimal
number of steps. Lethu and hv be positions of the
head inu andv. Moreover letlu,v andru,v be positions
of the leftmost and the rightmost cell that have to be
visited (every cell in which tapes ofu andv differ as
well as cells at positionshu andhv must be visited).
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In every shortest path the head makes a movement in
one of the following two forms:

uu uu
lu,v hu hv ru,v

CASE 1 (hu 6 hv)

9
-

�

lu,v hv hu ru,v

u uu u z�
z

CASE 2 (hu > hv)

Thus according to the head movement each path can
be divided into three phases (the first and/or third
phase can be empty) in which the head moves in
one direction. Now we show that eight buffers per
vertex suffice. Each vertex has buffers with names
1,2,3,4,1′,2′,3′,4′. A packet moving along a path
with the head movement—CASE 1—is initially put
in the buffer 1 and then it moves between buffers
according to these rules:
– left-arc (phase 1) any buffer→ buffer 1
– right-arc (phase 2) any buffer→ buffer 2
– left-arc (phase 3) any buffer→ buffer 3
– shuffle-arc (all phases) buffera → buffera′
No shortest path contains two consecutive shuffle-
edges and thus the rule for the shuffle-arc is correct
(a packet that wants to move along a shuffle-arc cannot
be in a buffer with a prime). A packet moving along a
path with the head movement—CASE 2—is initially
put in buffer 2 and moves between buffers according
to these rules:
– right-arc (phase 1) any buffer→ buffer 2
– left-arc (phase 2) any buffer→ buffer 3
– right-arc (phase 3) any buffer→ buffer 4
– shuffle-arc (all phases) buffera → buffera′
For the sake of contradiction suppose that there is a
deadlock. Then there must be a sequence such that

(v1, b1)→ (v2, b2)→·· ·→ (vm, bm)→ (v1, b1),

where(u, a)→ (v, b) means that a packet from the
buffer a in the vertexu waits for the bufferb in the

vertexv. Observe that a packet never moves to a buffer
with smaller number. Therefore all buffersb1, . . . , bm
must have the same number—somea ∈ [4]. When a
packet moves to a buffera′ it uses shuffle-arc and
when it moves to a buffera it uses a left-arc ifa is
odd and a right-arc ifa is even. Therefore all buffers
b1, . . . , bm must bea′. However a packet never moves
from a′ to a′, a contradiction. 2
3.2. Lower bound for acyclic orientations

The vertex set of ann-dimensionalhypercubecon-
sists of all binary strings of lengthn. Two vertices are
connected by an edge iff they differ in exactly one bit.
For any two verticesu, v a movement along path from
u to v corresponds to a sequence of changes of some
bits. If the bits are changed in order from left to right
then the path is calledmonotone. The lower bound for
acyclic orientations depends on the following lemma:

Lemma 4. Let P be the all-to-all path system of an
n-dimensional hypercube with monotone paths. Every
orientation cover forP has size�(n/ logn).

Proof. Let DG1, . . . ,DGs be an orientation cover for
P . We show that the size of this cover must be large by
simulating movement of packets in the network. Each
vertex generates a packet for every other vertex. The
packets then move along their paths according to the
orientationDG1, then according toDG2 and so on and
finally after moving according toDGs every packet
must be in its destination. We observe the state of the
network (positions of packets) after each orientation.

Let d be a number 06 d 6 n and v be a vertex.
By Sdv we denote the set of all vertices that can differ
from v only in the firstd bits and byDdv the set of all
vertices that can differ fromv only in the lastn − d
bits. Given a state of the network we call the vertex
v activewith respect tod if for each vertexu ∈ Ddv
there exists a packet which has to move tou throughv.
Clearly if v has not yet received some packet〈p〉 from
some vertexw ∈ Sdv thenv is active with respect tod ,
because packets fromw to every vertex inDdv travel
together with〈p〉 until they reachv (the paths are
monotone). A vertex which is not active with respect
tod is calledpassivewith respect tod . Clearly a vertex
passive with respect tod must have already received
all packets from all vertices inSdv .
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Let k = log2n. We will construct a sequence of hy-
percubesQ0, . . . ,Qn/k such that after moving accord-
ing to theith orientation the ratio of passive vertices in
Qi with respect toki is at mosti/2k. This would im-
ply that, because if some vertices are active then some
packets are not in their destination. For eachi the hy-
percubeQi will have dimensionn−ki and it will con-
sist of vertices starting with some string from{0,1}ki .

Initially all vertices are active and thus we can
takeQ0 to be the whole hypercube. Now we show
how to constructQi+1 from Qi . Let Qi be an(n −
ki)-dimensional sub-hypercube consisting of vertices
starting with some stringx ∈ {0,1}ki and suppose that
the network is in state after moving according to the
ith orientation. LetM denote the number of passive
vertices (fromQi ) with respect toki. For anyw ∈
{0,1}n−k(i+1) let Aw denote the set of active vertices
(fromQi ) with respect toki such that they end withw.
Now we move the packets along their paths according
to the orientationDGi+1. How many vertices fromQi
ending withw can be passive with respect tok(i + 1)
after the movement? LetNw denote the set of these
vertices. Letl ∈ [k] be such that 2l > |Nw|> 2l−1 (the
case|Nw|6 1 is treated separately). By induction it is
easy to show that there exist distinctz1, . . . , zl ∈ [k]
such that for eachzj , j ∈ [l], there exist two vertices
in Nw of the form:

u0 : x︸ ︷︷ ︸
ki

k︷ ︸︸ ︷
a 0︸ ︷︷ ︸
zj

b w︸ ︷︷ ︸
n−k(i+1)

u1 : x︸ ︷︷ ︸
ki

k︷ ︸︸ ︷
a 1︸ ︷︷ ︸
zj

c w︸ ︷︷ ︸
n−k(i+1)

wherea, b, c are some binary strings. If there were two
vertices inAw of the form:

v0 : x︸ ︷︷ ︸
ki

k︷ ︸︸ ︷
d 0︸ ︷︷ ︸
zj

f w︸ ︷︷ ︸
n−k(i+1)

v1 : x︸ ︷︷ ︸
ki

k︷ ︸︸ ︷
e 1︸ ︷︷ ︸
zj

f w︸ ︷︷ ︸
n−k(i+1)

where d, e, f are some binary strings, then either
a packet fromv0 to u1 or a packet fromv1 to u0
cannot move between source and destination in the
orientationDGi+1, because these two packets need to
cross the edge between vertices:

x︸ ︷︷ ︸
ki

k︷ ︸︸ ︷
a ∗︸ ︷︷ ︸
zj

f w︸ ︷︷ ︸
n−k(i+1)

in the opposite direction. This is a contradiction to our
assumption thatu0 and u1 will be passive after the
movement and thus there cannot be suchv0, v1 pair
in Aw. Therefore for eachj ∈ [l] the (ki + zj )th bit
of each vertex fromAw is determined by bits(ki +
zj + 1), . . . , k(i + 1). This implies that|Aw| 6 2k−l .
For anyl ∈ [k]:
|Nw| −

(
2k − |Aw|

)
6 2l − 2k + 2k−l 6 1.

The inequality holds also in case|Nw|6 1. Summing
the inequalities for eachw ∈ {0,1}n−k(i+1) we obtain:

N −M 6 2n−k(i+1),

whereN is the total number of vertices fromQi
passive with respect tok(i + 1) after the movement.
Clearly there exists a stringq ∈ {0,1}k such that
at most (M + 2n−k(i+1))/2k vertices starting with
xq are passive with respect tok(i + 1) after the
movement. LetQi+1 be the hypercube consisting of
vertices starting withxq . The ratio of passive vertices
increased from

Ri = M

2n−ki
to

Ri+1= (M + 2n−k(i+1))/2k

2n−k(i+1)
=Ri + 1

2k
.

Therefore if inQi the ratio was at mosti/2k then in
Qi+1 the ratio will be at most(i + 1)/2k. 2
Theorem 5. Any shortest-path deadlock-free packet
routing algorithm of the graphGn based on acyclic
orientations requires�(n/ logn) buffers.

Proof. Let S be the set of all vertices fromGn having
the head on the leftmost bit andD be the set of all
vertices having the head on the rightmost bit. For every
u ∈ S andv ∈D there is a unique shortest path from
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u to v in Gn. It corresponds to changing the bits in
which u and v differ while moving the head to the
right. LetP be the set of the shortest paths from every
u ∈ S to everyv ∈ D. Let C = DG1, . . . ,DGs be an
acyclic orientation cover used to implement shortest-
path deadlock-free packet routing algorithm onGn.
ClearlyC is also an acyclic orientation cover forP .

By merging the vertices having the same tape
content we obtain then-dimensional hypercube and
the path systemP becomes all-to-all path system of
the n-dimensional hypercube with monotone paths.
The acyclic orientation coverC becomes orientation
cover of the new path system. Using Lemma 4 we
obtain that the size ofC must be�(n/ logn). 2

A consequence of Theorems 3 and 5 is:

Theorem 6. Graph Gn of size N = n2n has a
deadlock-free shortest-path routing algorithm using
O(1) buffers per node, but each deadlock-free shortest-
path routing algorithm based on acyclic orientations
requires�(logN / log logN ) buffers per node.

4. Conclusion

There are many results on buffer-reservation algo-
rithms for specific topologies, but for general graphs
very little is known. It would be interesting to have
better upper and lower bounds on the number of
buffers required for shortest-path deadlock-free rout-
ing on general graphs. Concerning acyclic orientations
it would be interesting to know how large the gap be-
tween routing algorithms based on acyclic orientations
and routing algorithms using only plain buffers can be.
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