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A. THE SMALL SUBGRAPH CONDITIONING METHOD

In this appendix, we prove Lemma 6.12 by appyling the small subgraph conditioning
method.

A.1. Overview

The small subgraph conditioning method was introduced by Robinson and Wormald
[1994] to prove that a random �-regular contains asymptotically almost surely (a.a.s.)
a Hamilton cycle. Roughly speaking, the method provides a way to get a.a.s results
when the second moment method fails, in the particular case (though common in the
random regular setting) where the ratio of the second moment of a variable to the first
moment squared converges to a constant strictly greater than 1.

The method was first used to analyze spin models on random regular graphs in
Mossel et al. [2009] and was subsequently used in Sly [2010] and Galanis et al. [2012].
In our setting, applying the small subgraph conditioning method of Robinson and
Wormald [1994] as in the previous works [Mossel et al. 2009; Sly 2010; Galanis et al.
2012] would not be sufficient, since it guarantees a polynomial multiplicative deviation
from the expectation, which is weak in the setting of Lemma 6.9. We instead use an
extension of the method given by Janson [1995].

More generally, the method of Robinson and Wormald [1994] is sufficient when the
interest is in proving concentration of a variable within a polynomial factor from its
expectation. Janson’s refinement of the method gives the distributional limit of the
variable and explicitly attributes the fluctuations from the expectation to the presence
of specific subgraph structures. For the convenience of the reader, we include both
versions of the method in Theorem A.1, which is a concatenated version of the respective
Theorems in Robinson and Wormald [1994] and Janson [1995]. The theorem can be
extrapolated from Janson [1995], after combining Janson [1995, Lemma 1, Remark 4,
Remark 9]. The notation [X]m refers to the mth order falling factorial of the variable X.
We shall discuss the theorem statement afterwards.

THEOREM A.1. Let S be a set of finite cardinality. For s ∈ S and i = 1, 2, . . . , let μi > 0
and δ

(s)
i > −1 be constants and assume that for each n there are random variables Xin,

i = 1, 2, . . . , and Y (s)
n , s ∈ S, all defined on the same probability space G = Gn such that

Xin is nonnegative integer valued, Y (s)
n ≥ 0 and E[Y (s)

n ] > 0 (for n sufficiently large).
Furthermore, for every s ∈ S, the following hold:

(A1) Xin
d−→ Zi as n → ∞, jointly for all i, where Zi ∼ Po(μi) are independent Poisson

random variables;
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(A2) for every finite sequence j1, . . . , jm of nonnegative integers,

EG
[
Y (s)

n [X1n] j1 · · · [Xmn] jm

]
EG

[
Y (s)

n
] →

m∏
i=1

(
μi

(
1 + δ

(s)
i

)) ji as n → ∞; (150)

(A3)
∑

i μi(δ(s)
i )2 < ∞;

(A4) EG[(Y (s)
n )2]/(EG[Y (s)

n ])2 ≤ exp(
∑

i μi(δ(s)
i )2) + o(1) as n → ∞;

Then, the following conclusions hold:

(C1) Let r(n) be a function such that r(n) → 0 as n → ∞. For each s ∈ S, it holds that
Y (s)

n > r(n)EG[Y (s)
n ] asymptotically almost surely.

(C2) For s ∈ S,

Y (s)
n

EG
[
Y (s)

n
] d−→ W (s) =

∞∏
i

[
1 + δ

(s)
i

]Zi exp
( − μiδ

(s)
i

)
. (151)

This and the convergence in A.1 hold jointly. The infinite product defining W (s)

converges almost surely (a.s.) and in L2, with

E
[
W (s)] = 1 and E

[(
W (s))2] = lim

n→∞ EG
[(

Y (s)
n

)2]
/
(
EG

[
Y (s)

n

])2
.

Moreover, W (s) > 0 a.s. iff δ
(s)
i > −1 for all i;

The random variables Y (s)
n in Theorem A.1 are those we are interested in obtaining

“concentration” type results, where s is simply an index allowing us to treat simulta-
neously more than one variables. In our setting, for G ∼ Gr

n, Y (s)
n are going to be the

variables Zp
G(η) for phases p ∈ Q and configurations η on W . The random variables

Xin, for graphs with no small multicyclic components, correspond to cycles of length i.
For example, in our setting and because the graph G is bipartite, Xin is the number of
cycles of length i in G where i is even.

The conclusion (C1) of Theorem A.1 is essentially due to Robinson and Wormald
[1994], while the conclusion (C2) is an extension of conclusion (C1) due to Janson
[1995]. At this point, to obtain Lemma 6.12 (which was the important part to prove
Lemma 6.9), we will not explicitly use either of (C1) or (C2) but rather the following
variant. The variant was observed in Janson [1995, p. 5], who discusses it without proof
in a specific setting, and is also implicit in Robinson and Wormald [1994]. As such, we
write and prove a formal statement in the setup of Theorem A.1. The proof follows
Janson’s proof of Theorem A.1 but uses a different finish.

LEMMA A.2. Assume that the conditions in Theorem A.1 hold. For an integer m > 0
and s ∈ S, let

W (s)
mn =

m∏
i=1

(
1 + δ

(s)
i

)Xin exp
( − μiδ

(s)
i

)
.

Then, for every ε > 0, it holds that

lim
m→∞ lim sup

n→∞
PrGn

(⋃
s∈S

[∣∣∣∣∣ Y (s)
n

EGn

[
Y (s)

n
] − W (s)

mn

∣∣∣∣∣ > ε

])
= 0. (152)

PROOF OF LEMMA A.2. We prove the statement for a fixed s ∈ S, the extension of the
argument to prove (152) is straightforward (e.g., by a union bound) and is omitted. To
lighten notation, we will drop s from the notation and without loss of generality, we
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also assume EGn[Yn] = 1. We will prove that

lim sup
n→∞

PrGn([|Yn − Wmn| > ε]) ≤ 1
4

ε−2

[
exp

( ∞∑
i=1

μiδ
2
i

)
− exp

(
m∑

i=1

μiδ
2
i

)]
. (153)

This clearly gives the statement of the lemma, since by assumption (A3) of Theorem A.1,
the left-hand side is finite and goes to 0 as m → ∞. To prove (153), we follow Janson
[1995, Proof of Theorem 1] up to a certain point but avoid the use of Skorokhod’s
theorem in the argument. Janson’s proof goes as follows. For a positive integer m,
define the functions

fn(x1, . . . , xm) = EGn[Yn | X1n = x1, . . . , Xmn = xm],

f∞(x1, . . . , xm) = lim
n→∞ fn(x1, . . . , xm) =

m∏
i=1

(1 + δi)xi e−μiδi . (154)

The second equality follows by assumption (A2) of Theorem A.1 and Janson [1995,
Lemma 1]. Define also the random variable

Y (m)
n = EGn[Yn | X1n, . . . , Xmn].

Using assumptions (A1) and (A2), Fatou’s Lemma and that Y (m)
n is a conditional expec-

tation of Yn, one obtains

lim sup
n→∞

EGn

[|Yn − Y (m)
n |2] ≤ exp

( ∞∑
i=1

μiδ
2
i

)
− exp

(
m∑

i=1

μiδ
2
i

)
,

see Janson [1995, Eq. (5.2)] for details. We now give the main deviation point from
Janson’s proof, which amounts to proving that for fixed m, we have

lim
n→∞ PrGn

([∣∣Y (m)
n − Wmn

∣∣ > ε
]) = 0. (155)

as n → ∞. Fix M > 0. By (154), there is N such that for n ≥ N it holds that

| fn(x1, . . . , xm) − f∞(x1, . . . , xm)| < ε for all integer x1, . . . , xm ∈ [0, M].

It follows that, for n ≥ N, we have

PrGn

([∣∣Y (m)
n − Wmn

∣∣ > ε
]) ≤ PrGn

(
m⋃

i=1

[Xin > M]

)

Note that as n → ∞, the right-hand side by assumption (A1) converges to Pr(
⋃m

i=1[Zi >
M]). The latter can be made arbitrarily small by letting M → ∞. This proves (155).

The final step is to bound

lim sup
n→∞

PrGn([|Yn − Wmn| > ε])

≤ lim sup
n→∞

PrGn

([|Yn − Y (m)
n | > ε/2

]) + lim sup
n→∞

PrGn

([|Y (m)
n − Wmn| > ε/2

])

≤ 1
4

ε−2

[
exp

( ∞∑
i=1

μiδ
2
i

)
− exp

(
m∑

i=1

μiδ
2
i

)]
+ 0,

which finishes the proof of (153).
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A.2. Application of the Small Subgraph Conditioning Method

The application of Theorem A.1, and similarly Lemma A.2, requires a verification of its
assumptions. This check is routine for the most part, but it is nevertheless technically
arduous, mainly because of assumption (A3), which requires precise calculation of
the moments’ asymptotics. We suppress the verification in the following lemma whose
proof is given later in this section. The lemma includes some details on a few quantities
which will be relevant for the proof of Lemma 6.12.

LEMMA A.3. Let G ∼ Gr
n and Xin be the number of cycles of even length i appearing

in G, i = 2, 4, . . . . Let S = {(p, η) | p ∈ Q, η : W → [q]} and for s ∈ S with s = (p, η), set
Y (s)

n = Zp
G(η). In the setting of Theorem 1.5, the assumptions of Theorem A.1 hold.

Further, for s ∈ S with s = (p, η) and all even i ≥ 2, δ
(s)
i satisfies (i) δ

(s)
i > 0, (ii)

δ
(s)
i depends on p but not on η, (iii)

∑
i μiδ

(s)
i < ∞, (iv) if the phases are permutation

symmetric, δ
(s)
i depends on the spin model but not on the particular phase p.

Using Lemmas A.2 and A.3, we are ready to prove Lemma 6.12.

PROOF OF LEMMA 6.12. To see (104), note that the W (s)
mn of Lemma A.2 depend on the

particular s only through the δ
(s)
i ’s. By Item (ii) of Lemma A.3, these depend only on p

in general and specifically for the permutation symmetric case, only on the spin model
by Item (iv).

It remains to prove that Wp
mn are lower bounded uniformly in p by a positive constant.

Since the number of phases p is bounded by a constant depending only on the spin
model, it suffices to show that this is the case for a fixed phase p. Using Item (i) of
Lemma A.3 and that the random variables Xin are nonnegative integer valued, we have
everywhere the bound

Wp
mn =

m∏
i=1

(
1 + δ

p
i

)Xin exp
( − μiδ

p
i

) ≥
m∏

i=1

exp
( − μiδ

p
i

)
>

∞∏
i=1

exp
( − μiδ

p
i

)
.

Note that we have identified the δ
(s)
i ’s with the respective δ

p
i ’s, this is justified by Item (ii)

of Lemma A.3. The last quantity is finite and positive by Item (iii) in Lemma A.3.

We next prove Lemma A.3 which amounts to checking the validity of the assump-
tions (A1)-(A4) of Theorem A.1 for Zp

G(η) for p ∈ Q and η : W → [q].
Let us fix first some notation. Recall that a phase p ∈ Q corresponds to a global

maximum (α,β) of �1. Let x = (xij)i, j∈[q] be as in Lemma 4.3, that is, the unique vector
which maximizes ϒ1(α,β, x) when α,β are fixed. In the setting of Theorem 1.5, we
may assume that (α,β) is a Hessian local maximum of �1. The following lemma puts
together some relevant quantities and information which we derived in Section 4.2 in
the course of proving Theorem 4.2.

LEMMA A.4. Suppose that (α,β) is a Hessian local maximum of �1. Define the vector
x = (xij)i, j∈[q] as in Lemma 4.3.

Let J be the matrix [ 0 L
Lᵀ 0 ], where L is the q × q matrix whose ij-entry is given by

xij/
√

αiβ j . Then, the spectrum of J is

±1,±λ1, . . . ,±λq−1,

for some positive λi which satisfy maxi λi < 1
�−1 . Relevant to Lemma A.3, observe that

if the phases p are permutation symmetric, then the λi ’s are common for all phases.
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Let G ∼ Gr
n and Xi := Xin be the number of cycles in G of even length i. Let p =

(α,β) ∈ Q. We next verify the assumptions of Theorem A.1 for the random variables
Zp

G(η), η : W → [q]. We have the following lemmas:

LEMMA A.5 (LEMMA 7.3 IN MOSSEL ET AL. [2009]). Assumption (A1) of Theorem A.1
holds for even i with

μi = r(�, i)
i

= (� − 1)i + (−1)i(� − 1)
i

,

where r(�, i) is the number of ways to properly edge color a cycle of length i with �
colors.

The proof of Lemma A.5 is given in Mossel et al. [2009] and is omitted.

LEMMA A.6. Let λ j , j ∈ [q − 1] be as in Lemma A.4. Then, for all even i ≥ 2, it holds
that

EGr
n

[
Zp

G(η)Xi
]

EGr
n

[
Zp

G(η)
] → μi(1 + δi) as n → ∞, where δi :=

q−1∑
j=1

λi
j .

In particular, δi is positive for every even i ≥ 2.

The proof of Lemma A.6 is given in Section A.3.

LEMMA A.7. Let δi , i = 2, 4, . . . be as in Lemma A.6. For every finite sequence
m1, . . . , mk of nonnegative integers, it holds that

EGr
n

[
Zp

G(η)[X2]m1 . . . [X2k]mk

]
EGr

n

[
Zp

G

] →
k∏

i=1

(μi(1 + δi))mi as n → ∞.

Once we give the proof of Lemma A.6, the proof of Lemma A.7 is identical to Mossel
et al. [2009, Proof of Lemma 7.5] and is omitted.

LEMMA A.8. In the notation and setting of Lemma A.4, it holds that

exp

⎛
⎝ ∑

even i≥2

μiδ
2
i

⎞
⎠ =

q−1∏
i=1

q−1∏
j=1

(
1 − (� − 1)2λ2

i λ
2
j

)−1/2
q−1∏
i=1

q−1∏
j=1

(
1 − λ2

i λ
2
j

)−(�−1)/2
.

Moreover,
∑

even i≥2 μiδi < ∞.

The proof of Lemma A.8 is given in Section A.3.
Finally, we find the asymptotics of the second moment over the first moment squared.

LEMMA A.9. In the notation and setting of Lemma A.4, it holds that

lim
n→∞

EGr
n

[(
Zp

G(η)
)2]

(
EGr

n

[
Zp

G(η)
])2 = C, where C :=

q−1∏
i=1

q−1∏
j=1

(
1−(�−1)2λ2

i λ
2
j

)−1/2
q−1∏
i=1

q−1∏
j=1

(
1−λ2

i λ
2
j

)−(�−1)/2
.

The proof of Lemma A.9 is quite extensive. In Appendix B, we first reduce the lemma
to the case r = 0. This part of the proof is standard and is analogous to the proof of
Lemma 6.11. Then, we compute the asymptotics in terms of determinants of relevant
Hessian matrices. These determinants are computed in Appendix B.1.2, where also the
proof of Lemma A.9 is completed.

With Lemmas A.5-A.9 at hand, the proof of Lemma A.3 is immediate.
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PROOF OF LEMMA A.3. We prove the first part of the lemma by verifying the assump-
tions of Theorem A.1. Lemma A.5 verifies assumption (A1), Lemma A.7 verifies as-
sumption (A2) and Lemmas A.8 and A.9 verify assumptions (A3) and (A4). This proves
the first part of the lemma.

For the second part, just use the second parts in Lemmas A.4, A.6, A.8 to establish
Items (i)-(iv).

A.3. Proofs of Lemmas A.6 and A.8

In this section, we give the proofs of Lemmas A.6 and A.8.

PROOF OF LEMMA A.6. The proof is close to [Mossel et al. 2009, Proof of Lemma 7.4],
the approach only needs a few modifications to account for the q-spin setting. We make
the minor notation change from Xi to X�.

We will do the computations for the case of G ∼ Gn and the random variables Z α,β

G ,
the extension to the case G ∼ Gr

n and the random variables Zp
G(η) has slightly more

complicated expressions, but otherwise the derivation is completely analogous (this was
first displayed by Sly [2010]). We give the details of the more complicated calculations
in Section D.2 and here we focus on the main ideas in the setting previously specified.
(All probabilities and expectations in the following argument will refer to the graph
distribution Gn.)

We will show that
E
[
Zα,β

G X�

]
E
[
Zα,β

G

] → μ�(1 + δ�) as n → ∞,

where μ�, δ� are as in the statement of the lemma.
Let S = {S1, . . . , Sq} and T = {T1, . . . , Tq} be partitions of V1 and V2 respectively

such that |Si| = αin and |Tj | = β jn for all i, j ∈ [q]. Denote by YS,T the weight of the
configuration σ that S, T induce, that is, for a vertex v ∈ V1, σ (v) = i iff v ∈ Si and
similarly for vertices in V2.

Fix a specific pair of S, T . By symmetry,

E
[
Zα,β

G X�

]
E
[
Zα,β

G

] = E[YS,T X�]
E[YS,T ]

. (156)

We now decompose X� as follows.

—ξ will denote a proper �-edge colored, rooted, and oriented �-cycle (r(�, �) possibil-
ities), in which the vertices are colored with {Y1, . . . , Yq, G1, . . . , Gq} and edges are
colored with {1, . . . ,�}.

A vertex colored with Yi (respectively, Gi) for some i ∈ [q] will be loosely called
yellow (respectively, green) and signifies that the vertex belongs to Si (respectively,
Ti). Since a yellow vertex belongs to V1, and a green vertex belongs to V2, a vertex
coloring is consistent with the bipartiteness of the random graph if adjacent vertices
of the cycle are not both yellow or green, that is, the vertex assignments which are
prohibited for neighboring vertices in the cycle are (Yi, Yj) and (Gi, Gj), ∀(i, j) ∈ [q]2.
Note here that we do not expicitly prohibit assignments (Yi, Gj) in the presence of
a hard constraint Bij = 0; this will be accounted otherwise. The color of the edges
will prescribe which of the � perfect matchings an edge of a (potential) cycle will
belong to.

—Given ξ , we use ζ to denote the position that an �-cycle can be, that is, the exact
vertices it traverses in order, such that the prescription of the vertex colors of ξ is
satisfied.

—1ξ,ζ is the indicator function whether a cycle specified by ξ, ζ is present in G.
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Note that each possible cycle corresponds to exactly 2� different configurations ξ (the
number of ways to root and orient the cycle). For each of those ξ , the respective sets of
configurations ζ are the same. Hence, we may write

X� = 1
2�

∑
ξ

∑
ζ

1ξ,ζ . (157)

Let p1 := Pr[1ξ,ζ = 1]. We have

E[YS,T X�] = 1
2�

∑
ξ

∑
ζ

p1 · E[YS,T | 1ξ,ζ = 1].

In light of (156), we need to study the ratio E[YS,T | 1ξ,ζ = 1]/EG[YS,T ]. At this point, to
simplify notation, we may assume that ξ, ζ are fixed.

We have shown in Section 2 that

E[YS,T ] =
⎛
⎝∑

x

∏
i

(
αin

xi1n,...,xiqn

)∏
j

(
β jn

x1 jn,...,xqjn

)
( n

x11n,...,xqqn

) ∏
i, j

Bnxij
i j

⎞
⎠

�

, (158)

where the variables x = (x11, . . . , xqq) correspond to the number of edges between S, T
in one matching (precisely, nxij is the number of edges between the sets Si and Tj).

For the calculation of E[YS,T | 1ξ,ζ = 1], we need some notation. For colors c1, c2 ∈
{Y1, . . . , Yq, G1, . . . , Gq}, we say that an edge is of type {c1, c2} if its endpoints have
colors c1, c2. Let yi, gj denote the number of vertices colored with Yi, Gj respectively.
For k = 1, . . . , �, let aij(k) denote the number of edges of color k and type {Yi, Gj}.
Finally, for i, j ∈ [q] let aij = ∑

k aij(k). By considering the sum of the degrees of
vertices colored Yi, the sum of the degrees of vertices colored Gj and the total number
of edges of the cycle, we obtain the following equalities.∑

j aij = 2yi,
∑

i aij = 2gj,
∑

i, j aij = 2�. (159)

We are almost set to compute E[YS,T | 1ξ,ζ = 1]. We denote by xk the same set of
variables as in (158) but for the kth matching. Namely, nxij,k is the number of edges
between the sets Si and Tj in the kth matching. This number includes the aij(k) edges
prescribed by ξ, ζ . To simplify the following formulas, let nx′

i j,k := nxij,k−aij(k). We have

E[YS,T | 1ξ,ζ = 1] =
�∏

k=1

⎡
⎢⎣∑

xk

∏
i

(αin−
∑

j aij (k)

nx′
i1,k,...,nx′

iq,k

)∏
j

(β jn−
∑

i aij (k)
nx′

1 j,k,...,nx′
qj,k

)
(n−

∑
i, j aij (k)

x′
11,kn,...,x′

qq,kn

) ∏
i, j

Bnxij,k
i j

⎤
⎥⎦ .

In these sums, for any ε > 0 and all sufficiently large n, terms whose xk’s are ε-far from
the optimal value of x given in Lemma 4.3 have exponentially small contribution and
may be ignored. Standard approximations of binomial coefficients, see, for example,
Galanis et al. [2012, Lemma 28], give(

αin−� j aij (k)
x′

i1,kn,...,x′
iq,kn

)
(

αin
xi1,kn,...,xiq,kn

) ∼
∏

j(xij,k)aij (k)

α

∑
j aij (k)

i

,

(β jn−
∑

i aij (k)
x′

1 j,kn,...,x′
qj,kn

)
(

β jn
x1 j,kn,...,xqj,kn

) ∼
∏

i(xij,k)aij (k)

β

∑
i aij (k)

j

,

(n−
∑

i, j aij (k)

x′
11,kn,...,x′

qq,kn

)
( n

x11,kn,...,xqq,kn

) ∼
∏
i, j

(xij,k)aij (k),
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where f (n) ∼ g(n) stands for f (n)/g(n) → 1 as n → ∞. Thus, we obtain

E[YS,T | 1ξ,ζ = 1]
E[YS,T ]

∼
∏

i, j(xij)aij

∏
i α

∑
j aij

i
∏

j β

∑
i aij

j

.

We have p1 ∼ n−� and for given ξ , the number of possible ζ is asymptotic to
n�

∏
i α

yi
i
∏

j β
gj
j . Thus, for the given ξ , we have∑

ζ p1E[YS,T | 1ξ,ζ = 1]

E[YS,T ]
∼

∏
i α

yi
i
∏

j β
gj
j
∏

i, j(xij)aij

∏
i α

∑
j aij

i
∏

j β

∑
i aij

j

=
∏
i, j

(
xij√
αiβ j

)aij

Note that the rhs evaluates to 0 whenever there exist i, j such that Bij = 0 but aij 
= 0,
since then we have xij = 0. This is in complete accordance with the fact that the
configuration induced by the partition {S, T } has zero weight. Thus, by (156), we have

E
[
Zα,β

G X�

]
E
[
Zα,β

G

] ∼ r(�, �)
2�

·
∑

a

Na

∏
i, j

(
xij√
αiβ j

)aij

, (160)

where a = {a11, . . . , aqq} and Na is the number of possible ξ with aij edges having assign-
ment (Yi, Gj). To analyze this sum, we employ a technique given in Janson [1995]. The
idea is to define a weighted transition matrix and view it as the (weighted) adjacency
matrix of a weighted graph. The powers of the matrix count the (multiplicative) weight
of walks in the graph and a closed walk in this graph will correspond to a specification
ξ . By defining the weights appropriately, one can also ensure that each closed walk will
correctly capture the weight of the specification ξ .

In our setting, the transition matrix is simply the matrix J of Lemma A.4. The
first q rows and q columns correspond to the colors Yi and the remaining rows and
columns to colors Gj . The total weight of closed walks of length � is given by Tr(J�).
Using the description of the eigenvalues given in Lemma A.4, we obtain that for even
�, Tr(J�) = 2(1 + ∑q−1

i=1 λ�
i ). This concludes the proof.

PROOF OF LEMMA A.8. Using Lemma A.5, we have

∑
even i≥2

μiδ
2
i =

∑
even i≥2

r(�, i)
i

·
⎛
⎝q−1∑

j=1

λi
j

⎞
⎠

2

=
∑

even i≥2

(� − 1)i + (� − 1)
i

·
⎛
⎝q−1∑

j=1

q−1∑
j ′=1

λi
jλ

i
j ′

⎞
⎠ .

Observe that
∑

j≥1
x2 j

2 j = − 1
2 ln(1 − x2) for all |x| < 1. By Lemma A.4, the λ j ’s satisfy

(� − 1)λ j < 1 for all j, so that (� − 1)λ jλ j ′ < 1 for all j, j ′. It follows that

∑
even i≥2

μiδ
2
i = −1

2

⎛
⎝∑

i, j

ln
(
1 − (� − 1)2λ2

i λ
2
j

) + (� − 1)
∑
i, j

ln
(
1 − λ2

i λ
2
j

)⎞⎠ ,

thus proving the first part of the lemma. The proof of
∑

i μiδi < ∞ is completely
analogous.

B. MOMENT ASYMPTOTICS

In this section, we prove Lemma A.9. For the purposes of this section, we will identify
Q with the dominant phases of a random �-regular bipartite graph. Thus, we will use
p ∈ Q to denote a dominant phase (α,β).
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We first recall some relevant definitions from Section 6.4. For r ≥ 0, let G ∼ Gr
n and

σ : U ∪ W → [q] be a configuration on G. The footprint of σ is a pair of q-dimensional
vectors ασ ,βσ whose ith entries are equal to |σ−1(i)∩U+|/n, |σ−1(i)∩U−|/n, respectively.
The phase Y (σ ) of σ is the dominant phase (α,β), which is closest to (ασ ,βσ ), precisely:

Y (σ ) = arg max
p=(α,β)∈Q

( ‖α − ασ‖2
2 + ∥∥β − βσ

∥∥2
2

)1/2
. (161)

Finally, recall that for p ∈ Q, Zp
G is the partition function “conditioned on the phase

p”, that is, the contribution to the partition function of G from configurations σ with
Y (σ ) = p, and for η : W → [q], Zp

G(η) is the contribution to the partition function of G
from configurations σ with Y (σ ) = p and σW = η, see (100) for more details.

To prove Lemma A.9, for p ∈ Q and a configuration η : W → [q], we need to
compute the asymptotics of EGr

n
[(Zp

G(η))2]/(EGr
n
[Zp

G(η)])2. The following lemma reduces
the computation to the case r = 0. Note that for r = 0, the set of vertices W is empty
and the distribution Gr

n coincides with the distribution G := Gn on random �-regular
bipartite graphs from Section 2.

LEMMA B.1. Let p = (α,β) ∈ Q be a Hessian dominant phase. Then, for every fixed
r > 0, for every η : W → [q] it holds that

lim
n→∞

EGr
n

[(
Zp

G(η)
)2]

(
EGr

n

[
Zp

G(η)
])2 = lim

n→∞
EGn

[(
Zp

G

)2]
(
EGn

[
Zp

G

])2 .

We will prove Lemma B.1 in Appendix D.1. In light of Lemma B.1, we need to compute
the limiting ratio of EGn[(Z

p
G)2]/(EGn[Z

p
G])2 for p ∈ Q. We do this by computing separately

the asymptotics of EGn[Z
p
G] and EGn[(Z

p
G)2]. We begin with an observation that will allow

us to deduce the asymptotics of EG[(Zp
G)2] from the asymptotics of EG[Zp

G] applied to the
spin system with interaction matrix B ⊗ B.

LEMMA B.2. Let p = (α,β) ∈ Q be a dominant phase for the spin system with
interaction matrix B. Then, p′ = (α ⊗ α,β ⊗ β) is a dominant phase for the spin system
with interaction matrix B ⊗ B.

For G ∼ Gn, let Zp′
G be the contribution to the partition function of G for the spin

system with interaction matrix B ⊗ B from configurations σ with Y (σ ) = p′. Then,
limn→∞

EGn[(Zp
G)2]

EGn[Zp′
G ]

= 1.

PROOF OF LEMMA B.2. The first part of the lemma is an immediate consequence of
Lemma 3.2. In fact, the proof of Lemma 3.2 shows the stronger fact that the set
of dominant phases for the spin system with interaction matrix B ⊗ B is given by
Q⊗2 := {(α ⊗ α′,β ⊗ β ′) | (α,β), (α′,β ′) ∈ Q}.

For the second part, let

�1 =
{
(α′,β ′) | α′,β ′ ∈ �q, p = arg min

p∗=(α∗,β∗)∈Q
(‖α′ − α∗‖2 + ‖β ′ − β∗‖2)1/2

}
, (162)

so that

Zp
G =

∑
(α′,β ′)∈�1

Zα′,β ′

G and
(
Zp

G

)2 =
∑

(α′,β ′),(α′′,β ′′)∈�1

Zα′,β ′

G Zα′′,β ′′

G .
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It follows that EG[(Zp
G)2] is given by the sum in the right-hand side in (6), but now the

sum is over γ , δ which satisfy∑
k γik = α′

i (∀i ∈ [q]),
∑

l δ jl = β ′
j (∀ j ∈ [q]),∑

i γik = α′′
k (∀k ∈ [q]),

∑
j δ jl = β ′′

l (∀l ∈ [q]),

and (α′,β ′), (α′′,β ′′) range over �1. Note that by the definition of �1, p = (α,β) is the
unique dominant phase (of the spin system with interaction matrix B) contained in
�1. By Lemma 3.2, for any ε > 0 and all sufficiently large n, terms in the sum with
(‖γ − α ⊗ α‖2

2 + ‖δ − β ⊗ β‖2
2)1/2 ≥ ε have exponentially small contribution and hence

may be ignored. Similarly, for the spin system with interaction matrix B ⊗ B, EG[Zp′
G ]

is given by the sum in the right-hand side in (6), where now the sum is over γ , δ with
(γ , δ) ∈ �2, where

�2 :=
{
(γ ′, δ′) | γ ′, δ′ ∈ �q2 , p′ = arg min

p∗=(γ ∗,δ∗)∈Q⊗2
(
∥∥γ ′ − γ ∗∥∥2 + ∥∥δ′ − δ∗∥∥2)1/2

}
.

Once again, by Lemma 3.2, for any ε > 0 and all sufficiently large n, terms in the sum
with (‖γ − α ⊗ α‖2

2 + ‖δ − β ⊗ β‖2
2)1/2 ≥ ε have exponentially small contribution and

hence may be ignored. It follows that for all sufficiently small ε > 0, the remaining
terms in the two sums are identical which completes the proof.

As a consequence of Lemma B.2, we may focus on the asymptotics of the first moment
EG[Zp

G]. Let

P1 = {
(i, j) ∈ [q]2

∣∣ Bij > 0
}
. (163)

In the presence of a hard constraint Bij = 0, edge assignments (i, j) yield a zero-weight
configuration. In the maximization of ϒ1 (see (8)), the hard constraint Bij = 0 was not
directly relevant, since for xij > 0 the function ϒ1 evaluates to −∞. Indeed, we found
that the optimal xij is of the form Bij RiC j and hence zero. However, the asymptotics of
EG[Zp

G] include products of the optimal values of the xij and to correctly capture them,
we need to explicitly account for the zero entries of the matrix B.

To do so, in the formulation (5), we hard-code xij = 0 for a pair (i, j) /∈ P1 and hence
the variables α,β, x are restricted to the space∑

i αi = 1,
∑

j β j = 1,∑
j xij = αi (∀i ∈ [q]),

∑
i xij = β j (∀ j ∈ [q]),

xij = 0 (∀(i, j) ∈ [q]2\P1), xij ≥ 0 (∀(i, j) ∈ P1).

(164)

We will also need to have a set of affinely independent variables which describe the
polytope (164). Note that the dimension of the polytope (164) is (q2 + 2q) − (2q + 1) −
(q2 −|P1|) = |P1|−1. To get affinely independent variables α,β, x, we use the equalities
in (164) and substitute an appropriate set of (q+1)2 −|P1| variables. We will not need to
understand these substitutions till Appendix B.1.1, yet in the integrations which follow
it is preferable to have integration variables rather than integrate over subspaces.

After this process, we are going to have |P1| − 1 variables lying in a full dimensional
space. We refer to this set of variables as the full dimensional representation of (164).
For simplicity, we will still use α,β, x for these variables and refer, for example, to
xij even if xij is not in the full dimensional representation of (164), under the un-
derstanding that this is just a shorthand for the substituted expression. Using these
conventions, we may view ϒ1(α,β, x) as a function of the full dimensional representa-
tion of (164), and we will refer to this setup as the full dimensional representation of
ϒ1.
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The following lemma expresses the asymptotics of EG[Zp
G] in terms of determinants

of suitable matrices corresponding to the Hessian matrix of the function ϒ1 evaluated
at a global maximum (α∗,β∗, x∗) (the relevant maximum is specified by the phase p).
To prove the lemma, we will need to perform integrations in a full dimensional space
and hence we will work with the full dimensional representation of ϒ1. Roughly, the
asymptotics of EG[Zp

G] are obtained by a Gaussian integration first with respect to the
variables x (with α,β fixed) and then with respect to the variables α,β. The Hessian
matrix of the full dimensional representation of ϒ1 will thus be relevant, denoted by
H f

1 (for convenience, we scale H f
1 by 1/�), as well as the square submatrix of H f

1

corresponding to the variables x, denoted by H f
1,x. Note, by our earlier discussion, H f

1

has dimension (|P1|−1)×(|P1|−1) while H f
1,x has dimension (|P1|−(2q−1))×(|P1|−(2q−

1)). A more thorough exposition of these Hessian matrices is given in Section B.1.1.

LEMMA B.3. Let p = (α∗,β∗) be a Hessian dominant phase, that is, (α∗,β∗) maximizes
�1(α,β). Let x∗ be the (unique) maximizer of ϒ1(α∗,β∗, x) (given in Lemma 4.3). Denote
by H f

1 be the Hessian of the full dimensional representation of ϒ1(α,β, x) scaled by 1/�

(evaluated at α∗,β∗, x∗) and by H f
1,x the square submatrix of H f

1 corresponding to rows
and columns indexed by x. Then

lim
n→∞

EG
[
Zp

G

]
enϒ1(α∗,β∗,x∗)

=
(∏

i α∗
i
∏

j β∗
j

)(�−1)/2(∏
(i, j)∈P1

x∗
i j

)−�/2

�q−1
(
Det

(−H f
1

))1/2(Det
(−H f

1,x

))(�−1)/2
.

The computation of the determinants in Lemma B.3 is given in Section B.1.2, where
also the proof of Lemma A.9 is completed.

PROOF OF LEMMA B.3. We assume that α,β, x is a full dimensional representation of
(164). We denote by (α∗,β∗, x∗) the optimal vector which maximizes the full dimensional
representation of ϒ1(α,β, x). We have that α∗

i , β
∗
j > 0 for all i, j and x∗

i j > 0 for (i, j) ∈ P1.
Pick δ sufficiently small such that

‖(α,β, x) − (α∗,β∗, x∗)‖2 ≤ δ implies αi, β j > 0 for all i, j and xij > 0 for (i, j) ∈ P1.

Since ϒ1 has the unique global maximum (α∗,β∗, x∗) at the intersection of the spaces
(162) and (164), standard compactness arguments imply that there exists ε(δ) > 0 such
that ‖(α,β, x) − (α∗,β∗, x∗)‖2 ≥ δ implies ϒ1(α∗,β∗, x∗) − ϒ1(α,β, x) ≥ ε. It follows that
the contribution of terms with ‖(α,β, x) − (α∗,β∗, x∗)‖2 ≥ δ to EG[Zp

G] is exponentially
small and may be ignored. Hence, we may restrict our attention to α,β, x satisfying
‖(α,β, x) − (α∗,β∗, x∗)‖2 < δ. Moreover, using Taylor’s expansion, and since (α∗,β∗)
is a Hessian dominant phase, we may choose δ small enough such that ϒ1 decays
quadratically in a δ-ball around (α∗,β∗, x∗).

Utilizing the choice of δ and Stirling’s approximation for factorials, we obtain from
(4) and (8) that

EG
[
Zp

G

]
enϒ1(α∗,β∗,x∗)

= (1 + O(n−1))
∑
α,β

(
1√
2πn

)2(q−1)
⎛
⎝∏

i

αi

∏
j

β j

⎞
⎠

(�−1)/2

⎡
⎣∑

x

(
1√
2πn

)|P1|−(2q−1)
⎛
⎝ ∏

(i, j)∈P1

1√xij

⎞
⎠ en(ϒ1(α,β,x)−ϒ1(α∗,β∗,x∗))/�

⎤
⎦

�

.
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We now compute

L := lim
n→∞

EG
[
Zp

G

]
enϒ1(α∗,β∗,x∗)

.

Standard techniques of rewriting sums as integrals and an application of the dominated
convergence theorem which utilizes the quadratic decay of ϒ1 around α∗,β∗, x∗ (for
details of this argument, see, e.g., Janson et al. [2000, Section 9.4]) ultimately give

L =
⎛
⎝∏

i

α∗
i

∏
j

β∗
j

⎞
⎠

(�−1)/2 ⎛
⎝ ∏

(i, j)∈P1

x∗
i j

⎞
⎠

−�/2

(165)

(
1√
2π

)2(q−1) ∫ ∞

−∞
· · ·

∫ ∞

−∞

[(
1√
2π

)|P1|−(2q−1) ∫ ∞

−∞
· · ·

∫ ∞

−∞
e

1
2 (α,β,x)·H·(α,β,x)ᵀdx

]�

dαdβ,

where H = H f
1 denotes the Hessian matrix of the (full dimensional representation

of) ϒ1 evaluated at (α∗,β∗, x∗) scaled by 1/� and the operator · stands for matrix
multiplication.

We thus focus on computing the integral in (165). We begin with the inner integration.
Let

I1 =
[(

1√
2π

)|P1|−(2q−1) ∫ ∞

−∞
· · ·

∫ ∞

−∞
e

1
2 (α,β,x)·H·(α,β,x)ᵀdx

]�

.

To calculate I1, we first decompose the exponent to isolate the terms involving x. We
obtain

1
2

(α,β, x) · H · (α,β, x)ᵀ = 1
2

(α,β) · Hα,β · (α,β)ᵀ − 1
2

x · (−Hx) · xᵀ + T · xᵀ,

where H = [ Hα,β Hαβ,x
Hᵀ

αβ,x Hx
] and T = (α,β) · Hαβ,x. Specifically:

—Hα,β is the square submatrix of H corresponding to the rows indexed by α,β and the
columns indexed by α,β;

—Hx is the square submatrix of H corresponding to the rows indexed by x and the
columns indexed by x;

—Hαβ,x is the submatrix of H corresponding to the rows indexed by α,β and the columns
indexed by x.

Note that Hx is the Hessian of g1(x) evaluated at x∗. Since g1(x) is concave, we have
that Hx is negative definite. Utilizing this decomposition, we obtain

I1 = e
�
2 (α,β)·Hα,β ·(α,β)ᵀ

[(
1√
2π

)|P1|−(2q−1) ∫ ∞

−∞
· · ·

∫ ∞

−∞
e− 1

2 x·(−Hx)·xᵀ+T·xᵀ
dx

]�

= 1
(Det(−Hx))�/2 e

�
2 (T·(−Hx)−1·Tᵀ+(α,β)·Hα,β ·(α,β)ᵀ),

where the Gaussian integral with the linear term can be reduced to a standard Gaus-
sian integral (without a linear term) by completing the square (or rather the quadratic
form) in the exponent utilizing the Cholesky decomposition of the positive definite
matrix −Hx.

We are left with the task of computing the integral

I2 =
(

1√
2π

)2(q−1) ∫ ∞

−∞
· · ·

∫ ∞

−∞
e

�
2 (T·(−Hx)−1·Tᵀ+(α,β)·Hα,β ·(α,β)ᵀ)dαdβ. (166)
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Using the definition of T, we have

T · (−Hx)−1 · Tᵀ + (α,β) · Hα,β · (α,β)ᵀ = (α,β) · (Hα,β − Hαβ,x · H−1
x · Hᵀ

αβ,x

) · (α,β)ᵀ.

The matrix M = Hα,β − Hαβ,x · H−1
x · Hᵀ

αβ,x is the Schur complement of the block Hx

of H. We can thus conclude that M is negative definite (since H is negative definite).
Further, we may also conclude that Det(H) = Det(Hx)Det(M). A Gaussian integration
then yields

I2 =
( 1
�2(q−1)Det(−M)

)1/2
=

( Det(−Hx)
�2(q−1)Det(−H)

)1/2
. (167)

Combining Eqs. (165), (166), and (167), we obtain the statement of the lemma.

B.1. The Determinants

This section addresses the computation of the determinants of the Hessians in
Lemma B.3. The calculations are quite complex since one has to make a choice of
free variables, do the substitutions, differentiate, and then hope that the structure
of the problem will prevail in the determinants. Pushing this procedure in our set-
ting leads to complications since the choice of free variables takes away much of the
combinatorial structure of the problem. We follow a different path, which amongst
other things, reveals that the determinants, via the matrix-tree theorem, correspond
to counting weighted trees in appropriate graphs.

The proof has two parts. The first part connects different formulations of the Hessian
of a constrained maximization in an abstract setting. Essentially, this puts together well
known concepts from optimization in a way that will allow to stay as close as possible
to the combinatorial structure of the determinants. The second part specialises the
work of the first part to compute the required determinants and is unavoidably more
computational.

B.1.1. Hessian Formulations for Constrained Problems. The setting of this section is the
following: we are given ϒ , a function of z ∈ R

n, subject to the linear constraints Az =
b, where A ∈ R

m×n. The assumption of linear constraints stems from the setting of
Lemma B.3, yet the arguments extend to other constraints as well by considering
gradients of these constraints at the point z0 and implicit functions. Without loss of
generality, we will also assume that b = 0.

We are interested in the Hessian H f of a full dimensional representation of ϒ . A full
dimensional representation of ϒ consists essentially of substituting an appropriate
subset of the variables z using the constraints Az = 0. Note that the representation is
not as much tied to ϒ as it is tied to the space Az = 0. Specifically, assume that the row
rank of A is r. In all the relevant constrained functions we consider, the constraints
are not linearly independent so such an assumption is necessary. A full dimensional
representation of ϒ is specified by two submatrices of A denoted by (A f , A f s). The
matrix A f is a submatrix of A consisting of r linearly independent rows of A, so that
Az = 0 iff A f z = 0. Then, A f s is an r × r submatrix of A f which is invertible. The
variables corresponding to columns of A f s are denoted by zs. The remaining variables
z f are called free and A f f is the submatrix of A f induced by the columns indexed by
z f . Renaming if needed, the equation A f z = 0 may be naturally decomposed as

[ A f f A f s ]
[ z f

zs

]
= 0, so that z =

[ z f
zs

]
=

[ I
−(A f s)−1A f f

]
z f .

Thus, we can now think of ϒ as a function which is completely determined by the
variables z f which, in contrast with the variables z, span a full dimensional space.
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Denote by H the unconstrained Hessian of ϒ with respect to the variables z and
by H f the Hessian of the full dimensional representation of ϒ with respect to the
variables z f . The Hessians H, H f are connected by the following equation, which
follows by straightforward matrix calculus and its proof is omitted.

H f = Sᵀ H S, where S =
[ I

−(A f s)−1A f f

]
. (168)

Note that H f is different, though closely related, from the constrained Hessian Hc

of ϒ in the subspace Az = 0, see, for example, Luenberger and Ye [2008, Chapter 11].
The constrained Hessian Hc has infinitely many matrix representations, all of which
correspond to similar matrices, that is, matrices with the same set of eigenvalues.
A matrix representation may be obtained by first picking an orthonormal basis of the
(n−r)-dimensional space {z | Az = 0}. Let E denote the n×(n−r) matrix whose columns
are the vectors in the basis. Then, a matrix representation of Hc is given by

Hc = Eᵀ H E, (169)

where H is as before the unconstrained Hessian of ϒ with respect to the variables z.
We are ready to prove the following. It is useful to recall here that congruent matrices
have the same number of negative, zero, and positive eigenvalues.

LEMMA B.4. H f is congruent to any matrix representation of Hc. Moreover, it holds
that

Det(H f ) = Det(Hc) Det(A f A
ᵀ
f )/Det(A f s)2 .

PROOF OF LEMMA B.4. The columns of the matrix S defined in Eq. (168) form a basis
of the space {z | Az = 0}. Indeed, S has clearly full column rank and also A f S = 0,
implying A S = 0 as well. For future use, by a direct evaluation

SᵀS = I + Aᵀ
f f

(
A f sA

ᵀ
f s

)−1A f f , so Det(SᵀS) = Det
(
I + A f f A

ᵀ
f f

(
A f sA

ᵀ
f s

)−1
)
,

where the latter equality uses Sylvester’s determinant theorem. This clearly yields

Det(SᵀS) = Det
(
A f A

ᵀ
f

)
/Det(A f s)2 . (170)

Comparing (168) and (169), the only difference is that S does not necessarily encode an
orthonormal basis. Nevertheless, there clearly exists an invertible matrix P such that
S P consists of orthonormal columns, for example, by the Gram-Schmidt process on the
columns of S. It follows that Pᵀ H f P is a matrix representation of Hc. This proves the
first part of the lemma and also gives Det(Hc) = Det(H f ) Det(P)2.

For the second part, the selection of P implies that (S P)ᵀS P is the identity matrix
and hence Det(SᵀS) Det(P)2 = 1. The desired equality follows.

Lemma B.4 allows us to focus on the determinant of Hc or equivalently the product
of its eigenvalues. The latter may be handled using bordered Hessians. Specifically, let
A f be any submatrix of A induced by r linearly independent rows (recall that Az = 0
iff A f z = 0). Then, λ is an eigenvalue of Hc iff it is a root of the polynomial

p(λ) = Det
([ 0 A f

−Aᵀ
f H − λIn

])
, (171)

see, for example, Luenberger and Ye [2008, Chapter 11].
In our case, deleting rows of A to obtain A f would cause undesirable complications.

In the following, we circumvent such deletions by adding suitable “perturbations”. We
will also allow for certain degrees of freedom to select the perturbations which will be
exploited in the computations. We first prove the following.
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For a polynomial p(s), [st]p(s) denotes the coefficient of st in p(s).

LEMMA B.5. Let M ∈ R
m×m be a symmetric matrix with rank r and let μi , i = 1, . . . , m

be the eigenvalues of M. Let T ∈ R
m×m be a symmetric matrix. We can choose orthonormal

unit eigenvectors vi , i = 1, . . . , m of M (where vi has eigenvalue μi) so that

[εm−r] Det(εT + M) =
∏

i; μi 
=0

μi

∏
i; μi=0

vᵀ
i T vi, (172)

In particular, if T is positive semidefinite and [T M] has full row rank, the right-hand
side of (172) is nonzero.

PROOF OF LEMMA B.5. Without loss of generality, assume that μ1, . . . , μr are the non-
zero eigenvalues of M. Since M is symmetric, there exists an orthogonal matrix S
such that SᵀMS = diag(μ1, . . . , μm) where the columns of S, denoted by v′

1, v′
2, . . . , v′

m
henceforth, are eigenvectors of M. We may decompose S into the block form [S
=0 S0]
where S0 is an m× (m− r) matrix such that MS0 is the zero matrix.

Since T is symmetric, the matrix Sᵀ
0TS0 is symmetric and hence there exists an

orthogonal matrix R0 such that Rᵀ
0 (Sᵀ

0TS0)R0 is the diagonal matrix whose diagonal
entries are the eigenvalues of Sᵀ

0TS0. Let S′ be the matrix with block form [S
=0 S0R0].
We claim that the columns v1, . . . , vm of S′ satisfy the statement of the lemma.

Since vi = v′
i for i ≤ r and the vi ’s with i > r are linear combinations of eigenvectors

of M corresponding to the same eigenvalue 0, we have that the vi ’s are eigenvectors of
M. Orthonormality of the vi ’s follows from

(S′)ᵀ S′ =
[

Sᵀ

=0S
=0 Sᵀ


=0S0R0

Rᵀ
0Sᵀ

0S
=0 Rᵀ
0Sᵀ

0S0R0

]
,

and the fact that the matrices Sᵀ
0S
=0, Sᵀ


=0S0 are zero matrices, while Sᵀ
0S0, Sᵀ


=0S
=0,

Rᵀ
0R0 are the identity matrices (by the orthogonality of S, R0).
It remains to prove (172). By the orthogonality of S′ and the fact that the columns of

S′ are eigenvectors of M, we have

Det(εT + M) = Det
(
ε(S′)ᵀ T S′ + diag(μ1, . . . , μm)

)
.

Let W := ε(S′)ᵀ T S′ + diag(μ1, . . . , μm) and denote the (i, j)-entry of W by Wi, j . By
Leibniz’s formula, we have that

Det(W) =
∑
σ∈Sm

sgn(σ )
m∏

i=1

Wi,σ (i).

Note that the coefficient of εm−r in Det(W) is obtained by considering only those σ such
that σ (i) = i for all i ∈ [r] (since the only entries of W which are nonzero for ε = 0 are
Wi,i for i = 1, . . . , r). The contribution from such σ to the coefficient of εm−r is given by
Det(T0)

∏r
i=1 μi where T0 = Rᵀ

0Sᵀ
0TS0R0. By the choice of R0, we have that T0 is a diag-

onal matrix (whose diagonal entries are eigenvalues of Sᵀ
0TS0). The diagonal entries of

T0 are given by vᵀ
r+1Tvr+1, . . . , vᵀ

mTvm. Hence, Det(T0) = ∏m
i=r+1 vᵀ

i Tvi, yielding (172).
For the second part, by the positive semidefiniteness of T, we have vᵀ

i Tvi = 0 iff
Tvi = 0. Thus, for the right-hand side in (172) to be zero, there must exist i > r such
that vᵀ

i [T M] = 0 (recall that any vi with i > r satisfies Mvi = 0), which is excluded by
the assumption that [T M] has full row rank, concluding the proof.

The following lemma gives the promised extension of (171).

LEMMA B.6. Suppose that T is a diagonal positive semidefinite m× m matrix such
that [T A] has full row rank. Let H (respectively Hc) be the unconstrained (respectively
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constrained) Hessian of ϒ evaluated at a point z0. Then, λ is an eigenvalue of Hc iff it
is a root of the polynomial

p(λ) = [εm−r] Det(Hλ) where Hλ =
[

εT A
−Aᵀ H − λIn

]
. (173)

Further, if H is invertible, then Det(Hc) = (−1)rDet(H)
[εm−r] Det(εT + AH−1Aᵀ)

[εm−r] Det(εT − AAᵀ)
.

PROOF OF LEMMA B.6. Let T = (ti, j)i, j∈[m] and Hλ = (hi, j)i, j∈[m+n]. Let W = ( [m]
m−r ) and for

W ∈ W let PW = {σ ∈ Sm+n | {i ∈ [m] | σ (i) = i} = W}. Since T is diagonal, by Leibniz’s
formula,

p(λ) = [εm−r]Det(Hλ) =
∑

W∈W

∏
i∈W

ti,i
∑

σ∈PW

sgn(σ )
∏

i∈[m+n]\W

hi,σ (i). (174)

Let A[m]\W be the r × n submatrix of A which is obtain by excluding the rows indexed
by W . Identifying permutations in PW with permutations of [n+ r] in the natural way,
we obtain ∑

σ∈PW

sgn(σ )
∏

i∈[m+n]\W

hi,σ (i) = Det
([ 0 A[m]\W

−Aᵀ
[m]\W H − λIn

])
≡ qW (λ). (175)

If A[m]\W has row rank < r, then qW (λ) is 0. Otherwise, the roots of qW (λ) are the
eigenvalues of Hc, c.f., (171). By (174), this is also the case for p(λ), provided it is not
identically zero.

To prove that p(λ) is nonzero, we prove that the leading coefficient of p(λ) is nonzero.
Starting from (175) and plugging into (174), the leading coefficient of p(λ) can easily be
seen to equal

[εm−r]Det
([

εT A
−Aᵀ −In

])
= [εm−r](−1)nDet(εT − AAᵀ),

where in the latter equality we used the Schur complement of the block −In. The last
expression is nonzero by Lemma B.5.

The determinant of Hc is the product of its eigenvalues, which in turn equals
(−1)n−r p(0) divided by the leading coefficient of p(λ). The latter has already been
computed. The former, using the Schur complement of the invertible H, is equal to
[εm−r]Det(H) Det(εT + AH−1Aᵀ). This concludes the proof.

Finally, we combine these lemmas to obtain the following.

LEMMA B.7. Let ϒ be a function of z ∈ R
n subject to the linear constraints Az = b,

where A ∈ R
m×n and A has rank r. Let (A f , A f s) specify a full dimensional representation

of ϒ and let H f be the corresponding Hessian of ϒ evaluated at a point z0.
Suppose T is a positive semidefinite diagonal matrix with dimensions m×msuch that

[T A] has full row rank. Let H be the unconstrained Hessian of ϒ evaluated at z0. If H
is invertible, then

Det(−H f ) = L(A f , A, T)
Det(A f s)2 Det(−H) [εm−r] Det(εT − AH−1Aᵀ), (176)

where L(A f , A, T) = (−1)r Det(A f A
ᵀ
f )/[εm−r] Det(εT − AAᵀ) .

PROOF OF LEMMA B.7. Just combine Lemmas B.4 and B.6. The minor sign change
−H f in the statement can easily be accounted by applying the lemmas to the function
−ϒ .
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The right-hand side of (176) has two qualitatively different factors: the factor
L(A f , A, T)/Det(A f s)2 depends on the specific full dimensional representation, while
the remaining factor is tied to the Hessian of ϒ . The technical convenience of
Lemma B.7 is dual: first, it gives an explicit formula for Det(−H f ) without doing
substitutions which would hinder the combinatorial view of the constraints A; second,
it isolates the deletions of rows of A in the factor L(A f , A, T) and leaves untouched the
more complicated matrix AH−1Aᵀ.

B.1.2. The Computations. In this section, we utilize Lemma B.7 to compute the deter-
minants in Lemma B.3.

Notation. For a vector z ∈ R
n we denote by zD the n × n diagonal matrix

diag{z1, . . . , zn}. For vectors zi ∈ R
mi , i = 1, . . . , t we denote by [z1, . . . , zt]ᵀ the R

∑
i mi

vector which is the concatenation of the vectors z1, . . . , zt. For matrices A and B, A ⊗ B
will denote the Kronecker product of A, B, while A ⊕ B is the direct sum of A, B, that
is, the block diagonal matrix diag{A, B}. The expression ⊕2A is a shorthand for A ⊕A.
Further, In denotes the identity matrix of dimensions n × n. Finally, 1n, 0n denote the
all-one and all-zero n-dimensional vector.

To start, the equality constraints in (164) may be written in the form

A1 [α, β, x]ᵀ = 0.

Note, we do need to pay attention at this point to the constant terms in (164), since we
only care for the tangent space that the constraints induce (this is why the right-hand
side in the previous equation is 0). The matrix A1 has dimensions (2q + 2) × (|P1| + 2q)
(cf., (163) for the definition of P1). Note that we exclude from consideration variables xij
which are hard-coded to zero. This is done to ensure that the unconstrained Hessians
are invertible, so that Lemma B.7 applies directly. It will be useful to decompose the
matrix A1 as

A1 =
[ A1,αβ 0

−I2q A1,x

]
, (177)

where A1,αβ , A1,x have dimensions 2 × 2q and 2q × |P1|, respectively.
The easiest way to handle the matrix A1,x is as the incidence matrix of a bipartite

graph Gx. First, we introduce some notation: for an undirected graph G, we denote
by AG the 0,1 incidence matrix of G, by RG the adjacency matrix of G, by DG the
diagonal matrix whose diagonal entries are equal to the degrees of the vertices in G
and by �G the matrix DG + RG. We will also be interested in the case where the graph
G is weighted, in which case we assume that the weights on the edges are given by
the diagonal entries of a square diagonal matrix WG. We denote by Rw

G, Dw
G,�w

G the
weighted versions of the matrices RG, DG,�G. It is well known that

AGAᵀ
G = �G, AGWGAᵀ

G = �w
G. (178)

The bipartite graph Gx has vertex bipartition ([q], [q]) and an edge (i, j) is present iff
(i, j) ∈ P1, that is, Bij > 0. Since B is irreducible, Gx is undirected and connected. An
edge (i, j) in Gx has weight xij . In the languange of (178), WGx = xD (the choice of WGx

will become apparent when we consider the unconstrained Hessian). Applying (178) to
the graph Gx is useful to do explicitly in order to decompose the resulting matrices. In
particular, since these graphs are undirected and bipartite, we have

�w(Gx) =
[

αD Sx

Sᵀ
x βD

]
, (179)



App–18 A. Galanis et al.

where Sx is the q × q matrix whose (i, j) entry is xij . Note that the total weight of the
edges incident to vertices in Gx (in other words, the diagonal entries of the matrix Dw)
was substituted using (164).

We next state the unconstrained Hessians that will be of interest to us. From
Lemma B.3, these are: (i) H1,x, the Hessian of ϒ1/� with respect to x when α,β are
fixed, (ii) H1, the Hessian of ϒ1/� with respect to α,β, x. These two matrices are all
diagonal and by inspection one can check that

(H1,x)−1 = −xD, (H1)−1 = �

� − 1
αD ⊕ �

� − 1
βD ⊕ (H1,x)−1,

Det(−H1,x)−1 =
∏

(i, j)∈P1

xij, Det(−H1)−1 = Det(−H1,x)−1
( �

� − 1

)2q ∏
i∈[q]

αi

∏
j∈[q]

β j .

(180)
We are now ready to evaluate these matrices at a global maximum (α∗,β∗, x∗) of ϒ1.

Henceforth, we will not explicitly use asterisks in the notation with the understanding
that the values of all the variables are fixed to their optimal values.

We will apply Lemma B.7 to the matrices H f
1,x, H f

1 using the matrices

T1,x = αD ⊕ βD, T1 = I2 ⊕ 02q×2q, (181)

respectively (in (181), 02q×2q denotes the 2q×2q matrix with all zeros). We first compute
the determinants of M1,x := εT1,x − A1,x(H1,x)−1Aᵀ

1,x, M1 := εT1 − A1(H1)−1Aᵀ
1 , which

contribute the most interesting factors in Lemma B.7.
We begin with the simplest of these matrices, M1,x. Note that A1,x has rank 2q − 1,

so by Lemma B.7 we want to compute [ε] Det(M1,x). Using (178), (180), and (181), we
obtain that M1,x has the following form

M1,x =
[

αD(εIq + Iq) Sx

Sᵀ
x βD(εIq + Iq)

]
,

so Det(M1,x) =
⎛
⎝∏

i∈[q]

αi

∏
j∈[q]

β j

⎞
⎠Det(εI2q + I2q + J), (182)

where J is the matrix in Lemma A.4. Note that in Eq. (182), to get the second equality,
we did the following operations on M1,x: for i = 1, . . . , q, we divided the ith row of by√

αi, the ith column by
√

αi, the (i + q)-th row by
√

βi, the (i + q)-th column by
√

βi. The
eigenvalues of the matrix εI2q + I2q + J are shifts of the eigenvalues of J and are given
by

ε, ε + 2, ε + 1 ± λ1, . . . , ε + 1 ± λq−1,

cf., Lemma A.4 for the definition of the λi and their properties. We thus obtain

[ε] Det(M1,x) = 2
∏
i∈[q]

αi

∏
j∈[q]

β j

∏
i∈[q−1]

(
1 − λ2

i

)
. (183)

The determinant of the matrix M1 is more complicated to compute due to its more in-
tricate block structure, which requires using Schur’s complement formula to handle. As
in the previous argument, we first write out its block structure and then appropriately
normalize the resulting matrix. Here, the normalization is slightly more intricate. The
analog of (182) is

Det(M1) = Det(H′
1)

∏
i∈[q]

αi

∏
j∈[q]

β j, (184)
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where

H′
1 := �

� − 1

[
(ε �−1

�
− 1)I2 V

Vᵀ −�−1
�

W

]
, W := 1

� − 1
I2q − J, Vᵀ :=

[ √
α 0q

0q
√

β

]
.

(185)
(J is the matrix in Lemma A.4; note also that V has dimension 2 × 2q and its two
rows are given by

√
α1, . . . ,

√
αq, 0, . . . , 0 and 0, . . . , 0,

√
β1, . . . ,

√
βq where each row has

q zeros.) Equation (184) is obtained by performing the following operations on M1: for
i, j = 1, . . . , q, divide the 2 + i row by

√
αi and the 2 + q + j row by

√
β j ; and the same

operations on columns.
In light of (184), it suffices to compute Det(H′

1). To do this, we proceed by taking the
Schur complement of the matrix W. The spectrum of W is

t ± 1, t ± λ1, . . . , t ± λq−1,

where t = 1/(� − 1). It follows that

Det(W) = −�(� − 2)
(� − 1)2q

∏
i∈[q−1]

(
1 − (� − 1)2λ2

i

)
, (186)

where λi, i ∈ [q − 1] are as in Lemma A.4. Note that W is invertible, since the λi ’s are
nonnegative and max λi < 1

�−1 . By taking the Schur complement of the matrix W in
H′

1, we obtain

Det(H′
1) =

(
�

� − 1

)2

Det(W) Det
(

ε
� − 1

�
I2 + Z

)
, where Z = −I2 + �

� − 1
VW−1Vᵀ.

(187)
We are left with the evaluation of Det(ε �−1

�
I2 + Z). The complication here is the

nontrivial inverse of W appearing in the formulation of Z. The key idea to circumvent
the computation of W−1 is the following equality

VW =
(

1
� − 1

I2 − J′
)

V, where J′ =
[

0 1
1 0

]
.

The equality can be checked using the relations
∑

j xij = αi and
∑

i xij = β j . Using that
VVᵀ = I2, we obtain

Z = −I2 + �

� − 1

(
1

� − 1
I2 − J′

)−1

VVᵀ = −� − 1
� − 2

[
1 1
1 1

]
, (188)

We thus obtain

[ε]Det
(

ε
� − 1

�
I2 + Z

)
= −2(� − 1)2

�(� − 2)
. (189)

Plugging (186) and (189) in (187), we obtain

[ε]Det(H′
1) = 2�2

(� − 1)2q

∏
i∈[q−1]

(
1 − (� − 1)2λ2

i

)
.

Using this and (184), we obtain

[ε]Det
(
εT1 − A1(H1)−1Aᵀ

1

) = 2�2

(� − 1)2q

∏
i∈[q]

αi

∏
j∈[q]

β j

∏
i∈[q−1]

(
1 − (� − 1)2λ2

i

)
. (190)
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Equations (180), (183), and (190) deal with the factors in Lemma B.7 which are tied
to the Hessians of the functions. While these contribute the most interesting factors,
some care is needed to deal with the remaining factors. This is accomplished in the
following lemma, which is given in the end of this section.

LEMMA B.8. Let ((A1,x) f , (A1,x) f s), ((A1) f , (A1) f s) specify arbitrary full dimensional
representations of the spaces A1,xx = 0, A1 [α,β, x]ᵀ = 0, respectively. Then,

Det((A1,x) f s)2 = Det((A1) f s)2 = 1, (191)
L((A1,x) f , A1,x, T1,x) = 1/2, L((A1) f , A1, T1) = 1/2, (192)

where T1,x, T1 are given by (181) and the quantities in (192) are defined in Lemma B.7.

We are now ready to finish the proof of Lemma A.9.

PROOF OF LEMMA A.9. Apply Lemma B.7 two times to unravel the determinants ap-
pearing in Lemma B.3. Each of the resulting quantities has been computed and appears
in one of (180), (183), or (190) or Lemma B.8. Straightforward substitutions yield

Det
(−H f

1,x

) =
⎛
⎝ ∏

(i, j)∈P1

xij

⎞
⎠

−1 ∏
i∈[q]

αi

∏
j∈[q]

β j

∏
i∈[q−1]

(1 − λi)2,

Det
(−H f

1

) = 1
�2(q−1)

⎛
⎝ ∏

(i, j)∈P1

xij

⎞
⎠

−1 ∏
i∈[q−1]

(
1 − (� − 1)2λ2

i

)
.

Thus, Lemma B.3 gives

lim
n→∞

EG
[
Zp

G

]
enϒ1(α∗,β∗,x∗)

=
q−1∏
i=1

(
1 − (� − 1)2λ2

i

)−1/2
q−1∏
i=1

(
1 − λ2

i

)−(�−1)/2
. (193)

Note that in the last expression, only the eigenvalues of the matrix J (different from
1) in Lemma A.4 appear. For the asymptotics of EG[(Zp

G)2], by Lemma B.2, it suffices
to consider the spin system with interaction matrix B ⊗ B (and dominant phase γ =
α∗ ⊗ α∗, δ∗ = β∗ ⊗ β∗, y = x∗ ⊗ x∗). The eigenvalues (different from 1) of the matrix
J ⊗ J are λi for i ∈ [q − 1] and λiλ j for i, j ∈ [q − 1]. Thus, we obtain

lim
n→∞

EG
[(

Zp
G

)2]
enϒ2(γ ∗,δ∗,y∗)

= C ·
q−1∏
i=1

(
1 − (� − 1)2λ2

i

)−1/2
q−1∏
i=1

(
1 − λ2

i

)−(�−1)/2
, (194)

where C is the constant in the statement of the lemma. Since α∗,β∗ is a dominant
phase, Theorem 1.4 implies �2(α∗,β∗) = 2�1(α∗,β∗) (recall that �1, �2 are given by (8)
and (9), respectively), so we obtain that

ϒ2(γ ∗, δ∗, y∗) = �2(α∗,β∗) = 2�1(α∗,β∗) = 2ϒ1(α∗,β∗, x∗).

Thus, combining (193) and (194) with Lemma B.1 yields the result.

Finally, we give the proof of Lemma B.8.

PROOF OF LEMMA B.8. We first prove (191). Since A1,x is the incidence matrix of the
bipartite graph Gx, it is a totally unimodular matrix. By the way full dimensional
representations are chosen, the matrix (A1,x) f s is invertible and hence its determinant
squared equals 1. For (A1) f s, observe that (A1) f s has the following block decomposition
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(for some appropriate matrix M which we do not need to specify explicitly):

(A1) f s =
[

(A1,αβ) f s 0
M (A1,x) f s

]
, so that Det((A1) f s) = Det((A1,αβ) f s) Det((A1,x) f s).

Since A1,αβ , A1,x are totally unimodular, any invertible submatrix of them has deter-
minant ±1. This concludes the proof of (191).

We next turn to (192). We begin with L((A1,x) f , A1,x, T1,x). The argument is closely
related to the proof of Kirchoff ’s Matrix-Tree Theorem, but is written in a way that it
easily extends to the more complicated L((A1) f , A1, T1).

Denote by μ1, . . . , μ2q−1 the nonzero eigenvalues of A1,xAᵀ
1,x; there are exactly 2q − 1

of those since Gx is a connected bipartite graph. Moreover, vᵀ
0 = 1√

2q
[−1q 1q] is the

unit eigenvector of A1,xAᵀ
1,x with eigenvalue 0. We claim that

[ε]Det
(
εT1,x − A1,xAᵀ

1,x

) = −
∏

i∈[2q−1] μi

q
, Det

(
(A1,x) f (A1,x)ᵀf

) =
∏

i∈[2q−1] μi

2q
, (195)

which yields that L((A1,x) f , A1,x, T1,x) = 1/2, as wanted. The first equality is a direct
application of Lemma B.5, after observing that vᵀ

0T1,xv0 = 1/q. The second can be
proved as follows. The matrix (A1,x) f (A1,x)ᵀf is a principal minor of A1,xAᵀ

1,x, the specific
principal minor is clearly determined by which row of A1 we chose to delete to obtain
(A1) f . Since A1,xAᵀ

1,x has exactly one zero eigenvalue, we have∏
i∈[2q−1]

μi =
∑

W∈( [2q]
2q−1)

Det
(
(A1,x)W (A1,x)ᵀW

)
, (196)

where (A1,x)W is the submatrix of A1,x induced by the rows indexed with W . It is easily
checked that for any W, W ′ ∈ ( [2q]

2q−1 ), there exists a unitary matrix P such that (A1,x)W =
P(A1,x)W ′ , so that all summands in (196) are equal. Indeed, since A1,x corresponds to
the incidence matrix of a bipartite graph, the sum of the first q rows (as vectors) equals
the sum of the last q rows. It follows that any row of A1,x can be expressed as a {1,−1}
linear combination of the remaining rows, which easily yields the existence of P with
the desired properties. Hence, for any (A1,x) f as in the statement of the lemma, the
second equality in (195) holds as well.

We finally give a proof sketch for L((A1) f , A1, T1) = 1/2. The matrix A1Aᵀ
1 has

zero as an eigenvalue by multiplicity one. Denote by σ1, . . . , σ2q+1 the nonzero eigen-
values of A1Aᵀ

1 . By looking at the space zA1 = 0, it is easy to see that v1 =
1√

2(q+1)
[−1, 1,−1q, 1q]ᵀ is the unit length eigenvector for the eigenvalue 0. Moreover,

the analog of (196) is ∏
i∈[2q+1]

σi =
∑

W∈([2q+2]
2q+1 )

Det
(
(A1)W (A1)ᵀW

)
. (197)

Hence, the equality L((A1) f , A1, T1) = 1/2 is obtained by the following analog of (195)

[ε]Det
(
εT1 − A1Aᵀ

1

) = −
∏

i∈[2q+1] σi

q + 1
, Det

(
(A1) f (A1)ᵀf

) =
∏

i∈[2q+2] σi

2(q + 1)
.

C. UNIQUENESS OF SEMITRANSLATION INVARIANT MEASURES
(ANTIFERROMAGNETIC POTTS)

In this section, we prove Lemma 7.3. As noted earlier, the proof extends the respective
argument in Brightwell and Winkler [2002] for colorings in the antiferromagnetic Potts
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model setting. The technical details, due to the presence of the extra parameter B, are
relatively more intricate.

PROOF OF LEMMA 7.3. Without loss of generality, we may assume that the scaling
factors in (107) are equal to 1. We may also assume that R1 ≥ · · · ≥ Rq. Since B < 1,
(107) implies C1 ≤ · · · ≤ Cq. Define

α = R1

Rq
, β = R1 + · · · + Rq−1

(q − 1)Rq
, S = R1 + · · · + Rq−1.

We clearly have α ≥ β ≥ 1, and we may assume for the sake of contradiction that β > 1.
Note that

α1/d =
(

R1

Rq

)1/d

= 1 + (1 − B)(Cq − C1)
C1 + · · · + Cq−1 + BCq

Cq = (R1 + · · · + Rq−1 + BRq)d = [(q − 1)β + B]dRd
q

C1 = (BR1 + R2 + · · · + Rq)d = [(q − 1)β + 1 − (1 − B)α]dRd
q .

Moreover, by Hölder’s inequality, we have

C1 + · · · + Cq−1 + BCq =
q−1∑
i=1

[S + Rq − (1 − B)Ri]d + B(S + BRq)d

≥ (q − 1)
[

q − 2 + B
q − 1

S + Rq

]d

+ B(S + BRq)d

= (q − 1)
[
(q − 2 + B)β + 1

]dRd
q + B[(q − 1)β + B]dRd

q .

Thus, we obtain that every solution must satisfy

α1/d ≤ 1 + (1 − B)
{
[(q − 1)β + B]d − [1 − (1 − B)α + (q − 1)β]d

}
(q − 1)[(q − 2 + B)β + 1]d + B[(q − 1)β + B]d ⇐⇒

0 ≤ 1 − α1/d +
(1 − B)

[
1 −

(
1 − (1−B)(α−1)

(q−1)β+B

)d
]

(q − 1)
[
1 − (1−B)(β−1)

(q−1)β+B

]d
+ B

=: f (α, β, B).

To obtain a contradiction, our goal is to prove that for q and B as in the statement of
the lemma, when (q − 1)β > α ≥ β > 1, it holds that f (α, β, B) < 0.

It is easy to see that f is decreasing in B. This immediately yields the lemma for
q ≥ �: it holds that f (α, β, B) ≤ f (α, β, 0) < 0, since the last inequality was proved by
Brightwell and Winkler [2002]. For q ≤ d and B ≥ d+1−q

d+1 := Bc, this yields

f (α, β, B) ≤ f (α, β, Bc) =: g(α, β).

We first prove that g(α, β) ≤ g(β, β). For q = 2, there is nothing to prove. Hence, we
may assume that d ≥ q ≥ 3. Clearly, it suffices to prove that g is decreasing in α. This
requires a fair bit of work, so we state it as a lemma to prove later.

LEMMA C.1. For d ≥ q ≥ 3 and Bc = d+1−q
d+1 , the function g(α, β) is decreasing in α for

α ≥ β > 1.
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We finish the proof by showing that for β ≥ 1, it holds that g(β, β) ≤ 0 with equality
iff β = 1. After massaging the inequality, this reduces to

1 ≤
[
1 − (1 − Bc)(β − 1)

(q − 1)β + Bc

]d [
(q − 1)

(
β1/d − 1

) + 1 − Bc
] + Bcβ

1/d =: h(β).

Note that the inequality holds at equality for β = 1, so it suffices to prove h′(β) > 0
for β > 1, which is the assertion of the next lemma.

LEMMA C.2. For d ≥ q ≥ 3 and Bc = d+1−q
d+1 , the function h(β) is increasing for β ≥ 1.

Modulo the proofs of Lemmas C.1 and C.2, which are given here, the proof is
complete.

PROOF OF LEMMA C.1. We compute

∂g
∂α

= −1
d

α−(d−1)/d + (1 − Bc)2

(q − 1)β + Bc
·

d
[
1 − (1−Bc)(α−1)

(q−1)β+Bc

]d−1

(q − 1)
[
1 − (1−Bc)(β−1)

(q−1)β+Bc

]d
+ Bc

.

Let F(x) = x[1− (1−Bc)(x−1)
(q−1)β+Bc

]d for x ∈ [β, (q−1)β]. We then have that ∂g
∂α

< 0 is equivalent
to

d2(1 − Bc)2 F(α)(d−1)/d ≤ [(q − 1)β + Bc]
[
(q − 1)

(
1 − (1 − Bc)(β − 1)

(q − 1)β + Bc

)d

+ Bc

]
. (198)

We first prove that F(x) is decreasing in [β, (q − 1)β]. We calculate

F ′(x) =
[
1 − (1 − Bc)(x − 1)

(q − 1)β + Bc

]d−1 (q − 1)β + 1 − (d + 1)(1 − Bc)x
(q − 1)β + Bc

.

For x ∈ [β, (q − 1)β], we have (d + 1)(1 − Bc)x = qx = (q − 1)x + x > (q − 1)β + 1, where
in the last inequality we used that β > 1. It follows that F(x) is indeed decreasing and
thus F(α) ≤ F(β).

To prove (198), it thus suffices to argue that for β > 1 it holds

d2(1 − Bc)2 F(β)(d−1)/d ≤ [(q − 1)β + Bc]
[
(q − 1)

(
1 − (1 − Bc)(β − 1)

(q − 1)β + Bc

)d

+ Bc

]
. (199)

Note that q−1+ Bc = d(1− Bc) so that the inequality is tight for β = 1. By the weighted
AM-GM inequality on Ad and 1 with weights (q − 1) and Bc respectively, we obtain

(q − 1)Ad + Bc ≥ (q − 1 + Bc)Ad(q−1)/(q−1+Bc) = d(1 − Bc)A(q−1)(d+1)/q.

We use this for A = 1 − (1−Bc)(β−1)
(q−1)β+Bc

so that, after simplifications, it suffices to show that

d(1 − Bc)β(d−1)/d ≤ [(q − 1)β + Bc]
[
1 − (1 − Bc)(β − 1)

(q − 1)β + Bc

]−(d+1−2q)/q

.

This can further be massaged into

G(β) := β(d−1)/d[(q − 1)β + Bc]−(d+1−q)/q[(q − 2 + Bc)β + 1](d+1−2q)/q ≤ 1
d(1 − Bc)

.

Once again, note that the inequality holds at equality for β = 1, so it suffices to prove
that G′(β) < 0 for β > 1. This has nothing special, apart from tedious, but otherwise
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straightforward, calculations. We include the details briefly. Differentiating ln G(β), we
obtain

G′(β)
G(β)

= (d − 1)
dβ

− (d + 1 − q)(q − 1)
q[(q − 1)β + Bc]

+ (d + 1 − 2q)(q − 2 + Bc)
q[(q − 2 + Bc)β + 1]

.

By clearing denominators, it suffices to check that the following second-order polyno-
mial p(β) is negative whenever β > 1:

p(β) := (d − 1)q((q − 1)β + Bc)((q − 2 + Bc)β + 1)
− d(d + 1 − q)(q − 1)β((q − 2 + Bc)β + 1)
+ d(d + 1 − 2q)(q − 2 + Bc)β((q − 1)β + Bc).

Using again that q − 1 + Bc = d(1 − Bc), we obtain

p(1) = (d − 1)q(q − 1 + Bc)2 − d(d + 1 − q)(q − 1)(q − 1 + Bc)
+ d(d + 1 − 2q)(q − 2 + Bc)(q − 1 + Bc)

= d(q − 1 + Bc)[(d − 1)q(1 − Bc) − (d + 1 − q)(q − 1) + (d + 1 − 2q)(d(1 − Bc) − 1)]
= d(q − 1 + Bc)[(d + 1)(d − q)(1 − Bc) − (d − q)q]
= 0.

The factorization of p(β) (using the value of Bc) is given by

p(β) = −q(β − 1)[β(d(q − 1)2 − (q − 1)) + d(d − q) + q − 1]
d + 1

,

which is obviously negative for β > 1, whenever d ≥ q ≥ 3.

PROOF OF LEMMA C.2. We compute

h′(β) = 1
d

β−(d−1)/d
[
(q − 1)

(
1 − (1 − Bc)(β − 1)

(q − 1)β + Bc

)d

+ Bc

]

− d
[
1 − (1 − Bc)(β − 1)

(q − 1)β + Bc

]d−1 (1 − Bc)(q − 1 + Bc)[(q − 1)β1/d − (q − 2 + Bc)]
[(q − 1)β + Bc]2 .

Thus, to prove h′(β) > 0, it suffices to check (using q − 1 + Bc = d(1 − Bc) and the
function F defined in Lemma C.1).

d3(1 − Bc)2 F(β)(d−1)/d

≤ [(q − 1)β + Bc]2

(q − 1)β1/d − (q − 2 + Bc)

[
(q − 1)

(
1 − (1 − Bc)(β − 1)

(q − 1)β + Bc

)d

+ Bc

]
.

This is similar to (199) and in fact follows from (199), once we prove that

(q − 1)β1/d − (q − 2 + Bc)
(q − 1)β + Bc

≤ 1
d

.

To see the last inequality, observe that β+d−1 ≥ dβ1/d as a consequence of the AM-GM
inequality. Hence,

(q − 1)β1/d − (q − 2 + Bc)
(q − 1)β + Bc

≤ (q − 1)β + (d − 1)(q − 1) − d(q − 2 + Bc)
d[(q − 1)β + Bc]

= 1
d

,

completing the proof.
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D. REMAINING PROOFS

D.1. Proof of Lemma B.1

In this section, we give the proof of Lemma B.1 which was used to derive the asymptotics
of the ratio of the second moment to the square of the first moment for the distribution
Gr

n by the asymptotics of the corresponding ratio for the distribution Gn.
We first recall some relevant definitions. Recall that a dominant phase p = (α,β) cor-

responds to a fixpoint (R1, . . . , Rq, C1, . . . , Cq) of the tree recursions (22). In particular,
from Theorem 4.1, we have that

αi = R�/(�−1)
i∑

i R�/(�−1)
i

and β j = C�/(�−1)
j∑

j C�/(�−1)
j

, (23)

where the Ri ’s and Cj ’s satisfy

Ri = u

⎛
⎝ q∑

j=1

BijC j

⎞
⎠

�−1

and C j = v

( q∑
i=1

Bij Rj

)�−1

(22)

for some scaling factors u, v > 0. As we have mentioned before (and can readily be
checked), the precise values of the scaling factors u, v in (22) do not matter for the
correspondence (23) since scaling all the Ri ’s or all the Cj ’s by a positive factor leaves
invariant the values of αi ’s and β j ’s in (23). For the purposes of this section however
it will be easier to have a handle on the scaling factors, which is the reason u, v are
explicitly included in (22).

For the purposes of this section, we will assume that the Ri ’s and Cj ’s in (22) further
satisfy ∑

i

Ri =
∑

j

C j = 1, (200)

this can be achieved by scaling the Ri ’s and Cj ’s appropriately. In particular, if we set
R̂i = Ri/(

∑
i Ri) and Ĉ j = C j/(

∑
j C j), we obtain that the R̂i ’s and Ĉ j ’s also satisfy the

tree recursions (22) (possibly with different values for the scaling factors u, v).
Recall from Section 6.4 that for a configuration η : W → [q], the product measure

ν⊗
p (η) was defined as

ν⊗
p (η) =

∏
i∈[q]

(Ri)|η
−1(i)∩W+| ∏

j∈[q]

(Cj)|η
−1( j)∩W−|. (96)

The main lemma to prove Lemma B.1 will be the following.

LEMMA D.1. Let p = (α,β) ∈ Q be a Hessian dominant phase. For every fixed r > 0,
for every η : W → [q], it holds that

lim
n→∞

EGr
n

[
Zp

G(η)
]

EGn

[
Zp

G

] = Crν⊗
p (η), (201)

where the constant C = C(p) is given in terms of the fixpoint of (22) corresponding to
the phase p and equals

C = exp(�(r, c))
(∑

i, j Bij RiC j∑
i, j RiC j

)�−2

, (202)

where in the expression for C, � denotes the function of r = (R1, . . . , Rq) and c =
(C1, . . . , Cq) defined in Section 3.2.



App–26 A. Galanis et al.

We remark here that while (200) is obviously important for the definition of the
measure ν⊗

p (·) (to have a valid probability distribution), it is not important for the
expression (202). More precisely, (analogously to (23)) the particular scaling of the Ri ’s
and Cj ’s in the expression (202) does not matter, as it can readily be checked. From
(202), it is also simple to see that the value of C(p) does not depend on p or η when the
phases p are assumed to be permutation symmetric (this is relevant for Lemma 6.11).

LEMMA D.2. If p = (α,β) is a Hessian dominant phase, it holds that

lim
n→∞

EGr
n

[(
Zp

G(η)
)2]

EGn

[(
Zp

G

)2] = C2r(ν⊗
p (η)

)2
,

where C is the same constant as in (202).

Using Lemmas D.1 and D.2, the proof of Lemma B.1 is immediate.

PROOF OF LEMMA B.1. By Lemma D.1, we have

EGr
n

[
Zp

G(η)
] = (1 + o(1))Crν⊗

p (η)EGn

[
Zp

G

]
, (102)

where C = C(p) is the constant in (202) and ν⊗
p (η) is defined in (96). By Lemma D.2,

we also obtain

EGr
n

[(
Zp

G(η)
)2] = (1 + o(1))C2r(ν⊗

p (η)
)2EGn

[(
Zp

G

)2]
, (203)

where C = C(p) is again the constant in (202). Combining (102) and (203) proves the
lemma.

We conclude by giving the proofs of Lemmas D.1 and D.2.

PROOF OF LEMMA D.1. Fix η : W → [q]. Recall that W = W+ ∪ W−, where W+ and
W− are the vertices of degree �− 1 in the + and − parts of a graph G ∼ Gr

n and it holds
that |W+| = |W−| = r. For i ∈ [q], let η±

i = |η−1(i) ∩ W±|.
Recall that, with �1 as in (162) and P1 = {(i, j) | Bij > 0} (see (163)),

EGn

[
Zp

G

] =
∑

α′,β ′∈�1

(
n

α′
1n, . . . , α′

qn

)(
n

β ′
1n, . . . , β ′

qn

)

×

⎛
⎜⎝∑

x′

∏
i

(
α′

in
x′

i1n,...,x′
iqn

)∏
j

( β ′
jn

x′
1 jn,...,x′

qjn

)∏
(i, j)∈P1

B
nx′

i j
i j( n

x′
11n,...,x′

qqn

)
⎞
⎟⎠

�

,

(4)

where the sum ranges over nonnegative α′ = (α′
1, . . . , α

′
q), β = (β ′

1, . . . , β
′
q) and x′ =

(x′
11, . . . , x′

qq) satisfying x′
i j = 0 whenever (i, j) ∈ P1 and the following constraints:

∑
i α′

i = 1,
∑

j β ′
j = 1,∑

j x′
i j = α′

i (∀i ∈ [q]),
∑

i x′
i j = β ′

j (∀ j ∈ [q]).
(5)
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Analogously, we have the following expression for EGr
n
[Zp

G(η)]:

EGr
n
[Zp

G(η)] =
∑

α′,β ′∈�1

(
n

α′
1n, . . . , α′

qn

)(
n

β ′
1n, . . . , β ′

qn

)

×

⎛
⎜⎝∑

x′′

∏
i

(
α′

in+η+
i

x′′
i1n,...,x′′

iqn

)( β ′
jn+η−

j

x′′
1 jn,...,x′′

qjn

)∏
(i, j)∈P1

B
nx′′

i j
i j( n+r

x′′
11n,...,x′′

qqn

)
⎞
⎟⎠

�−1

×

⎛
⎜⎝∑

x′

∏
i

(
α′

in
x′

i1n,...,x′
iqn

)∏
j

( β ′
jn

x′
1 jn,...,x′

qjn

)∏
(i, j)∈P1

B
nx′

i j
i j( n

x′
11n,...,x′

qqn

)
⎞
⎟⎠ ,

(204)

where the summation ranges over non-negative α′,β ′, x′, x′′ satisfying x′
i j = x′′

i j = 0
whenever (i, j) ∈ P1 and, in addition to (5), the following equalities:∑

j x′′
i j = α′

i + η+
i /n (∀i ∈ [q]),

∑
i x′′

i j = β ′
j + η−

j /n (∀ j ∈ [q]). (205)

Let x = arg maxx′ ϒ1(α,β, x′) where ϒ1 is given in (8), that is, x captures the terms in
(4) whose contribution determines the order of 1

n log EG[Zα′,β ′

G ] for (α′,β ′) = (α,β). Recall
from Lemma 4.3 that the vector x is unique and its value is given in Lemma 4.3. Since
p = (α,β) is the unique dominant phase contained in �1, for every constant δ > 0 terms
in (4) with ‖(α′,β ′, x′) − (α,β, x)‖2 ≥ δ have exponentially small contribution and we
will thus ignore them henceforth. Similarly, for every constant δ > 0, terms in (204)
with ‖(α′,β ′, x′, x′′) − (α,β, x, x)‖2 ≥ δ have exponentially small contribution and we
will ignore such terms as well. In particular, we consider δ sufficiently small so that
‖(α′,β ′, x′, x′′) − (α,β, x, x)‖2 < δ implies α′

i > 0, β ′
j > 0 for i, j ∈ [q] and x′

i j > 0, x′′
i j > 0

for (i, j) ∈ P1.
Let ρ = (ρ11, . . . , ρqq) be a (fixed) q2-dimensional vector with integer entries satisfying

∑
j ρi j = η+

i (∀i ∈ [q]),
∑

i ρi j = η−
j (∀ j ∈ [q]), (206)

and ρi j = 0 whenever (i, j) ∈ P1. Note that such a vector exists because of ergodicity of
B. We decompose vectors x′′ in (205) as x′′ = x′ + ρ/n where x′ satisfies (5). Standard
approximations of binomial coefficients (see, e.g., Galanis et al. [2012, Lemma 28]) yield
for i, j ∈ [q]:(

αin+η+
i

xi1n+ρi1,...,xiqn+ρiq

)
(

αin
xi1n,...,xiqn

) ∼ α
η+

i
i∏

j;(i, j)∈P1
xρi j

i j

,

(
β jn+η−

j
x1 jn+ρ1 j ,...,xqjn+ρqj

)
(

β jn
x1 jn,...,xqjn

) ∼ β
η−

j
j∏

i;(i, j)∈P1
xρi j

i j

,

( n+r
x11n+ρ11,...,xqqn+ρqq

)
( n

x11n,...,xqqn

) ∼ 1∏
(i, j)∈P1

xρi j
i j

.

By considering the limit δ ↓ 0, we thus obtain

EGr
n

[
Zp

G(η)
]

EGn

[
Zp

G

] ∼
⎛
⎝∏

i∈[q] α
η+

i
i

∏
j∈[q] β

η−
j

j∏
(i, j)∈P1

(xij/Bij)ρi j

⎞
⎠

�−1

=: E.
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It remains to massage the expression for E. From the correspondence given in (23) and
the fact that the Ri ’s and Cj ’s satisfy (22), we obtain that for all i, j ∈ [q], it holds that

αi = Ri
(∑

j BijC j
)

∑
i, j Bij RiC j

, β j = Cj
(∑

i Bij Ri
)

∑
i, j Bij RiC j

, xij = Bij RiC j∑
i, j Bij RiC j

.

Plugging these into the expression for E and using (22) and (206), we obtain that

E =
∏
i∈[q]

⎛
⎝∑

j

BijC j

⎞
⎠

(�−1)η+
i ∏

j∈[q]

(∑
i

Bij Ri

)η−
j

= 1
(uv)r

∏
i∈[q]

Rη+
i

i

∏
j∈[q]

C
η−

j
j

= 1
(uv)r ν⊗

p (η),

where, in the last equality, we used the definition (96) of ν⊗
p (η). This yields the statement

of the lemma with C = 1/(uv). To massage the latter into (202), observe that

1
uv

=
(∑

i, j Bij RiC j
)2(�−1)

(∑
i R�/�−1

i

)�−1(∑
j C�/�−1

j

)�−1

=
(∑

i, j Bij RiC j
)2(�−1)

(∑
i R�/�−1

i

)�−1(∑
j C�/�−1

j

)�−1(∑
i Ri

)�−2(∑
j C j

)�−2
,

(207)

where the first equality is a consequence of the tree recursions (22), while the sec-
ond equality follows from our assumption that the Ri ’s and C j ’s satisfy (200). The
last expression is equal to the right-hand side in (202) which concludes the proof of
Lemma D.1.

PROOF OF LEMMA D.2. Recall from the first part of Lemma B.2 that if p = (α,β) ∈ Q
is a dominant phase for the spin system with interaction matrix B, then p′ = (α ⊗
α,β ⊗ β) is a dominant phase for the spin system with interaction matrix B ⊗ B. The
corresponding fixpoint of the tree recursions for B ⊗ B is given by Rik’s and Cjl ’s which
satisfy for all i, j, k, l ∈ [q],

Rik ∝ Ri Rj, C jl ∝ CjCl. (208)

Note that (208) follows from Lemma 3.2 and Theorem 4.1.
Using a completely analogous argument to the one used in the proof of the sec-

ond part of Lemma B.2 (only slightly more care is needed in writing the range of
γ , δ, y, analogously to (205)), we obtain the following. For G ∼ Gr

n and η : W → [q],
let Zp′

G (η⊗2) be the contribution to the partition function of G for the spin system
with interaction matrix B ⊗ B from configurations σ with Y (σ ) = p′ and σW = η⊗2,
where the configuration η⊗2 is given by η⊗2(v) = (η(v), η(v)) for v ∈ W . Then,

limn→∞
EGr

n[(Zp
G(η))2]

EGr
n[Zp′

G (η⊗2)]
= 1.

Using Lemma D.1 for the spin system with interaction matrix B ⊗ B and dominant
phase p′ = (α ⊗ α,β ⊗ β), we obtain that

lim
n→∞

EGr
n
[Zp′

G (η⊗2)]

EGn[Z
p′
G ]

= C(p′)ν⊗
p′ (η⊗2) = (C(p))2(ν⊗

p (η)
)2

,
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where the latter equality is a consequence of (208) and the value (202) of the
constant C(p). Finally, it remains to note that, from Lemma B.2, it holds that
limn→∞

EGn[(Zp
G)2]

EGn[Zp′
G ]

= 1.

Combining these asymptotic statements yields the statement of the lemma.

D.2. Proof of Lemma A.6

In Section A.3, we gave the proof of Lemma A.6 for the graph distribution Gn and the
random variables Z α,β

G . In this section, we extend this argument to the graph distri-
bution Gr

n and the random variables Zp
G (see Section 6.4 for the relevant definitions)

for some fixed r > 0. The argument is essentially the same as the one given in Sec-
tion A.3, modulo some technical details in the calculations, analogous to those given in
the proof of Lemma D.1. For completeness, we give these details. All probabilities and
expectations in the following argument will refer to the graph distribution Gr

n.
In the setting of Lemma A.6, we want to show

E
[
Zp

G(η)X�

]
E
[
Zp

G(η)
] → μ�(1 + δ�) as n → ∞, (209)

where X� denotes the number of cycles of length � in Gr
n and μ�, δ� are given in Lem-

mas A.5 and A.6, respectively (recall that � is fixed with respect to n and that we are
only interested in even integers � since a graph G ∼ Gr

n is bipartite).
We follow the argument given in Section A.3 as closely as possible. We again decom-

pose X� as

X� = 1
2�

∑
ξ

∑
ζ

1ξ,ζ , (157)

where recall that, roughly, ξ specifies which of the � matchings (used to sample G ∼ Gr
n)

the edges of an �-cycle belong to as well as the spin assignment of the vertices on the
cycle, while ζ specifies the vertices in U ∪ W that an �-cycle traverses, in order.

More precisely, ξ denotes a proper �-edge colored, rooted and oriented �-cycle (r(�, �)
possibilities, see Lemma A.5), whose vertices are colored with {Y1, . . . , Yq, G1, . . . , Gq}
and edges are colored with {1, . . . ,�}, see Section A.3 for details on the vertex coloring
of the vertices in the cycle. Recall that yi is the number of vertices colored with Yi and
gj is the number of vertices colored with Gj . Recall also that for k ∈ [�] and i, j ∈ [q],
aij(k) denotes the number of edges whose color is k and their endpoints are assigned
colors Yi, Gj . With aij := ∑�

k=1 aij(k), we have the following:∑
j aij = 2yi,

∑
i aij = 2gj,

∑
i, j aij = 2�. (159)

Given such a ξ , for a specification ζ denote by u+
i the number of vertices in the cycle

with color Yi that belong to U+ and define analogously u−
j for U−. Note we have that

u+
i ≤ yi and u−

j ≤ gj , so (159) implies that∑
i

u+
i +

∑
j

u−
j ≤ � with equality iff u+

i = yi and u−
j = gj for all i, j ∈ [q]. (210)

We will show that for such ξ and ζ , it holds that

E
[
Zp

G(η) | 1ξ,ζ

]
E
[
Zp

G(η)
] ∼

∏
i

α
u+

i
i

∏
j

β
u−

j
j

∏
(i, j)∈P1

xaij
i j∏

i α

∑
j aij

i
∏

j β
∑

i aij

j

. (211)
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Let us assume (211) for the moment and conclude the proof of (209). Set p1 := Pr[1ξ,ζ =
1] and note that p1 ∼ n−�. We have that

E
[
Zp

G(η)X�

]
E
[
Zp

G(η)
] = 1

2�

∑
ξ

∑
ζ

p1 · E
[
Zp

G(η) | 1ξ,ζ = 1
]

E
[
Zp

G(η)
] . (212)

Now for a given ξ , we may ignore those ζ such that
∑

i u+
i +∑

j u−
j < �, since the number

of those ζ is o(n�) and hence, using (211), their contribution in (212) is o(1). From (210),
we only need to consider ζ such that u+

i = yi and u−
j = gj for all i, j ∈ [q]. (We note here

that this part of the argument displays that we could have chosen X� to be the number
of cycles whose vertices consist solely of vertices in U+ ∪ U− as done in Sly [2010].)
The number of such ζ is asymptotically n�. Plugging u+

i = yi and u−
j = gj in (211), we

obtain, using also (159), that

E
[
Zp

G(η) | 1ξ,ζ

]
E
[
Zp

G(η)
] ∼

∏
i, j

(
xi, j√
αiβ j

)aij

. (213)

Combining this, we obtain

EGr
n

[
Zp

G(η)X�

]
EGr

n

[
Zp

G(η)
] ∼ r(�, �)

2�
·
∑

a

Na

∏
i, j

(
xij√
αiβ j

)aij

, (214)

where a = {a11, . . . , aqq} and Na is the number of possible ξ with aij edges having
assignment (Yi, Gj). Note that the right-hand side in (214) is the same as the right-
hand side in (160), and hence the rest of the argument in Section A.3 carries over
verbatim, yielding (209).

It remains to prove (211). We have already derived an expression for E[Zp
G(η)] in

(204), so we focus on computing E[Zp
G(η) | 1ξ,ζ = 1]. Set u± := ∑

i∈[q] u±
i and recall that

for i ∈ [q], η±
i = |η−1(i) ∩ W±|. We have

E
[
Zp

G(η)
∣∣1ξ,ζ

] =
∑
α′,β ′

(
n − u+

α′
1n − u+

1 , . . . , α′
qn − u+

q

)(
n − u−

β ′
1n − u−

1 , . . . , β ′
qn − u−

q

)

×
�−1∏
k=1

⎛
⎜⎝∑

x′′

∏
i

( α′
in+η+

i −∑
j aij (k)

x′′
i1n−ai1(k),...,x′′

iqn−aiq(k)

)∏
j

( β ′
jn+η−

j −∑
i aij (k)

x′′
1 jn−a1 j (k),...,x′′

qjn−aqj (k)

)∏
(i, j)∈P1

B
nx′′

i j
i j( n+r−∑

i, j aij (k)
x′′

11n−a11(k),...,x′′
qqn−aqq(k)

)
⎞
⎟⎠

×

⎛
⎜⎝∑

x′

∏
i

( α′
in−∑

j aij (�)
x′

i1n−ai1(�),...,x′
iqn−aiq(�)

)∏
j

( β ′
jn−∑

i aij (�)
x′

1 jn−a1 j (�),...,x′
qjn−aqj (�)

)∏
(i, j)∈P1

B
nx′

i j
i j( n−∑

i, j aij (�)
x′

11n−a11(�),...,x′
qqn−aqq(�)

)
⎞
⎟⎠ ,

where α′,β ′, x′, x′′ range over the same values as in (204). Using asymptotic estimates
for ratios of binomial coefficients (similar to those used in the proof of Lemma D.1), we
obtain

EGr
n

[
Zp

G(η)X�

]
EGr

n

[
Zp

G(η)
] ∼ A

�∏
k=1

Mk, (215)
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where A := ∏
i α

u+
i

i
∏

j β
u−

j
j and Mk :=

∏
(i, j)∈P1

x
aij (k)
i j∏

i α

∑
j ai j (k)

i
∏

j β

∑
i aij (k)

j

. Note that

�∏
k=1

Mk =
∏

(i, j)∈P1
xaij

i j∏
i α

∑
j aij

i
∏

j β
∑

i aij

j

,

which gives (211), as desired.
This completes the proof of Lemma A.6.

D.3. Remaining Proof of Lemma 7.23

In this section, we show that the function

h(r2) := rd+1
2 −

(
rd+1

2 − dr2 + (d − 1)
)d+1(

rd+1
2 − (d + 1)r2 + d

)d

is strictly increasing for r2 > 1 and d ≥ 2. This monotonicity was used in the proof of
Lemma 7.23.

We have

h′(r2) = (d + 1)

(
rd

2 −
(
rd+1

2 − dr2 + (d − 1)
)d(r2d+1

2 − (2d + 1)rd+1
2 + 2drd

2 + dr2 − d
)

(
rd+1

2 − (d + 1)r2 + d
)d+1

)
.

Thus, to show h′(r2) > 0 for r2 > 1, it suffices to show that w(r2) < 1, where

w(r2) :=
(
rd+1

2 − dr2 + (d − 1)
)d(r2d+1

2 − (2d + 1)rd+1
2 + 2drd

2 + dr2 − d
)

rd
2

(
rd+1

2 − (d + 1)r2 + d
)d+1 .

By differentiating ln w(r2), we have

w′(r2)
w(r2)

= d p(r2)

r2
(
rd+1

2 − dr2 + d − 1
)(

rd+1
2 − (d + 1)r2 + d

)(
r2d+1

2 − (2d + 1)rd+1
2 + 2drd

2 + dr2 − d
) ,

where

p(r2) := (d − 1)d2 − (d − 1)(3d2 + 2d + 1)r2 + d(3d2 + d − 1)r2
2 − d2(d + 1)r3

2

+ (d − 2)(2d + 1)rd+1
2 − 2d(2d − 1)rd+2

2 + d(2d + 1)rd+3
2

+ (d + 1)2r2d+1
2 − d(2d + 1)r2d+2

2 + d(d − 1)r2d+3
2 .

We will show that p(r2) > 0 for r2 > 1, which yields that w is strictly increasing in the
interval (1,+∞) and thus w(r2) < w(+∞) = 1 for all r2 > 1.

We have that p(1) = p′(1) = p′′(1) = p′′′(1) = 0, so r2 = 1 is a root of p(r2) by
multiplicity 4. Thus, if there exists r2 > 1 such that p(r2) ≤ 0, by four applications of
the Mean Value Theorem, there must exist r2 > 1 such that p′′′′(r2) ≤ 0. For d = 2, we
have

p′′′′(r2) = 24
(−12 + 95r2 − 150r2

2 + 70r3
2

)
,

which is positive for all r2 > 1. We may thus focus on d ≥ 3.
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Note that p′′′′(r2) = d(d + 1)rd−3
2 p1(r2), where

p1(r2) := (d − 2)2(d − 1)(2d + 1) − 2(d − 1)d(d + 2)(2d − 1)r2 + d(d + 2)(d + 3)(2d + 1)r2
2

+ 2(d + 1)(2d − 2)(2d − 1)(2d + 1)rd
2 − 4d(2d − 1)(2d + 1)2rd+1

2

+ 4(d − 1)d(2d + 1)(2d + 3)rd+2
2 .

It suffices to show that p1(r2) > 0 for r2 > 1. We have that p1(1) = 6d(d − 1) > 0, so if
there exists r2 > 1 such that p1(r2) ≤ 0, by the Mean Value Theorem, there exists r2 > 1
such that p′

1(r2) < 0. By iterating this process four more times, one obtains polynomials
pi(r2) for i = 2, 3, 4, 5 with pi(1) > 0 and the following property. For i = 2, 3, 4, there
exists r2 > 1 with pi(r2) < 0 if there exists r2 > 1 such that p′

i(r2) < 0 if there exists
r2 > 1 such that pi+1(ri) < 0. The polynomials pi are given by

p2(r2) = −(d − 1)(d + 2)(2d − 1) + (d + 2)(d + 3)(2d + 1)r2

+ (d + 1)(2d − 2)(2d − 1)(2d + 1)rd−1
2 − 2(d + 1)(2d − 1)(2d + 1)2rd

2

+ 2(d − 1)(d + 2)(2d + 1)(2d + 3)rd+1
2 ,

p3(r2) = (d + 2)(d + 3) + (d − 1)(d + 1)(2d − 2)(2d − 1)rd−2
2

− 2d(d + 1)(2d − 1)(2d + 1)rd−1
2 + 2(d − 1)(d + 1)(d + 2)(2d + 3)rd

2 ,

p4(r2) = (d − 1)(d − 2)(2d − 1) − d(2d − 1)(2d + 1)r2 + d(d + 2)(2d + 3)r2
2 ,

p5(r2) = −(2d − 1)(2d + 1) + 2(d + 2)(2d + 3)r2.

We have that p5(r2) > p5(1) > 0 for all r2 > 1. It follows that p(r2) > 0 for all r2 > 1,
thus concluding the proof that h is increasing in the interval (1,+∞).


