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A remarkable connection has been established for antiferromagnetic 2-spin systems, including the Ising and
hard-core models, showing that the computational complexity of approximating the partition function for
graphs with maximum degree � undergoes a phase transition that coincides with the statistical physics
uniqueness/nonuniqueness phase transition on the infinite �-regular tree. Despite this clear picture for 2-
spin systems, there is little known for multispin systems. We present the first analog of this in approximability
results for multispin systems.

The main difficulty in previous inapproximability results was analyzing the behavior of the model on
random �-regular bipartite graphs, which served as the gadget in the reduction. To this end, one needs to
understand the moments of the partition function. Our key contribution is connecting: (i) induced matrix
norms, (ii) maxima of the expectation of the partition function, and (iii) attractive fixed points of the associated
tree recursions (belief propagation). The view through matrix norms allows a simple and generic analysis
of the second moment for any spin system on random �-regular bipartite graphs. This yields concentration
results for any spin system in which one can analyze the maxima of the first moment. The connection to
fixed points of the tree recursions enables an analysis of the maxima of the first moment for specific models
of interest.

For k-colorings we prove that for even k, in a tree nonuniqueness region (which corresponds to k < �) there
is no FPRAS, unless NP = RP, to approximate the number of colorings for triangle-free �-regular graphs.
Our proof extends to the antiferromagnetic Potts model, and, in fact, to every antiferromagnetic model under
a mild condition.
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1. INTRODUCTION

1.1. Background

Spin systems are a general framework from statistical physics that captures classi-
cal physics models, including the Ising and Potts models, and models of particular
combinatorial interest, including k-colorings and the hard-core lattice gas model de-
fined on independent sets. We define these combinatorial models more precisely before
presenting the context of our results.

The hard-core lattice gas model is an example of a 2-spin system. For a graph G =
(V, E), configurations of the model are the set � of independent sets of G. The model
is parameterized by an activity λ > 0, and a configuration σ ∈ � is assigned weight
w(σ ) = λ|σ |. The Gibbs distribution is μ(σ ) = w(σ )/Z where the normalizing factor is
known as the partition function and is defined as Z = ∑

σ∈� w(σ ). In the hard-core
model, the spins correspond to occupied/unoccupied. Multispin systems are models
with more than two spins, an example being the k-colorings problem. In the colorings
problem, for a graph G = (V, E), configurations are the set � of assignments of a set
of k colors to vertices so that neighboring vertices receive different colors. The Gibbs
distribution is the uniform distribution over �, and in this case the partition function
Z = |�| is the number of k-colorings in G.

The hard-core model and colorings are examples of antiferromagnetic systems –
neighboring vertices “prefer” to have different spins. In contrast, in ferromagnetic
systems neighboring spins tend to align. We defer the formal definition of antiferro-
magnetic spin systems to Section 1.2.3 (see Definition 1.3), where we also discuss how
our results extend to general spin systems.

The focus of this article is the computational complexity of computing the partition
function. Exact computation of the partition function is typically #P-complete, even for
very restricted classes of graphs [Greenhill 2000]. Hence, our focus is on the existence of
a fully polynomial approximation scheme – either a deterministic FPTAS or randomized
FPRAS – for estimating the partition function. For any spin system, (approximate)
sampling from the Gibbs distribution implies an FPRAS for estimating the partition
function, and hence our hardness results also apply to the associated sampling problem.

The computational complexity of approximating the partition function is now well-
understood for 2-spin systems, such as the Ising and hard-core models. For all fer-
romagnetic 2-spin systems, there is an FPRAS for estimating the partition function
[Goldberg et al. 2003]. The picture is more intricate (and fascinating) for antiferromag-
netic 2-spin systems. We will detail the picture after introducing the statistical physics
notion of a phase transition.

Let T�,� denote the complete �-regular tree of depth � with root r. The question of
interest is whether or not we can fix a configuration on the leaves of T�,� so that the
root is influenced by this boundary configuration in the limit � → ∞. For the example
of colorings, fix a coloring σ� of the leaves (such that there is at least one coloring of the
rest of the tree that is consistent with σ�). Look at a random coloring of the tree T�,�

conditioned on the leaves having coloring σ�. For all sequences (σ�) of fixed leaf colorings,
if in the limit � → ∞, the marginal at the root is uniform over the k colors, then we
say uniqueness holds, and otherwise we say nonuniqueness holds. (The terminology
comes from statistical physics where the focus is on the set of infinite-volume Gibbs
measures, see Georgii [2011].)

For the hard-core model the critical activity is λc(�) = (� − 1)�−1/(� − 2)� [Kelly
1991]. Weitz [2006] presented an FPTAS for estimating the partition function in the
tree uniqueness region (i.e., when λ < λc(�)). On the other side, Sly [2010] (extended
in Sly and Sun [2012] and Galanis et al. [2014, 2012]) proved that, unless NP = RP,
it is NP-hard to obtain an FPRAS for �-regular graphs in the tree non-uniqueness
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region (i.e., when λ > λc(�)). These results were extended to all symmetric 2-spin
antiferromagnetic models by Li et al. [2013] (see also Sinclair et al. [2012]) and Sly and
Sun [2012]. For 2-spin antiferromagnetic models, this establishes a beautiful picture
connecting the computational complexity of approximating the partition function to
statistical physics phase transitions in the infinite tree.

1.2. Main Results

The picture for multispin systems (systems with q > 2 possible spins for vertices) is
much less clear; these approaches for 2-spin systems do not extend to multi-spin models
in a straightforward manner. We aim to establish the analog of this inapproximability
results for the colorings problem, namely, NP-hardness in the tree nonuniqueness
region. Our techniques and results generalize to a broad class of antiferromagnetic
spin systems.

1.2.1. Results for Colorings. For the colorings problem, even understanding the unique-
ness threshold is challenging. Jonasson [2002] established uniqueness when k ≥ �+1,
and it is easy to show nonuniqueness when k ≤ � since a fixed coloring on the
leaves can “freeze” the internal coloring. For 2-spin systems, nonuniqueness can be
characterized by the existence of multiple solutions of a certain system of Eq. (22),
called tree recursions, see Section 4 for additional explanation. In statistical physics
terminology the solutions to these equations correspond to semitranslation-invariant
measures on the infinite tree T�. For colorings, the uniqueness threshold and the
semitranslation-invariant uniqueness threshold no longer coincide. In particular,
Brightwell and Winkler [2002] established, for semitranslation-invariant measures,
uniqueness when k ≥ � and nonuniqueness when k < �.

We prove, for even k, that it is NP-hard to approximate the number of colorings
(in other words, NP-hard to approximate the partition function) when there is non-
uniqueness of semitranslation-invariant Gibbs measures on T�, that is, when k < �.
Moreover, our result proves hardness for the class of triangle-free �-regular graphs.
Hence, our result is particularly interesting in the region k = �(�/ log �) since a
seminal result of Johansson [1996] (see also Molloy and Reed [2002]) shows that all
triangle-free graphs are colorable with O(�/ log �) colors. His proof, which uses the
nibble method and the Lovász Local Lemma, can be made algorithmic using the con-
structive proof of Moser and Tardos [2010]. For general graphs with maximum degree
�, the interesting region is k = � − O(

√
�), since Molloy and Reed [2001] showed, for

sufficiently large constant �, a polynomial-time algorithm to determine if a graph with
maximum degree � is k-colorable when k ≥ �−√

�+3. We note that most parts of the
proof extend to the odd k case as well, modulo the technical condition described in the
end of Section 1.2.3.

Here is the formal statement of our inapproximability result for colorings.

THEOREM 1.1. For all even k ≥ 4, all � ≥ 3, for the k-colorings problem, when
k < �, unless NP = RP, there is no FPRAS that approximates the partition function for
triangle-free �-regular graphs. Moreover, there exists ε = ε(k,�) such that, unless NP =
RP, one cannot approximate the partition function within a factor 2εn for triangle-free
�-regular graphs (where n is the number of vertices).

1.2.2. Results for Antiferromagnetic Potts. Our result also extends to the antiferromagnetic
Potts model. In the q-state Potts model, there is a parameter B > 0 which corresponds
to the “temperature” and controls the strength of the interactions along an edge. For
a graph G = (V, E), the set � of configurations are assignments σ where σ : V → [q].
Each configuration has a weight w(σ ) = Bm(σ ) where m(σ ) is the number of monochro-
matic edges in σ . The Gibbs distribution is μ(σ ) = w(σ )/Z where Z = ∑

τ∈� w(τ ) is the
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partition function. The case B > 1 is the ferromagnetic Potts model, and B < 1 is the
antiferromagnetic Potts model. Colorings corresponds to the B = 0 case, and the Ising
model is the q = 2 case.

The uniqueness/nonuniqueness threshold for the infinite tree T� is not known for the
antiferromagnetic Potts model. We prove that the uniqueness/nonuniqueness threshold
for semitranslation-invariant Gibbs measures on T� occurs at Bc(�) = �−q

�
. We believe

this threshold coincides with the uniqueness/nonuniqueness threshold, unlike in the
case of colorings. We prove, for even q, that approximating the partition function is
NP-hard in the nonuniqueness region for semitranslation-invariant measures.

THEOREM 1.2. For all even q ≥ 4, all � ≥ 3, for the antiferromagnetic q-state Potts
model, for all B <

�−q
�

, unless NP = RP, there is no FPRAS that approximates the
partition function for triangle-free �-regular graphs. Moreover, there exists ε = ε(q,�)
such that, unless NP = RP, one cannot approximate the partition function within a
factor 2εn for triangle-free �-regular graphs (where n is the number of vertices).

1.2.3. Results for General Antiferromagnetic Models. Our approach applies in much more
generality and yields inapproximability of the partition function for any antiferromag-
netic model when there is nonuniqueness of semitranslation-invariant measures on T�

and mild additional conditions.
We first need to define general antiferromagnetic models. A general q-spin system

is specified by a symmetric q × q interaction matrix B = (Bij)i, j∈[q] with nonnegative
entries, which specify the strength of the interaction between the spins. For example,
the interaction matrix for the Potts model has off-diagonal entries equal to 1 and its
diagonal entries equal to B. For a finite undirected graph G = (V, E), a q-spin system
is a probability distribution μG over the space �G of all configurations, that is, spin
assignments σ : V → [q]. The weight of a configuration σ ∈ �G is the product of
neighboring spin interactions, that is,

wG(σ ) =
∏

(u,v)∈E

Bσ (u)σ (v).

The Gibbs distribution μG is defined as μG(σ ) = wG(σ )/ZG where the partition function
ZG is ZG = ∑

σ∈�G
wG(σ ). We drop the subscript G when the graph under consideration

is clear.
We use the following definition of antiferromagnetic models in terms of the signature

of the interaction matrix B, that is, the signs of its eigenvalues. The interaction matrix
B is assumed to be symmetric and have nonnegative entries. These are standard
assumptions since we are interested in undirected graphs and the Gibbs distribution
should be a probability distribution. Without loss of generality, we will also assume that
B is irreducible. Otherwise, by a suitable permutation of the spins, B can be put into
block diagonal form (which coincides with the normal form of the reducible B) where
each of the blocks is either irreducible or zero. Effectively, this says that the original
spin model can be studied by considering the induced submodels of each block which
correspond to irreducible symmetric matrices (where our results apply). For connected
graphs G, the partition function for the original model is simply the sum of the partition
functions of each submodel.

We are now ready to give the definition of antiferromagnetism we use.

Definition 1.3. Let B be the interaction matrix of a q-state spin system. Since B is
symmetric all of its eigenvalues are real. Also note that it has nonnegative entries and
by irreducibility, the Perron-Frobenius theorem implies that one of the eigenvalues of
B with the largest magnitude is positive and simple, that is, the associated eigenspace
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is one-dimensional. The model is called antiferromagnetic if all the other eigenvalues
are negative. Note that no eigenvalue is allowed to be zero and hence B is nonsingular.

This definition generalizes antiferromagnetism for 2-spin systems (see Goldberg et al.
[2003], Li et al. [2013], and Sly and Sun [2012]), and captures colorings as well as the
antiferromagnetic region for the Potts models. Moreover, this definition seems natural
in that it implies that neighboring vertices prefer to have different spin assignments
(see Corollary 6.4 in Section 6.2). Another nice feature of Definition 1.3 is that it
does not depend on the presence of external fields. Specifically, for �-regular graphs,
any external field can be pushed into the interaction matrix B with a congruence
transformation of the matrix B. The resulting interaction matrix, by Sylvester’s law
of inertia, has the same number of positive, zero, and negative eigenvalues and in
particular remains antiferromagnetic.

We conclude this discussion by pointing out that some of our results for general
models are more easily stated when B is further assumed to be aperiodic. We shall refer
to such matrices B (irreducible and aperiodic) as ergodic. Note that if B is periodic,
its period must be two, since B is symmetric. Such a model is only interesting on
bipartite graphs (otherwise the partition function is zero). Note that the spectrum of
a symmetric and periodic matrix is symmetric around 0, so Definition 1.3 implies that
the interaction matrix B of an antiferromagnetic model is ergodic whenever q ≥ 3
(observe that it is trivial to compute the partition function on periodic models with
q = 2).

We need several additional definitions concerning the moments of the partition func-
tion. For antiferromagnetic models on a random �-regular bipartite graph G = (V, E)
with bipartition V = V1 ∪ V2, the goal is to understand the Gibbs distribution μG by
looking at the distribution of spin values in V1 and V2. Let n = |V1| = |V2|. For a config-
uration σ : V → [q], we shall denote the set of vertices assigned spin i by σ−1(i). Denote
by 	q the simplex 	q = {(x1, x2, . . . , xq) ∈ R

q |∑q
i=1 xi = 1 and xi ≥ 0 for i = 1, . . . , q}.

For α,β ∈ 	q, let

	α,β = {
σ : V → {1, . . . , q} ∣∣ |σ−1(i) ∩ V1| = αin, |σ−1(i) ∩ V2| = βin for i = 1, . . . , q

}
,

that is, configurations in 	α,β assign αin and βin vertices in V1 and V2 the spin value
i, respectively.1 We will be interested in the total weight Zα,β

G of configurations in 	α,β ,
namely,

Zα,β

G =
∑

σ∈	α,β

w(σ ).

We study Zα,β

G by looking at the moments EG[Zα,β

G ] and EG[(Zα,β

G )2], where the expec-
tation is over the distribution of the random �-regular bipartite graph, from hereon
denoted by G.

For α,β ∈ 	q, denote the leading term of the first and second moments as

�1(α,β) = �B
1 (α,β) := lim

n→∞
1
n

log EG
[
Zα,β

G

]
, (1)

�2(α,β) = �B
2 (α,β) := lim

n→∞
1
n

log EG
[(

Zα,β

G

)2]
. (2)

(The limits in (1) and (2) exist, see Section 2 for pointers to the literature.)

1Technically we need to define 	α,β = {σ : V → [q]
∣∣ |σ−1(i) ∩ V1| = α̂i, |σ−1(i) ∩ V2| = β̂i for i ∈ [q]}, where

{α̂i} are {αin} rounded in a canonical fashion so that their sum is preserved (e.g., using “cascade rounding”)
and in the same way {β̂i} are {βin} rounded.
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We will refer to α,β that maximize �1 as dominant phases. Moreover, we say that
a dominant phase (α,β) is Hessian dominant if the Hessian of �1 at (α,β) is negative
definite. (Note this is a sufficient condition for α,β to be a local maximum.) In the
uniqueness, region, there is a unique dominant phase and it has α = β. In contrast,
for 2-spin antiferromagnetic models and for colorings in the semitranslation-invariant
nonuniqueness region, the dominant phases have α �= β, and one expects this would
hold for all antiferromagnetic models. In our reduction, we will need this additional
condition that the dominant phases are not symmetric (i.e., α �= β).

Our main technical result relates the second moment to the first moment, for any
model on random bipartite regular graphs.

THEOREM 1.4. For any spin system, for all � ≥ 3,

max
α,β

�2(α,β) = 2 max
α,β

�1(α,β).

Crucially, Theorem 1.4 implies that �2(α,β) = 2�1(α,β) for dominant phases, which
is key for our arguments, since it will eventually allow us to find the asymptotic distri-
bution of the random variables Zα,β

G (as n → ∞). We do this by applying the so-called
small subgraph conditioning method. The asymptotic convergence is utilized to prove
the properties of the gadget we use in the reduction. The gadget is a slight modification
of a random �-regular bipartite graph and its properties are described in Section 6.4.
The precise formulation of these properties does not matter at this stage, but rather
that we can prove them when the dominant phases (α,β) satisfy the following con-
ditions: (i) each dominant phase is Hessian dominant, (ii) the dominant phases are
permutation symmetric, that is, obtainable from one another by a suitable permuta-
tion of the set of spins (we clarify here that the permutations must be automorphisms
of the interaction matrix B),2 and (iii) each dominant phase (α,β) has α �= β. Condition
(iii) implies that the model is in the nonuniqueness region of T� and, further, that a
typical configuration in the Gibbs distribution of the random graph is “unbalanced”
between the two sides, which allows to encode a CSP (in our case MAX-CUT). Condition
(i) ensures the asymptotic convergence of Zα,β

G . Condition (ii) ensures that the asymp-
totic distribution of Zα,β

G is identical for all the dominant phases.
We want to remark why the permutation symmetry condition arises naturally. A

generic multispin system in the semitranslational nonuniqueness region will have
exactly two maxima of �1 and hardness (assuming NP = RP) follows easily. Models
coming from statistical physics (e.g., Potts model or Widom-Rowlinson model) are not
generic since they usually come with permutation symmetries of the same type as
condition (ii) in the previous paragraph. (The symmetries make the hardness result
more difficult to state and prove.)

We now state our general inapproximability result.

THEOREM 1.5. Let q ≥ 2,� ≥ 3. For an antiferromagnetic q-spin system whose
interaction matrix B is ergodic, if the dominant phases (α,β) of �1 are permutation
symmetric and all of them are Hessian dominant and satisfy α �= β, then, unless NP =
RP, there is no FPRAS for approximating the partition function for triangle free �-
regular graphs. Moreover, there exists ε = ε(q,�) such that, unless NP = RP, one cannot

2More precisely, the permutation symmetric property can be stated as follows: for any two dominant phases,
say (α1, β1) and (α2, β2), there exists a q × q permutation matrix P such that B = PBPᵀ and (α1,β1) =
(Pα2, Pβ2) or (α1,β1) = (Pβ2, Pα2). In other words, the dominant phases can be obtained from each other
by interchanging α and β, by permuting the spins in a way that B is left invariant, or a combination of the
previous two operations.
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approximate the partition function within a factor 2εn for triangle-free �-regular graphs
(where n is the number of vertices).

We remark here that, whenever the hypotheses of Theorem 1.5 are satisfied, the
spin system with interaction matrix B is in the tree nonuniqueness region of T�, see
Section 4 for more details. However, the reverse direction is not necessarily true, that
is, an antiferromagnetic spin system in the tree nonuniqueness region of T� does not
necessarily have multiple dominant phases, an example is the k-colorings model when
k = � (see Theorem 1.6).

For illustrative purposes, we first note that the inapproximability results for anti-
ferromagnetnic 2-spin systems in the tree nonuniqueness region [Sly 2010; Sly and
Sun 2012; Galanis et al. 2012] follow as corollaries of Theorem 1.5. In particular, for
antiferromagnetic 2-spin systems it is well known that for any � ≥ 3, in the non-
uniqueness region of T�, the maximizers of �1 are exactly two pairs (α,β) and (β,α)
with α �= β. Note that these two dominant phases satisfy trivially the permutation
symmetric property. Moreover, it can also be verified that they are Hessian dominant
and hence the hypotheses of Theorem 1.5 are satisfied.

As a more indicative application of Theorem 1.5, let us deduce Theorems 1.1 and 1.2.
To do this, we need the following theorem (proved in Section 7) which describes the
dominant phases for the colorings and antiferromagnetic Potts models.

THEOREM 1.6. Let q ≥ 3, 0 ≤ B < 1 and � ≥ 3. For the antiferromagnetic q-state
Potts model with parameter B on a random �-regular bipartite graph (note that the
k-colorings model corresponds to B = 0 and q = k in the following), it holds that

(1) When B ≥ �−q
�

, there is a unique dominant phase (α,β) which satisfies α = β.
(2) For all even q ≥ 4, for all � ≥ 3, when 0 ≤ B <

�−q
�

, the dominant phases (α,β)
are in one-to-one correspondence with subsets T ⊆ [q] with |T | = q/2. Moreover,
there exist a(q,�, B), b(q,�, B) with a �= b such that for T ⊆ [q] with |T | = q/2, the
dominant phase (α,β) corresponding to T satisfies

αi = a if i ∈ T , αi = b if i /∈ T ,

βi = b if i ∈ T , βi = a if i /∈ T .
(3)

Moreover, the dominant phases are Hessian.

PROOF OF THEOREMS 1.1 AND 1.2. We just need to verify the hypotheses of Theo-
rem 1.5. Equation (3) of Theorem 1.6 establishes that the dominant phases (α,β)
are permutation symmetric and each of them satisfies α �= β. Thus, the hypotheses of
Theorem 1.5 hold in the regime q < � and 0 ≤ B <

�−q
�

.

Note that the restriction of even k, q in Theorems 1.1 and 1.2, respectively, is a
technical one and comes from the second part of Theorem 1.6. For odd q, we are unable
to establish whether the dominant phases are supported on vectors with two or three
different entries, see Section 7 for more details. Classifying the dominant phases for
odd q would also extend the inapproximability results of Theorems 1.1 and 1.2.

1.3. Proof Approach

The key gadget in the inapproximability results for 2-spin models is a random �-
regular bipartite graph. The rough idea for the hard-core model is that in the tree non-
uniqueness region, on a random �-regular bipartite graph, an independent set from
the Gibbs distribution is “unbalanced” with high probability (the fraction of occupied
vertices in the two parts of the bipartition differ by a constant). To analyze random
regular bipartite graphs, the original inapproximability result of Sly [2010] relied on
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a second moment analysis of Mossel et al. [2009], which Sly called a technical tour-de-
force. The optimization at the heart of that analysis was difficult enough that his result
only held for λ close to the uniqueness threshold.

We present a new approach for the associated optimization problem which is at the
heart of the second moment analysis. Our approach yields a simple, short analysis that
holds for any model on random �-regular bipartite graphs. The key idea is to define a
new function 
, which is represented as an induced matrix norm, and has the same
critical points as the first moment. We can then use the fact that induced matrix norms
are multiplicative over tensor product to analyze the second moment.

1.4. Article Outline

In Section 2, we derive some basic expressions for the first and second moments. Then,
in Section 3, we analyze the second moment using matrix norms and thereby prove
Theorem 1.4. In Section 4, we analyze the maxima of the function �1. There, we further
prove a connection between local maxima of �1 and stable fixpoints of the so-called tree
recursions which is used in later sections.

The reduction for the inapproximability results uses an intermediate problem, which
we call the phase labeling problem. Our inapproximability results hinge on showing
that the phase labeling problem is hard to approximate. In Section 5, we give the main
elements of this reduction for the colorings model to introduce the relevant concepts.
The hardness of approximating the phase labeling problem for general antiferromag-
netic models is proved in Section 6, where we also fill in the details which were omitted
in the simplified exposition for the colorings model.

We show how the phase labeling problem reduces to the approximation of the parti-
tion function in Section 6.4, based on arguments in Sly and Sun [2012]. The reduction
uses gadgets whose existence and construction are based on a slight variation of the
random �-regular bipartite graph distribution. At this point, to establish the proper-
ties of the gadgets, we use the small subgraph conditioning method. The application
of the method is fairly standard though technically intensive due to its use of precise
asymptotics for the first and second moments. The technical details of applying the
method in our case are given in Appendix A, while the asymptotics for the first and
second moments are derived in Appendix B.

The proof of our general inapproximability result (Theorem 1.5) is given in
Section 6.1. We saw in Section 1.2.3 how to deduce the inapproximability results for
the colorings and Potts models (Theorems 1.1 and 1.2) from Theorem 1.5 using the
classification of the dominant phases in Item 2 of Theorem 1.6. The proof of Item 2 in
Theorem 1.6 is given in Section 7.

Finally, in Appendix C, we extend the argument of Brightwell and Winkler [2002] to
prove Item 1 of Theorem 1.6, that is, show uniqueness for semitranslation-invariant
Gibbs measures for the antiferromagnetic Potts model when B ≥ (� − q)/�.

2. EXPRESSIONS FOR THE FIRST AND SECOND MOMENTS

In this section, we derive the expressions for the first and second moments of Zα,β

G and,
in particular, the expressions for �1 and �2.

Let Gn(�) be the probability distribution over bipartite graphs with n + n vertices
formed by taking the union of � random perfect matchings. We will use the simplified
notation Gn := Gn(�) or even G := Gn(�) when n is clear from context. Strictly speaking,
this distribution is over bipartite multigraphs. However, since our results hold asymp-
totically almost surely (a.a.s.) over Gn, as noted in Mossel et al. [2009], by contiguity
arguments they also hold a.a.s. for the uniform distribution over bipartite �-regular
graphs. For a complete account of contiguity, we refer the reader to Janson et al. [2000,
Chapter 9].
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Let G ∼ G. We will denote the two sides of the bipartition of G as V1, V2. We first
compute the first moment EG[Zα,β

G ]. For σ ∈ 	α,β and a uniform matching between
V1 and V2, let nxij denote the number of edges matching vertices in σ−1(i) ∩ V1 and
σ−1( j) ∩ V2. Under the convention that 00 ≡ 1, we then have

EG
[
Zα,β

G

] =
(

n
α1n, . . . , αqn

)(
n

β1n, . . . , βqn

)

×
(∑

x

∏
i

(
αin

xi1n,...,xiqn

)∏
j

(
β jn

x1 jn,...,xqjn

)∏
i, j Bnxij

i j( n
x11n,...,xqqn

) )�

,

(4)

where the sum ranges over x = (x11, . . . , xqq) with nx ∈ Z
q2

satisfying the following
constraints: ∑

j xij = αi (∀i ∈ [q]),
∑

i xij = β j (∀ j ∈ [q]),

xij ≥ 0 (∀(i, j) ∈ [q]2).
(5)

The first line in (4) accounts for the cardinality of 	α,β , while the second line is EG[wG(σ )]
for an arbitrary σ ∈ 	α,β . Since the weight of a configuration is multiplicative over the
edges and the matchings are independent, EG[wG(σ )] is the �-power of the expected
contribution of a single matching. The latter is completely determined by x and is equal
to
∏

i, j Bnxij
i j , scaled by the probability that the matching induces the prescribed x.

We next calculate the second moment of Zα,β

G . To do this, for (σ1, σ2) ∈ 	α,β × 	α,β ,
we need to compute EG[wG(σ1)wG(σ2)]. Let γik = |σ−1

1 (i) ∩ σ−1
2 (k) ∩ V1|, δ jl = |σ−1

1 ( j) ∩
σ−1

2 (l) ∩ V2|. The vectors γ and δ capture the overlap of configurations in V1 and V2,
respectively. For a uniform matching between V1 and V2, let yikjl denote the number
of edges matching vertices in σ−1

1 (i) ∩ σ−1
2 (k) ∩ V1 and σ−1

1 ( j) ∩ σ−1
2 (l) ∩ V2. Under the

convention 00 ≡ 1, we then have

EG
[(

Zα,β

G

)2] =
∑
γ ,δ

(
n

γ11n, . . . , γqqn

)(
n

δ11n, . . . , δqqn

)

×
(∑

y

∏
i,k

(
γikn

yik11n,...,yikqqn

)∏
j,l

(
δ jln

y11 jln,...,yqqjln

)∏
ikjl(Bij Bkl)nyikjl( n

y1111n,...,yqqqqn

) )�

,

(6)

where the sums range over γ = (γ11, . . . , γqq), δ = (δ11, . . . , δqq), y = (y1111, . . . , yqqqq)
with nγ , nδ ∈ Z

q2
and ny ∈ Z

q4
satisfying∑

k γik = αi (∀i ∈ [q]),
∑

l δ jl = β j (∀ j ∈ [q]),
∑

j,l yikjl = γik (∀(i, k) ∈ [q]2),∑
i γik = αk (∀k ∈ [q]),

∑
j δ jl = βl (∀l ∈ [q]),

∑
i,k yikjl = δ jl (∀( j, l) ∈ [q]2),

γik ≥ 0 (∀(i, k) ∈ [q]2), δ jl ≥ 0 (∀( j, l) ∈ [q]2), yikjl ≥ 0 (∀(i, k, j, l) ∈ [q]4).

(7)

The first line in (6) accounts for the cardinality of 	α,β × 	α,β , while the second line
is EG[wG(σ1)wG(σ2)] for (σ1, σ2) ∈ 	α,β × 	α,β with the prescribed γ , δ. Since the weight
of a configuration is multiplicative over the edges and the matchings are independent,
EG[wG(σ1)wG(σ2)] is the �-power of the expected weight of a single matching. The latter
is completely determined by y and is equal to

∏
i,k, j,l(Bij Bkl)yikjl , scaled by the probability

that the matching induces the prescribed y.

Remark 2.1. Note that (6) shows that the second moment can be interpreted as
the first moment of a paired-spin model with interaction matrix B ⊗ B. Indeed, we can
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interpret Bij Bkl as the activity between the paired spins (i, k) and ( j, l), thus giving the
desired alignment.

The sums in (4) and (6) are typically exponential in n. The most critical component of
our arguments is to find the quantitative structure of configurations which determine
the exponential order of the moments. Formally, we study the limits of 1

n log EG[Zα,β

G ]
and 1

n log EG[(Zα,β

G )2] as n → ∞. Under the usual conventions that ln 0 ≡ −∞ and
0 ln 0 ≡ 0, standard application of Stirling’s approximation yields the following:

�1(α,β) := lim
n→∞

1
n

log EG
[
Zα,β

G

] = max
x

ϒ1(α,β, x), (8)

where ϒ1(α,β, x) := (� − 1) f1(α,β) + �g1(x)
f1(α,β) := ∑

i αi ln αi +∑
j β j ln β j

g1(x) := ∑
i, j xij ln Bij −∑

i, j xij ln xij .

And for the second moment:

�2(α,β) := lim
n→∞

1
n

log EG
[(

Zα,β

G

)2] = max
γ ,δ

max
y

ϒ2(γ , δ, y), (9)

where ϒ2(γ , δ, y) := (� − 1) f2(γ , δ) + �g2(y)

f2(γ , δ) := ∑
i,k γik ln γik +∑

j,l δ jl ln δ jl

g2(y) := ∑
i,k, j,l yikjl ln(Bij Bkl) −∑

i,k, j,l yikjl ln yikjl.

The functions ϒ1 and ϒ2 are defined on the regions (5) and (7), respectively. We also
relax the integrality constraints of the vectors α,β, x and γ , δ, y which were imposed by
the expressions (4) and (6). This does not affect our considerations in the limit n → ∞.
Moreover, note that the function ϒ2 depends on α,β due to the linear constraints (7).
This dependence is omitted here since we are going to study the second moment for
α,β fixed to some well-chosen vectors.

The limits (8) and (9) can be justified using standard Laplace arguments (see, e.g.,
de Bruijn [1981, Chapter 4]).

Remark 2.2. The maximization in the first moment depends only on the function
g1(x) which is strictly concave in the convex region where it is defined. Hence, for
any fixed α,β, the global maximum of ϒ1(α,β, x) with respect to x is achieved at a
unique point. Similarly, for any fixed γ , δ, the maximum of ϒ2(γ , δ, y) with respect to
y is achieved at a unique point. Crucially for the calculation of the asymptotics of the
second moment in Appendix B, if α,β are global maximizers of �1, the global maximum
of ϒ2(γ , δ, y) with respect to γ , δ, y is also achieved at a unique point, see Lemma 3.2
in Section 3.4.

A notational convention that we have adopted silently so far is perhaps useful to
allude: the indices i, k “point” to the set V1, while indices j, l “point” to the set V2.

3. SECOND MOMENT ANALYSIS

In this section, we prove Theorem 1.4. We first present some basic definitions con-
cerning matrix norms. We then show that the maximum of the first moment function
�1 can be reformulated in terms of matrix norms. This then enables a short proof of
Theorem 1.4.
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3.1. Basic Definitions: Matrix Norms

We will reformulate the maxima of the first and second moments in terms of matrix
norms. We first recall the basic definitions regarding matrix norms. The usual vector
norms are denoted as

‖x‖p =
(

n∑
i=1

xp
i

)1/p

.

We will use the subordinate matrix norm (also known as the induced matrix norm)
which will be denoted as ‖ · ‖p→q and is defined as.

‖A‖p→q = max
‖x‖p=1

‖A x‖q.

Note that if A has nonnegative entries then one can restrict the maximization to x
with nonnegative entries. A well-known example of an induced norm is the spectral
norm ‖ · ‖2→2.

3.2. Reformulating the First Moment in Terms of Matrix Norms

A key component in the analysis of the second moment is the following function 
. Let
p = �/(� − 1). For nonnegative r, c, define 
(r, c) by

exp (
(r, c)/�) = rᵀBc
‖r‖p‖c‖p

.

We will show that the critical points of 
 and �1 match in the sense that there is a one-
to-one correspondence between them and their values are equal at the corresponding
critical points. The full statement is contained in Theorem 4.1 in Section 4.1, but the
important element for the current discussion is captured in the following lemma.

LEMMA 3.1.

max
α,β∈	q

�1(α,β) = max
r,c


(r, c).

Therefore, to determine the dominant phases of �1 it suffices to study 
. The maxi-
mum of 
 can be compactly expressed in terms of matrix norms as follows:

max
r,c

exp (
(r, c)/�) = max
c

max
r

rᵀBc
‖r‖p‖c‖p

= max
c

‖Bc‖�

‖c‖p
= ‖B‖p→�, (10)

where the second equality follows from norm duality.
Hence, the dominant phases of �1 can be expressed in terms of matrix norms:

max
α,β∈	q

exp (�1(α,β)/�) = ‖B‖ �
�−1 →�. (11)

3.3. Analyzing the Second Moment: Proof of Theorem 1.4

To analyze the second moment function �2, we will reduce it to the first moment
optimization in the following manner. The key observation is that the associated op-
timization for the second moment is equivalent to a first moment optimization of a
“paired-spin” model which is specified by the tensor product of the original interaction
matrix with itself. This property enables us to relate the maximum for the second
moment calculations with the maximum of the first moment calculations.

PROOF OF THEOREM 1.4. The second moment considers a pair of configurations, say
σ and σ ′, which are constrained to have a given phase α for V1 and β for V2, where
V = V1 ∪ V2. We capture this constraint using a pair of vectors γ , δ corresponding to
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the overlap between σ and σ ′, in particular, γi j (and δi j) is the number of vertices in V1
(and V2, respectively) with spin i in σ and spin j in σ ′.

Recall, �B
1 indicates the dependence of the function �1 on the interaction matrix B;

to simplify the notation we will drop the exponent if it is B. We have (see Remark 2.1
in Section 2 for more details on this connection)

�2(α,β) = max
γ ,δ

�B⊗B
1 (γ , δ), (12)

where the optimization in (12) is constrained to γ and δ such that∑
i γik = αk,

∑
k γik = αi,

∑
j δ j� = β�, and

∑
� δ j� = β j . (13)

Ignoring the four constraints in (13) can only increase the value of (12) and hence

max
α,β

exp (�2(α,β)/�) ≤ max
γ ,δ

exp
(
�B⊗B

1 (γ , δ)/�
) = ‖B ⊗ B‖ �

�−1 →�. (14)

The key fact we now use is that for induced norms ‖ · ‖p→q with p ≤ q, it holds (cf.,
Bennett [1977, Proposition 10.1]) that

‖B ⊗ B‖p→q = ‖B‖p→q ‖B‖p→q. (15)

Therefore,

max
α,β

�2(α,β) ≤ 2� log ‖B‖ �
�−1 →� = 2 max

α,β
�1(α,β). (16)

To complete the proof of Theorem 1.4, it just remains to prove the reverse inequality,
which follows from the fact that E[X2] ≥ E[X]2.

3.4. Optimal Second Moment Configuration

We will need more detailed information about the γ , δ which achieve equality in The-
orem 1.4 and Eq. (12). The following lemma is true whenever B is nonsingular (and
hence for antiferromagnetic models as well, cf. Definition 1.3). Roughly, the lemma
captures that the major contribution to the second moment comes from pairs of con-
figurations which are uncorrelated. This is crucial to calculate the asymptotics of the
second moment in Appendix B.

LEMMA 3.2. Assume that B is nonsingular. The γ , δ for which the equality in

max
α,β

max
γ ,δ satisfying (13)

�B⊗B
1 (γ , δ) = 2 max

α,β
�B

1 (α,β), (17)

is achieved satisfy (for all i, j, k, l ∈ [q])

γik = αiαk and δ jl = β jβl. (18)

PROOF. We will have to dig in to the proof of (15) and use (13). Bennett’s proof of (15)
is the following (our particular values are q′ = � and p = �/(� − 1)), we will explain
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shortly the derivation of the intermediate steps:

‖(B ⊗ B)r‖q′ =

⎛⎜⎝∑
k

∑
i

∣∣∣∣∣∣
∑

j

Bij

∑
l

Bkl Rjl

∣∣∣∣∣∣
q′⎞⎟⎠

1/q′

≤ ‖B‖p→q′

⎛⎜⎝∑
k

⎛⎝∑
j

∣∣∣∣∣∑
l

Bkl Rjl

∣∣∣∣∣
p
⎞⎠q′/p

⎞⎟⎠
1/q′

≤ ‖B‖p→q′

⎛⎜⎝∑
j

⎛⎝∑
k

∣∣∣∣∣∑
l

Bkl Rjl

∣∣∣∣∣
q′⎞⎠p/q′⎞⎟⎠

1/p

≤ ‖B‖2
p→q′

⎛⎝∑
j,l

Rp
jl

⎞⎠1/p

.

Note that in the last inequality one uses ‖B r‖q′ ≤ ‖B‖p→q′ ‖r‖p, applied to the vectors
r′

j := (Rj1, Rj2, . . . , Rjq), for j = 1, . . . , q. Thus, if r is a maximizer of

max
r

‖(B ⊗ B)r‖q′

‖r‖p
, (19)

then the vectors r′
j are maximizers of

max
r′

‖B r′‖q′

‖r′‖p
. (20)

The same, by symmetry, applies to r′′
l := (R1l, R2l, . . . , Rql), for l = 1, . . . , q.

The second inequality in Bennett’s proof is Minkowski’s inequality for the (q′/p)-
norm (note that q′ > p) applied to the q vectors which are obtained from Br′

1, . . . , Br′
q

by raising each of their entries to the pth power. The equality is achieved only if
Br′

1, . . . , Br′
q generate a space of dimension one, and since B is nonsingular we have

also that r′
1, . . . , r′

q generate a space of dimension one. Hence, for a maximizer r of (19)
we have r = r′ ⊗ r′′, where r′ and r′′ are maximizers of (20). By Theorem 4.1 (Eq. (23)),
we then have

γik = α′
iα

′′
k (21)

for the corresponding maximizers of �B⊗B
1 (γ , δ) and �B

1 (α,β). Equation (21) together
with constraints ∑

i

γik = αk and
∑

k

γik = αi,

from (13) imply γik = αiαk (since αk = ∑
i γik = ∑

i α′
iα

′′
k = α′′

k and similarly αi = α′
i). The

proof of δ jl = β jβl is analogous.

4. TREE RECURSIONS, FIRST MOMENT, AND MATRIX NORMS

The second moment results of the previous section will be used to establish that, with
probability 1 − o(1) over the choice of a random �-regular bipartite graph, the Gibbs
distribution has most of its mass on configurations whose spin frequencies on the two
sides of the graph are (close to) dominant phases. To do this, it will be important to
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examine dominant phases, that is, the maxima of �1(α,β) and, further, to characterize
the local maxima. We will use this information to connect the functions 
 and �1
and thus prove Lemma 3.1 which was the critical component in the second moment
analysis; in fact, Lemma 3.1 is an immediate corollary of the upcoming Theorem 4.1
which details further the connection between 
 and �1.

For a spin system with interaction matrix B, the following recursions are relevant
for the analysis of the critical points of �1.

R̂i ∝
⎛⎝ q∑

j=1

BijC j

⎞⎠�−1

and Ĉ j ∝
( q∑

i=1

Bij Rj

)�−1

. (22)

We refer to (22) as tree recursions since they emerge naturally in the analysis of spin
systems on the infinite �-regular tree T�. More precisely, the fixpoints of the tree
recursions correspond to semitranslation-invariant Gibbs measures on T� (fixpoints
of (22) are those Ri ’s and Cj ’s such that R̂i ∝ Ri and Ĉ j ∝ Cj , for all i, j ∈ [q]). The
fixpoints of the tree recursions correspond to critical points of �1, as was first observed
in Mossel et al. [2009], see Section 4.1.2 for a derivation in our setting.

We prove the following result which connects tree recursions, the function 
 and the
function �1. Lemma 3.1 is a corollary of the following more general theorem.

THEOREM 4.1. There is a one-to-one correspondence between the fixpoints of the tree
recursions and the critical points of 
 (both considered for Ri ≥ 0, Cj ≥ 0 in the
projective space, that is, up to scaling by a constant).

The following transformation (r, c) �→ (α,β) given by

αi = R�/(�−1)
i∑

i R�/(�−1)
i

and β j = C�/(�−1)
j∑

j C�/(�−1)
j

(23)

yields a one-to-one-to-one correspondence between the critical points of 
 and the critical
points of �1 (in the region defined by αi ≥ 0, β j ≥ 0, and

∑
i αi = 1,

∑
j β j = 1).

Moreover, for the corresponding critical points (r, c) and (α,β), one has


(r, c) = �1(α,β). (24)

Finally, for spin systems whose interaction matrix B is ergodic, the local maxima of 

and �1 happen at the critical points (i.e., there are no local maxima on the boundary).

To argue that the Gibbs distribution places most of its mass on configurations whose
spin frequencies are given by dominant phases, we need a more explicit handle on local
maxima of �1. The latter will also be crucial to analyze the global maxima of �1 for
specific models of interest.

We connect local maxima of �1 to attractive fixpoints of the associated tree recursions.
Specifically, we call a fixpoint x of a function f a Jacobian attractive fixpoint if the
Jacobian of f at x has spectral radius less than 1. We say that a critical point α,β is a
Hessian local maximum if the Hessian of �1 at α,β is negative definite (note this is a
sufficient condition for α,β to be a local maximum).

We prove the following theorem in Section 4.2.

THEOREM 4.2. Jacobian attractive fixpoints of the tree recursions (22) (considered
as a function (R1, . . . , Rq, C1, . . . , Cq) �→ (R̂1, . . . , R̂q, Ĉ1, . . . , Ĉq)) correspond to Hessian
local maxima of �1.
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Theorem 4.2 is important for analyzing the global maxima of �1 for colorings and
antiferromagnetic Potts model (see Section 7). Moreover, it will be used to apply the
small subgraph conditioning method (see Appendix A.2).

4.1. Connection between � and �1

In this section, we prove Theorem 4.1.

4.1.1. Preliminaries on Maximum-Entropy Distributions. Let α and β be nonnegative vectors
in R

q such that ∑
i

αi = 1 and
∑

j

β j = 1. (25)

For α and β that satisfy (25), let

g(α1, . . . , αq, β1, . . . , βq) = max
q∑

i=1

q∑
j=1

xij(ln(Bij) − ln xij), (26)

where the maximum is taken over nonnegative xij ’s such that

αi =
∑

j

xij and β j =
∑

i

xij . (27)

LEMMA 4.3. The maximum of the right-hand-side of (26) is achieved at unique xij .
The xij are given by

xij = Bij RiC j, (28)

where r and c satisfy

Ri

q∑
j=1

BijC j = αi and Cj

q∑
i=1

Bij Ri = β j, (29)

and
q∑

j=1

BijC j = 0 =⇒ Ri = 0;

q∑
i=1

Bij Ri = 0 =⇒ Cj = 0.

(30)

The value of g, in terms of Ri’s and Cj’s, is given by

g(α1, . . . , αq, β1, . . . , βq) = −
q∑

i=1

q∑
j=1

Bij RiC j ln(RiCj). (31)

PROOF. From strict concavity of −x ln x, it follows that the right-hand side of (26)
has a unique critical point (if there were two critical points, then the segment between
the points lies in the linear space defined by (27); the function has a zero derivative on
both ends of the segment; and the second derivative of the function is negative on the
segment; a contradiction).

Using the method of Lagrange multipliers, we obtain that the critical points of the
right-hand side of (26) are xij given by (28) where Ri ’s and Cj ’s are solutions of (29).
We can make any solution of (29) satisfy (30): if

∑q
j=1 BijC j = 0, then set Ri = 0 (and
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symmetrically, if
∑q

i=1 Bij Ri = 0, then set Cj = 0). We now argue that this change does
not violate (29). Suppose that, after the change for some k ∈ [q], we have

Rk

q∑
j=1

BkjC j �= αk. (32)

Then i = k (since only Ri changed) and since
∑q

j=1 BijC j = 0, we also have αi = 0, a
contradiction (with (32)). Now suppose that, after the change for some j ∈ [q], we have

Cj

q∑
k=1

Bkj Rk �= β j . (33)

Then Bij > 0 and C j > 0 (otherwise, changing Ri would not violate (33)). This then
implies

∑q
j=1 BijC j > BijC j > 0, a contradiction. Thus, the change does not violate (29).

Equation (31) is obtained by substituting (29) into (26).

Remark 4.4. Scaling all the Ri ’s up by the same factor while scaling all the Cj ’s
down by the same factor preserves (28) and (29). Modulo such scaling the Ri ’s and Cj ’s
are unique, since the xij ’s are unique and (28) determines the Ri ’s and C j ’s once one
value (say R1) is fixed (here we use the fact that the matrix of the model is ergodic).

Remark 4.5. Note that the condition (25) translates (using (29)) into the following
condition on Ri ’s and Cj ’s

q∑
i=1

q∑
j=1

Bij RiC j = 1. (34)

Our goal now is to see how the value of (26) changes when we perturb αi ’s and β j ’s.
We are going to view them as functions of a new variable z. All differentiation in this
section will be with respect to z. Note that, to stay in the subspace defined by (25), we
should have, in particular,∑

i

α′
i =

∑
i

α′′
i = 0 and

∑
j

β ′
j =

∑
j

β ′′
j = 0. (35)

Differentiating (29), we obtain
q∑

j=1

Bij(RiCj)′ = α′
i and

q∑
i=1

Bij(RiC j)′ = β ′
j . (36)

The following ratio of (29) and (36) will be useful later:

α′
i

αi
= R′

i

Ri
+
∑q

j=1 BijC ′
j∑q

j=1 BijC j
and

β ′
j

β j
= C ′

j

C j
+
∑q

i=1 Bij R′
i∑q

i=1 Bij Ri
. (37)

Scaling all the Ri ’s up by the same factor while scaling all the Cj ’s down by the same
factor (also discussed in Remark 4.4) is equivalent to increasing all R′

i/Ri ’s by the same
(additive) amount and decreasing all C ′

i/Ci by the same (additive) amount. We are
going to remove this freedom by requiring

q∑
i=1

αi
R′

i

Ri
=

q∑
j=1

β j
C ′

j

C j
. (38)
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(Recall that we study the effect of perturbing g when we change αi ’s and β j ’s; Equa-
tion (38) just fixes the corresponding change in Ri ’s and Cj ’s.)

Now we compute the derivatives of g.

LEMMA 4.6. We have

g′ = −
q∑

i=1

(ln Ri)α′
i −

q∑
j=1

(ln C j)β ′
j, (39)

g′′ = −
q∑

i=1

R′
i

Ri
α′

i −
q∑

j=1

C ′
j

C j
β ′

j −
q∑

i=1

(ln Ri)α′′
i −

q∑
j=1

(ln Cj)β ′′
j . (40)

PROOF. Using ( f ln f )′ = (1 + ln f ) f ′ and Eq. (31), (35), and (36), we obtain

g′ = −
q∑

i=1

q∑
j=1

Bij
(
1 + ln(RiCj)

)
(RiCj)′ = −

q∑
i=1

(ln Ri)α′
i −

∑
j

(ln Cj)β ′
j .

Differentiating (39), we obtain (40).

Note the expressions (39) and (40) are independent of the choice of scaling of Ri ’s
and Cj ’s (this follows from (35)). The particular tying of R′

i/Ri ’s and C ′
j/Cj ’s to α′

i and
β ′

j (given by (38)) will be useful later.

4.1.2. Critical Points of �1 and the Tree Recursions. In this section, we establish the con-
nection between the critical points of �1 and the fixpoints of the tree recursions.

LEMMA 4.7. Let α,β be a critical point of �1(α,β) in the subspace defined by (25).
Let r, c be given by (29). Then

αi ∝ R�/(�−1)
i and β j ∝ C�/(�−1)

j . (41)

Consequently, r, c satisfy the tree recursions stated in Section 4:

Ri ∝
⎛⎝ q∑

j=1

BijC j

⎞⎠�−1

and Cj ∝
( q∑

i=1

Bij Ri

)�−1

. (22)

PROOF. At the critical points of �1, the first derivative of �1 has to vanish for all α′
i ’s

and β ′
j ’s from the subspace defined by (35), that is,

� ′
1 = (� − 1)

⎛⎝ q∑
i=1

(1 + ln αi)α′
i +

q∑
j=1

(1 + ln β j)β ′
j

⎞⎠− �

⎛⎝ q∑
i=1

(ln Ri)α′
i +

q∑
j=1

(ln Cj)β ′
j

⎞⎠
=

q∑
i=1

((� − 1)(1 + ln αi) − � ln Ri)α′
i +

q∑
j=1

((� − 1)(1 + ln β j) − � ln Cj)β ′
j = 0, (42)

where the Ri ’s and Cj ’s are given by (29). Inspecting (42), we see that (�−1)(1+ ln αi)−
� ln Ri have the same value. Indeed, if two of them, say with indices i1, i2, had different
values, then we could increase αi1 and decrease αi2 by the same infinitesimal amount
and violate (42). Similarly, (� − 1)(1 + ln β j) − �C j have the same value and hence we
have (41). Plugging (41) into (29) one obtains (22).

LEMMA 4.8. Let (r, c) be a solution of the tree recursions (22). Let (α,β) be given
by (23). Then, (α,β) is a critical point of �1(α,β) in the subspace defined by (25).
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PROOF. Let

ZR := (� − 1)(1 + ln αi) − � ln Ri = (� − 1)

(
1 − ln

q∑
i=1

R�/(�−1)
i

)
,

where the second equality follows from (23). Note that ZR is independent of the choice
of i. Similarly, let

ZC := (� − 1)(1 + ln β j) − � ln Cj = (� − 1)

⎛⎝1 − ln
q∑

j=1

C�/(�−1)
j

⎞⎠ .

For perturbations of α,β in the subspace given by (25), we have

� ′
1(α,β) =

q∑
i=1

(
(� − 1)(1 + ln αi) − � ln Ri

)
α′

i +
q∑

j=1

((� − 1)(1 + ln β j) − � ln Cj)β ′
j

= ZR

q∑
i=1

α′
i + ZC

q∑
j=1

β ′
j = 0,

and hence (α,β) is a critical point.

4.1.3. Value of �1 at the Critical Points

LEMMA 4.9. Let (α,β) be critical point of �1(α,β). Let (r, c) be given by (23). Then


(r, c) = �1(α,β). (24)

Moreover, (r, c) is a critical point of 
(r, c).

PROOF. From Eq. (8) and (31), we have

�1(α,β) = (� − 1)

⎛⎝ q∑
i=1

αi ln αi +
q∑

j=1

β j ln β j

⎞⎠− �

q∑
i=1

q∑
j=1

Bij RiC j ln(RiC j). (43)

where the Ri, C j in (43) are given by (29). At the critical points α,β of �1, in addition
to (29), it also holds that (see Eq. (41))

αi = R�/(�−1)
i∑q

i=1 R�/(�−1)
i

and β j = C�/(�−1)
j∑q

j=1 C�/(�−1)
j

. (44)

Plugging (29) into (43), we obtain

�1(α,β) = (� − 1)

⎛⎝ q∑
i=1

αi ln αi +
q∑

j=1

β j ln β j

⎞⎠− �

⎛⎝ q∑
i=1

αi ln Ri +
q∑

j=1

β j ln Cj

⎞⎠
=

q∑
i=1

αi ln
α�−1

i

R�
i

+
q∑

j=1

β j ln
β�−1

j

C�
j

= −(� − 1)

⎡⎣ln

( q∑
i=1

R�/(�−1)
i

)
+ ln

⎛⎝ q∑
j=1

C�/(�−1)
j

⎞⎠⎤⎦ ,

(45)

where, in the last equality, we used (44) and the fact that αi ’s and β j ’s sum to 1. Recall
that

q∑
i=1

q∑
j=1

Bij RiC j =
q∑

i=1

αi = 1, (46)
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and hence the following is obtained by adding zero to the right-hand side of (45):

�1(α,β) = � ln

⎛⎝ q∑
i=1

q∑
j=1

Bij RiC j

⎞⎠− (� − 1)

⎡⎣ln

( q∑
i=1

R�/(�−1)
i

)
+ ln

⎛⎝ q∑
j=1

C�/(�−1)
j

⎞⎠⎤⎦
= 
(r, c).

Now we argue that (r, c) is a critical point of 
(r, c). We have

∂

∂ Ri

(r, c) = �

∑q
j=1 BijC j∑q

i=1

∑q
j=1 Bij RiC j

− (� − 1)
�

�−1 R1/(�−1)
i∑q

i=1 R�/(�−1)
i

= �
αi

Ri
− �

αi

Ri
= 0, (47)

where we used (44), (25), and (29). The same argument yields

∂

∂Cj

(r, c) = �

∑q
i=1 Bij Ri∑q

i=1

∑q
j=1 Bij RiC j

− (� − 1)
�

�−1C1/(�−1)
j∑q

j=1 C�/(�−1)
j

= 0. (48)

and hence r, c is a critical point of 
.

LEMMA 4.10. Let (r, c) be a critical point of 
(r, c). Let α,β be given by (23). Then
α,β is a critical point of �1(α,β) in the subspace defined by (25).

PROOF. At a critical point of 
, we have that (47) is zero for i ∈ [q]. Note that the
denominators do not depend on i and hence we have

R1/(�−1)
i ∝

q∑
j=1

BijC j .

Similarly, from (48), we obtain

C1/(�−1)
j ∝

q∑
i=1

Bij Ri.

Hence, (r, c) satisfy the tree recursions. Now, we use Lemma 4.8 to conclude that (α,β)
is a critical point of �1(α,β) in the subspace defined by (25).

4.1.4. Local Maxima of �1 are in the Interior. In this section, we show that, for models
with ergodic (irreducible and aperiodic) interaction matrix B, the maximum of 
(r, c)
is achieved in the interior. A symmetric matrix is irreducible if the graph whose edges
correspond to nonzero edges of B is connected. A symmetric matrix is aperiodic if the
graph whose edges correspond to nonzero edges of B has an odd cycle.

LEMMA 4.11. Assume that B is ergodic. Let (r, c) �= 0 be a local maximum of 
 in the
region r, c ≥ 0. Then, Ri > 0 for all i ∈ [q] and Cj > 0 for all j ∈ [q].

PROOF. Suppose not, that is, we have a maximum that has a zero on some coordinate
of r or c. From the ergodicity of B, we have that there exist i, j ∈ [q] such that
(i) Ri = 0, Cj > 0, and Bij > 0 or (ii) Ri > 0, Cj = 0, and Bij > 0. (To see this, suppose
that, for all i, j, neither (i) nor (ii) happens. Let ZR ⊆ [q] be the set of i such that
Ri = 0 and, similarly, let ZC ⊆ [q] be the set of j such that Cj = 0. By the assumption
that neither (i) nor (ii) happens, the only entries Bij which can be nonzero must satisfy
either i ∈ ZR, j ∈ ZC or i ∈ [q] \ ZR, j ∈ [q] \ ZC . Using that B is symmetric, we
obtain that in B2 the only nonzero (B2)i j must satisfy either i, j ∈ ZR or i, j ∈ [q] \ ZR.
Thus, B2 is reducible and hence not ergodic, from where it follows that B is not ergodic,
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contradiction.) Without loss of generality assume that it is the case (i), case (ii) can be
handled analogously.

The derivative of 
 with respect to Ri is (we are using Ri = 0)

∂

∂ Ri

(r, c) = �

∑q
j=1 BijC j∑q

i=1

∑q
j=1 Bij RiC j

> �
BijC j∑q

i=1

∑q
j=1 Bij RiC j

> 0,

and hence we are not at a maximum, a contradiction.

LEMMA 4.12. Assume that B is ergodic. Let α,β ≥ 0 be a local maximum of �1(α,β)
in the subspace defined by (25). Then, αi > 0 for all i ∈ [q] and β j > 0 for all j ∈ [q].

PROOF. It will be useful to view �1 as a function of (r, c), where r, c are given by
(29). Because of Lemma 4.3, we have (r, c) satisfying (46) and (30) (and any such (r, c)
yields (α,β) satisfying (25)). We have (from (43))

�1(α,β) =
q∑

i=1

q∑
j=1

Bij RiC j

⎛⎝(� − 1)

⎛⎝ln

⎛⎝ q∑
j=1

BijC j

⎞⎠+ ln

( q∑
i=1

Bij Ri

)⎞⎠− ln Ri − ln Cj

⎞⎠
=: �̂1(r, c).

If r or c has a zero coordinate, then, by ergodicity of B, there exists k, � ∈ [q] such that
(i) Rk = 0, C� > 0, and Bk� > 0 or (ii) Rk > 0, C� = 0, and Bk� > 0 (see the argument in
the proof of Lemma 4.11). Without loss of generality, it is the case (i).

Note that we have

∂

∂ Rk

q∑
i=1

q∑
j=1

Bij RiC j =
q∑

j=1

BkjC j ≥ Bk�C� > 0. (49)

We have

∂

∂ Rk
�̂1 =

q∑
j=1

BkjC j

(
(� − 1) ln

( q∑
i=1

Bij Ri

)
− ln Cj

)

+
⎛⎝(� − 1) ln

⎛⎝ q∑
j=1

BkjC j

⎞⎠− ln Rk

⎞⎠⎛⎝ q∑
j=1

BkjC j

⎞⎠+ (� − 2)
q∑

j=1

BkjC j . (50)

The first sum in (50) is finite since if Cj > 0, then
∑q

i=1 Bij Ri > 0, (using (30)); if Cj = 0,
then the contribution of the term to the sum is zero (we are using the usual convention
0 ln 0 = 0). The second term in (50) has value +∞ since ln Rk = −∞ and (49). Finally,
the last term in (50) is finite and hence we have ∂

∂ Rk
�̂1 = +∞.

Recall that C� > 0 and hence (using (30)):

∂

∂C�

q∑
i=1

q∑
j=1

Bij RiC j =
q∑

i=1

Bi� Ri > 0. (51)
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Finally, we argue that ∂
∂C�

�̂1 is finite. We have (analogously to (50))

∂

∂C�

�̂1 =
q∑

i=1

Bi� Ri

⎛⎝(� − 1) ln

⎛⎝ q∑
j=1

BijC j

⎞⎠− ln Ri

⎞⎠
+
(

(� − 1) ln

( q∑
i=1

Bi� Ri

)
− ln C�

)( q∑
i=1

Bi� Ri

)
+ (� − 2)

q∑
i=1

Bi� Ri. (52)

The first and third term in (52) are finite by the same argument as for (50). In the
second term, we use (51) and C� > 0.

Now we increase Rk by an infinitesimal amount and change C� to maintain (34) (and
hence (25)). (This is possible because both C� and Rk change the value of (34), see
Eqs. (49) and (51).) This change will increase �̂1 and hence �1 contradicting the local
maximality of α,β.

4.1.5. Proof of Theorem 4.1

PROOF OF THEOREM 4.1. Lemmas 4.7 and 4.8 give the connection between the critical
points of �1 and the fixpoints of the tree recursions. Lemmas 4.9 and 4.10 give con-
nection between the critical points of �1 and 
 and show that the values agree on the
corresponding critical points. Finally, Lemmas 4.11 and 4.12 show that the maxima
happen in the interior (that is, for Ri > 0, Cj > 0 in the case of 
 and for αi > 0, β j > 0
in the case of �1).

4.2. Connecting Local Maxima and Stability of Tree Recursions

In this section, we prove Theorem 4.2.

4.2.1. Maximum Entropy Configurations on Random �-Regular Bipartite Graphs. We analyze
the critical points by looking at the second derivative. Using ( f ln f )′′ = ( f ′)2/ f + (1 +
ln f ) f ′′ we have

� ′′
1 (α,β)

= (� − 1)
q∑

i=1

(
(α′

i)
2/αi + (1 + ln αi)α′′

i

)− �

q∑
i=1

(
α′

i
R′

i

Ri
+ (ln Ri)α′′

i

)

+ (� − 1)
q∑

j=1

(
(β ′

j)
2/β j + (1 + ln β j)β ′′

j

)− �

q∑
j=1

(
β ′

j

C ′
j

C j
+ (ln Cj)β ′′

j

)

= (� − 1)
q∑

i=1

(α′
i)

2/αi − �

q∑
i=1

α′
i
R′

i

Ri
+

q∑
i=1

α′′
i ((� − 1)(1 + ln αi) − � ln Ri) (53)

+ (� − 1)
q∑

j=1

(β ′
j)

2/β j − �

q∑
j=1

β ′
j

C ′
j

C j
+

q∑
j=1

β ′′
j ((� − 1)(1 + ln β j) − � ln Cj)

= (� − 1)
q∑

i=1

(α′
i)

2/αi − �

q∑
i=1

α′
i
R′

i

Ri
+ (� − 1)

q∑
j=1

(β ′
j)

2/β j − �

q∑
j=1

β ′
j

C ′
j

C j
,

where the last equality follows from (42) (replacing α′
i by α′′

i and β ′
j by β ′′

j ; note that
they are both from the same subspace (35)).
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Plugging (37) into (53) we obtain

� ′′
1 (α,β) =

q∑
i=1

α′
i

(
(� − 1)

∑q
j=1 BijC ′

j∑q
j=1 BijC j

− R′
i

Ri

)
+

q∑
j=1

β ′
j

(
(� − 1)

∑q
i=1 Bij R′

i∑q
i=1 Bij Ri

− C ′
j

C j

)
. (54)

We are going to use the second partial derivative test (which gives a sufficient condi-
tion) to establish maxima of �1. We will use the following terminology for local maxima
established using this method.

Definition 4.13. A critical point x of a function f : M → R is called Hessian local
maximum if the Hessian of f at x is negative definite.

Let L be the (matrix of the) linear map (r1, . . . , rq, c1, . . . , cq) �→ (r̂1, . . . , r̂q, ĉ1, . . . , ĉq)
given by

r̂i =
∑

j

Bij RiC j√
αiβ j

c j and ĉ j =
∑

i

Bij RiC j√
αiβ j

ri. (55)

In the following, we denote by I the identity matrix of dimension 2q × 2q.

LEMMA 4.14. A critical point (α,β) is a Hessian local maximum of �1(α,β) in the
subspace defined by (35) if and only if wᵀ(I + L)((� − 1)L − I)w < 0 for all w =
(r1, . . . , rq, c1, . . . , cq)ᵀ such that

q∑
i=1

√
αiri = 0 and

q∑
j=1

√
β jc j = 0. (56)

PROOF. To check whether we are at a Hessian local maximum of �1(α,β), we have to
have (54) negative for nonzero α′

i ’s and β ′
j ’s from the subspace defined by (35) and (38).

Let ri = √
αi R′

i/Ri and c j = √
β jC ′

j/Cj . Using (37) in (54), we have

� ′′
1 =

∑
i

αi

(
R′

i

Ri
+
∑

j BijC ′
j∑

j BijC j

)(
(� − 1)

∑
j BijC ′

j∑
j BijC j

− R′
i

Ri

)

+
∑

j

β j

(C ′
j

C j
+
∑

i Bij R′
i∑

i Bij Ri

)(
(� − 1)

∑
i Bij R′

i∑
i Bij Ri

− C ′
j

C j

)

=
∑

i

(
ri +

∑
j

Bij RiC j√
αiβ j

c j

)(∑
j

(� − 1)
Bij RiC j√

αiβ j
c j − ri

)

+
∑

j

(
c j +

∑
i

Bij RiC j√
αiβ j

ri

)(∑
i

(� − 1)
Bij RiC j√

αiβ j
ri − c j

)
,

where the second equality follows by using (29) to substitute the expressions
∑

j BijC j

and
∑

i Bij Ri. Let w = (r1, . . . , rq, c1, . . . , cq)ᵀ. In terms of L and w (recall that L is a
symmetric 2 × 2 block matrix with zero blocks on the diagonal), we have

� ′′
1 = wᵀ(I + L)((� − 1)L − I)w. (57)
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We have to examine when (57) is in the subspace defined by (35) and (38), which in
terms of ri ’s and c j ’s become∑

i

α′
i =

∑
j

β ′
j =

∑
i

√
αiri +

∑
j

√
β jc j = 0, (58)

∑
i

αi
R′

i

Ri
−
∑

j

β j
C ′

j

C j
=
∑

i

√
αiri −

∑
j

√
β jc j = 0. (59)

We give more detail on the derivation of (58). We have∑
i

α′
i =

∑
i

αi
α′

i

αi
=
∑

i

αi

(
R′

i

Ri
+
∑

j BijC ′
j∑

j BijC j

)
=
∑

i

ri
√

αi +
∑

i

∑
j

Bij RiC ′
j

=
∑

i

ri
√

αi +
∑

j

c j√
β j

∑
i

Bij RiC j =
∑

i

ri
√

αi +
∑

j

c j
√

β j,

the derivation for
∑

j β ′
j is analogous (or, alternatively, use (35) to argue directly that∑

j β ′
j = ∑

i α′
i).

4.2.2. Attractive Fixpoints of Tree Recursions. The variables Ri, Cj , αi, β j in this section
refer to a priori different quantities as the variables in Section 4.2.1. We feel that this
conflict is justified since we will establish that they coincide.

For convenience we repeat the tree recursions as stated in the introduction:

R̂i ∝
⎛⎝ q∑

j=1

BijC j

⎞⎠�−1

and Ĉ j ∝
( q∑

i=1

Bij Rj

)�−1

. (22)

We are interested in the fixpoints of the tree recursions, that is, Ri ’s and Cj ’s such that

R̂i ∝ Ri and Ĉ j ∝ Cj

for all i, j ∈ [q]. Note that the fixpoints correspond to the critical points of �1 (using
Theorem 4.1)).

Next we examine the stability of fixpoints. For a continuously differentiable map
a sufficient condition for a fixpoint to be attractive is if the spectral radius of the
derivative is less than one at the fixpoint. We will use the following terminology for
fixpoints whose attractiveness is established using this method.

Definition 4.15. A fixpoint x of a function f : M → M is called jacobian attractive
fixpoint if the Jacobian of f at x has spectral radius less than 1.

LEMMA 4.16. Let (r, c) be a fixpoint of the tree recursions. Let αi = ∑q
j=1 Bij RiC j and

β j = ∑q
i=1 Bij RiC j and let L be the (matrix of the) map defined by (55). We have that

(r, c) is Jacobian attractive if and only if (� − 1)L has spectral radius less than 1 in the
subspace of w = (r1, . . . , rq, c1, . . . , cq) that satisfies

q∑
i=1

√
αiri = 0 and

q∑
j=1

√
β jc j = 0. (56)

PROOF. Without loss of generality, we can assume that (r, c) is scaled so that
q∑

i=1

q∑
j=1

Bij RiC j = 1. (60)
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Note that the scaling does not affect the value of L nor does it affect the constraint
(56).

When we perturb the Ri ’s and Cj ’s and apply one step of the tree recursion, we obtain

R̂′
i

R̂i
= (� − 1)

∑q
j=1 BijC j

C ′
j

C j∑q
j=1 BijC j

and
Ĉ ′

j

Ĉ j
= (� − 1)

∑q
i=1 Bij Ri

R′
i

Ri∑q
i=1 Bij Ri

. (61)

We can rewrite (61) as follows

R̂′
i

R̂i
= (� − 1)

∑q
j=1 Bij RiC j

C ′
j

C j

αi
and

Ĉ ′
j

Ĉ j
= (� − 1)

∑q
i=1 Bij RiC j

R′
i

Ri

β j
. (62)

Note that Eq. (22) is invariant under scaling all the Ri ’s by the same factor. Similarly
scaling all Cj ’s by the same factor does not change (22). We need to exclude this scaling
freedom when studying the local stability of (61). More precisely, we will locate an
invariant subspace of (62) whose complement corresponds to the scaling. We obtain
the following subspace (it corresponds to preserving (60)):

q∑
i=1

αi
R′

i

Ri
= 0 and

q∑
j=1

β j
C ′

j

C j
= 0. (63)

Now we check that (63) is invariant under the map (62), indeed,
q∑

i=1

αi
R̂′

i

R̂i
= (� − 1)

q∑
i=1

q∑
j=1

Bij RiC j
C ′

j

C j
= (� − 1)

q∑
j=1

β j
C ′

j

C j
= 0; (64)

the argument for
∑q

j=1 β j
Ĉ ′

j

Ĉ j
= 0 is analogous.

The linear map (given by (61))(
R′

1

R1
, . . . ,

R′
q

Rq
,

C ′
1

C1
, . . . ,

C ′
q

Cq

)
�→

(
R̂′

1

R̂1
, . . . ,

R̂′
q

R̂q
,

Ĉ ′
1

Ĉ1
, . . . ,

Ĉ ′
q

Ĉq

)
(65)

considered in the subspace defined by (63) is the linear map of the Jacobian of (22) at
(R1, . . . , Rq, C1, . . . , Cq) (in the projective space). A fixpoint (R1, . . . , Rq, C1, . . . , Cq) of
(22) is Jacobian attractive if the linear map (65) has spectral radius less than 1.

Let ri = √
αi R′

i/Ri, c j = √
β jC ′

j/Cj , r̂i = √
αi R̂′

i/R̂i, and ĉ j = √
β j Ĉ ′

j/Ĉ j . This linear
transformation of variables turns (62) into

r̂i = (� − 1)
q∑

j=1

Bij RiC j√
αiβ j

c j and ĉ j = (� − 1)
q∑

i=1

Bij RiC j√
αiβ j

ri. (66)

Note that (66) is (� − 1)L where L is the map defined by (55). The constraint (63)
becomes (56).

4.2.3. Connecting Attractive Fixpoints to Maximum Entropy Configurations. Now we are ready
to prove Theorem 4.2.

PROOF OF THEOREM 4.2. Let S be the linear subspace defined by (56) (note that (58)
together with (59) define the same subspace). The constraint for the fixpoint to be
Jacobian attractive is that (�−1)L on S has spectral radius less than 1. The constraint
for the critical point to be Hessian maximum is that the eigenvalues of (I + L)((� −
1)L − I) on S are negative (see Eq. (57)).
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Note that L is a symmetric 2×2 block matrix (each of the blocks has dimension q×q)
with zero blocks on the diagonal. From this, we conclude3 that L has symmetric real
spectrum (symmetry means that if a �= 0 is an eigenvalue then so is −a by the same
multiplicity). Note that S is invariant under L and hence the spectrum of L on S is a
subset of the spectrum of L (it is still symmetric real; the restriction wiped out a pair
of eigenvalues −1 and 1).

The constraint for the fixpoint to be Jacobian attractive, in terms of eigenvalues, is:
for each eigenvalue x of L on S

−1 < (� − 1)x < 1. (67)

The constraint for the critical point to be Hessian maximum, in terms of eigenvalues,
is: for each eigenvalue x of L on S

(1 + x)((� − 1)x − 1) < 0 and (1 − x)(−(� − 1)x − 1) < 0, (68)

where the second constraint comes from the symmetry of the spectrum (thus −x is an
eigenvalue). Note that conditions (67) and (68) are equivalent (since (1+x)((�−1)x−1)
is negative for −1 < x < 1/(� − 1)).

5. REDUCTION FOR COLORINGS

In this section, we outline our proof of Theorem 1.1. We start by reviewing the main
components of the reduction for 2-spin systems (as carried out in Sly [2010] and Sly
and Sun [2012]) and in particular the hard-core model. This will allow us to isolate
the parts of the argument which do not extend to the multispin case and motivate
our reduction scheme. The first step is a reduction from max-cut to a so-called phase
labeling problem that we introduce. To present the main ideas of this particular key
reduction, we first present it in this section in the simplified setting of the colorings
problem (see Lemma 5.1).

We begin by reviewing the reduction for the hard-core model. The basic gadget in
the reduction is a bipartite random graph, which we denote by G. The sides of the
bipartition have an equal number of vertices, and the sides are labeled with + and −.
Most vertices in G have degree � but there is also a small number of degree � − 1
vertices (to allow to make connections between gadgets without creating degree � + 1
vertices). For s = {+,−}, let the vertices in the s-side be U s ∪ Ws where the vertices in
U = U+ ∪ U− have degree � and the vertices in W = W+ ∪ W− have degree � − 1.
The phase of an independent set I is + (respectively −) if I has more vertices in U+
(respectively U−). Note that the phase depends only on the spins of the “large” portion
of the graph, that is, the spins of vertices in U .

In nonuniqueness regimes, the gadget G has two important properties (both of which
can be obtained by building on the second moment analysis of Section 3). First, the
phase of a random independent set I is equal to + or − with probability roughly equal
to 1/2. Second, conditioned on the phase of a random independent set I, the spins of
the vertices in W are approximately independent, that is, the marginal distribution
on W is close to a product distribution. In this product distribution if the phase is +
(respectively −), a vertex in W+ is in I with probability p+ (respectively p−), while a
vertex in W− is in I with probability p− (respectively p+). The values p± correspond

3Write L = [ 0 M
Mᵀ 0 ] where M is a q×q matrix. Let a �= 0 be an eigenvalue of L with corresponding eigenvector

v. Note that v has dimension 2q. Let v1, v2 be the q-dimensional vectors obtained by the first q and the last
q coordinates of v, respectively. It holds that Mv2 = av1 and Mᵀv1 = av2. Let v′ be the (2q)-dimensional
vector whose first q coordinates are given by the coordinates of −v1 and the last q coordinates are given by
the coordinates of v2. Note that v′ is an eigenvector of L with corresponding eigenvalue -a. Finally, observe
that the map v �→ v′ as defined here preserves the linear independence of the eigenvectors corresponding to
a (this is relevant if a has multiplicity greater than 1).
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to maxima of the function �1 and, crucially (as we shall demonstrate shortly), they
satisfy p+ �= p−.

The conditional independence property is important in that it allows to quantify the
effect of using vertices of W as terminals to make connections between copies of the
gadget G. For example, consider the following type of connection, which we refer to as
parallel. Let v+ ∈ W+, v− ∈ W− and consider two copies of the gadget G, say G1, G2.
For i = 1, 2, denote by v+

i , v−
i the copies of v+, v− in Gi, respectively. Now add the edges

(v+
1 , v+

2 ) and (v−
1 , v−

2 ) and denote the final graph by G12. Thus, a parallel connection
corresponds to joining the +,+ and −,− sides of two copies of the gadget.

Random independent sets of G12 can be sampled from the hard-core measure by
first sampling random independent sets I1, I2 from the hard-core measure of G1, G2
respectively and keeping I1 ∪ I2 if it is a valid independent set in G12. We thus
have that the partition function of G12 is equal to (ZG)2 times the probability that
v±

1 , v±
2 are not simultaneously in the independent set I1 ∪ I2. The latter quantity

can easily be computed if we condition on the phases of the independent sets I1, I2 in
G1, G2 respectively. In particular, if the phases agree the desired quantity is given by
(1 − (p+)2)(1 − (p−)2), otherwise by (1 − p+ p−)2.

Crucially, since p+ �= p−, observe that under a parallel connection neighboring gad-
gets prefer to have different phases, that is,

(1 − (p+)2)(1 − (p−)2) < (1 − p+ p−)2. (69)

As we shall describe next, this property together with the fact that there are exactly
two phases suffices to show hardness (i.e., using only parallel connections between
gadgets in the reduction). In particular, assume that H is an instance of MAX-CUT and
replace each vertex in H by a copy of the gadget G. Then, for each edge of H, connect the
respective gadgets in parallel. The partition function of the final graph is dominated
from phase assignments which correspond to large cuts in H. This intuition is the basis
of the reduction in Sly [2010] and Sly and Sun [2012].

We now switch to the k-colorings model and describe the most significant obstacles
for carrying out the previous reduction. First, let us describe the properties of the
gadget G (defined identically as before). Using the second moment analysis of Section 3
and in particular Theorem 1.4, we can analyze the phases of a random coloring of G
in the semitranslation nonuniqueness regime (the precise statement of the gadget’s
properties are given in Lemma 6.9). The main difference from the hard-core model
is that now the number of phases is much greater than two (equal to the number of
maximizers of the function �1, see Theorem 1.6). In particular, for k even, the phase
of a coloring is determined by the dominant set of k/2 colors on U+, that is, the k/2
colors with largest frequencies among vertices of U+. Each of the ( k

k/2 ) phases appears
with roughly equal probability and given the phase, the marginal distribution on W is
close to a product distribution, which we now describe. We can compute explicit values
a′ = a′(k,�), b′ = b′(k,�) such that for a phase T ∈ ( [k]

k/2 ) the probability mass function x
of a vertex in W+ has its ith entry equal to a′ if i ∈ T and equal to b′ if i /∈ T . Similarly,
the probability mass function y of a vertex in W− has its ith entry equal to b′ if i ∈ T
and equal to a′ if i /∈ T . (The values a′, b′ correspond to the values a, b described in
Item 2 of Theorem 1.6, the correspondence is obtained using (23) in Theorem 4.1.4)

Let Q be the union of the pairs (x, y) over all dominant phases. Hereafter, we will
identify the phases with elements of Q. Note that if (x, y) ∈ Q, then (y, x) ∈ Q as well.
We also denote by Q′ the union of unordered elements of Q. Elements of Q′ are called

4In particular, a′, b′ can be readily obtained from a, b using the relations a = a′�/�−1/S, b = a′�/�−1/S,
q
2 (a′ + b′) = 1, where S := q

2 (a′�/�−1 + b′�/�−1).
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unordered phases (we use p to denote unordered phases). Given a phase p = {x, y}
an ordering of the pair will be called “assigning spin to the phase”. The two ordered
phases corresponding to the unordered phase p will be denoted by p+ and p−.

In our reduction, we will again use parallel connections between disjoint copies of the
gadget (though we will need later to also consider other types of connections). Recall
that the graph G12 is obtained by adding a parallel connection between two disjoint
copies of G and that the edges (v+

1 , v+
2 ) and (v−

1 , v−
2 ) realize the connection between the

+ sides and − sides of the gadgets, respectively. We next quantify the effect of a parallel
connection, and here we will use the conditional independence of vertices in W+ ∪ W−
(conditioned on the phase). To do this, observe that random colorings of G12 can be
generated by first generating random colorings of G1, G2 and keeping the resulting
coloring if v±

1 , v±
2 have different colors. We thus have that the partition function of

G12 is equal to (ZG)2 times the probability that v±
1 , v±

2 have different colors in random
colorings of G1, G2. The latter quantity can easily be computed if we condition on the
phases (x1, y1), (x2, y2) of the colorings in G1, G2, and is equal to (1 − xᵀ

1x2)(1 − yᵀ
1y2).

By taking logarithms, we can assume a parallel connection between gadgets with
phases (x1, y1) and (x2, y2) incurs an (additive) weight

wp((x1, y1), (x2, y2)) = ln
(
1 − xᵀ

1x2
)+ ln

(
1 − yᵀ

1y2
)
.

Let p = {x, y} ∈ Q′ be an arbitrary unordered phase and recall that (in the non-
uniqueness regime) we have x �= y. Using this, the forthcoming Lemma 6.3 shows (in
a more general setting) that the weight function wp(·, ·) satisfies

wp(p+, p+) = wp(p−, p−) < wp(p+, p−). (70)

(We encountered an instance of (70) in the earlier discussion for the hard-core model,
see (69).) Intuitively, (70) says that for two gadgets connected in parallel and which are
assigned the same unordered phase p, the optimal “spin” (or ordering) assignment is
to give the gadgets opposite assignments p+, p− (or vice versa).

For the colorings model, simply using parallel connections to reduce from MAX-CUT no
longer suffices. A short calculation shows that the optimal configuration for a triangle
of gadgets connected in parallel is to give all three gadgets different phases. To bypass
this entanglement, we need to introduce some sort of ferromagnetism in the reduction
to enforce gadgets corresponding to vertices of H to use a single (unordered) phase.
To achieve this, we use symmetric connections, which correspond to having not only
(+,+), (−,−) connections of the gadgets, but also (+,−) and (−,+). Thus, a symmetric
connection whose endpoints have phases (x1, y1), (x2, y2) incurs (additive) weight

ws((x1, y1), (x2, y2)) = wp((x1, y1), (x2, y2)) + wp((x1, y1), (y2, x2)).

Symmetric connections will allow us to enforce a single unordered phase to all gadgets,
while parallel connections will allow us to recover a maximum-cut partition. To have
some modularity in our construction, rather than reducing from MAX-CUT directly, we
use the following “phase labeling problem”.

COLORINGS PHASE LABELING PROBLEM(B,Q)

INPUT: undirected edge-weighted multigraph H = (V, E) and a partition of the edges
{Ep, Es}.
OUTPUT: MAXLWT(H) := maxY LWTH(Y), where the maximization is over all possible
phase labelings Y : V → Q and

LWTH(Y) :=
∑

{u,v}∈Es

ws(Y(u),Y(v)) +
∑

{u,v}∈Ep

wp(Y(u),Y(v)).
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Edges in Ep (respectively Es) correspond to parallel (respectively symmetric) con-
nections and we shall refer to them as parallel (respectively symmetric) edges. The
arguments in Sly and Sun [2012], which we sketched earlier, can easily be adapted to
show that an algorithm for approximating the partition function to an arbitrarily small
exponential factor yields a PTAS for the phase labeling problem, see Lemma 6.1 and
its proof in Section 6.4. It then remains to prove that a PTAS for the phase labeling
problem yields a PTAS for MAX-CUT on 3-regular graphs. This is the scope of the next
lemma, which we focus on proving in the remainder of this section.

LEMMA 5.1. A (randomized) algorithm that approximates the solution to the COLOR-
INGS PHASE LABELING PROBLEM(B,Q) on bounded degree graphs within a factor of 1−o(1)
yields a (randomized) algorithm that approximates MAXCUT on 3-regular graphs within
a factor of 1 − o(1).

Our reduction relies on the following construction of a gadget (Lemma 5.2) which
“prefers” the unordered phase of two distinguished vertices u and v to agree. The key
idea is that for the complete graph on |Q′| vertices (recall that |Q′| is the number of
unordered phases) and whose edges are all symmetric, the optimal phase assignment
is to give each vertex a distinct unordered phase (note that, in this graph, the “spins”
of the phases do not matter since all of its edges are symmetric). Now, consider the
complete graph on |Q′| + 1 vertices, all of whose edges are symmetric, where one edge,
say (u, v), is removed. Vertices u, v now “prefer” to have the same unordered phase,
that is, the optimal phase assignment in the resulting graph is to give u, v the same
unordered phase p and the remaining vertices a distinct unordered phase from Q′\{p}.
(A modification of this gadget will also work for general antiferromagnetic B.)

We will use the following notation: for a phase assignment Y with ordered phases,
we denote by Y ′ the respective phase assignment with unordered phases.

LEMMA 5.2. A constant sized gadget J1 with two distinguished vertices u, v can be
constructed with the following property: all edges of J1 are symmetric and the following
is true:

max
Y;Y ′(u)=Y ′(v)

LWTJ1 (Y) > ε1 + max
Y;Y ′(u) �=Y ′(v)

LWTJ1 (Y), (71)

where ε1 > 0 is a constant depending only on k and �.

We give the proof of the critical Lemma 5.2 after the (simpler) proof of Lemma 5.1.

PROOF OF LEMMA 5.1. Let ε1 be as in Lemma 5.2 and

t := 2�(max
p1,p2

wp(p1, p2) − min
p1,p2

wp(p1, p2))/ε1�.

Given a 3-regular instance H = (V, E) of MAX-CUT, we first declare all edges of H
to be parallel. Moreover, for every edge (u′, v′) of H, take t copies of gadget J1 from
Lemma 5.2, identify (merge) their u vertices with u′, and identify (merge) their v
vertices with v′. Let H′ be the final graph.

To find the optimal phase labeling of H′, we may focus on the phase assignment
restricted to vertices in H, since each gadget J1 can be independently set to its optimal
value conditioned on the phases for its distinguished vertices u and v. We claim that

MAXLWT(H′) = C1MAXCUT(H) + (C2 + C3t)|E|, (72)

for constants C1, C2, C3 to be specified later (depending only on k,�). Using the bound
MAXCUT(H) ≥ |E|/2 = 3|V |/4, the lemma follows easily from (72). We thus focus on
proving (72).
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The key idea is that for any phase labeling Y : V → Q, changing the unordered
phases of vertices in H to the same unordered phase p ∈ Q′, while keeping the spins, can
only increase the weight of the labeling. Indeed, for (u, v) ∈ E such that Y ′(u) = Y ′(v),
no change in the weight of the labeling occurs by the symmetry of the phases. For
(u, v) ∈ E such that Y ′(u) �= Y ′(v), the potential (weight) loss from the parallel edge
(u, v) is compensated by the gain on the t copies of J1 by (71) and the choice of t.

For phase labelings which assign vertices of H the same unordered phase p (but
perhaps different spins), to attain the maximum weight for a phase labeling, we only
need to choose the spins, in order to maximize the contribution from parallel edges (the
edges of H). By the same argument we discussed for the hard-core model, (70) yields
that the optimal choice of spins to the phases induces a maximum-cut partition of H. For
such a spin assignment, the contribution from parallel edges is C1MAXCUT(H) + C2|E|,
where

C1 := wp(p+, p−) − wp(p−, p−) and C2 := wp(p−, p−).

The contribution from symmetric edges is C3t|E|, where

C3 := max
Y;Y ′(u)=Y ′(v)=p

LWTJ1 (Y).

This proves (72).

We conclude this section by giving the proof of Lemma 5.2.

PROOF OF LEMMA 5.2. Let Q′ := {p1, . . . , pQ′ } be the collection of all unordered phases
and set pi := {xi, yi} for i ∈ [Q′]. Denote by K the multigraph on Q′ vertices b1, b2, . . . , bQ′

with the following symmetric edges: self-loop on bi for i ∈ [Q′] and two edges between bi
and bj for every i, j ∈ [Q′] with i �= j. We first prove that the optimal phase assignments
Y of K are those which assign each vertex bi a distinct phase from Q′ (note that the
spins of the phases do not matter since all edges of K are symmetric). The desired
gadget J1 will be constructed afterwards.

Let Y be a phase labeling of K and si be the number of vertices assigned phase pi.
Denote by s the vector (s1, . . . , sQ′ )ᵀ. Note that 1ᵀs = Q′, where 1 is the all one vector
with dimension Q′. Then

LWTK(Y) =
∑

i, j∈[Q′]

sisjws(pi, p j) = sᵀAs,

where A is the Q′ × Q′ matrix whose (i, j) entry equals ws(pi, p j). Note that A is
symmetric and 1 is an eigenvector of A (because of the transitive symmetry of phases).
Moreover, if we let s′ = s − 1, then 1ᵀs′ = 0. It follows that

sᵀAs = 1ᵀA1 + (s′)ᵀAs′. (73)

If A is negative definite, Eq. (73) shows that the all ones labeling, that is, s = 1, is
(strictly) better than any other labeling. Hence, the result will follow if we prove that
A is negative definite.

Let z1, . . . , zQ := x1, . . . , xQ′ , y1, . . . , yQ′ and let Â be the Q× Q matrix whose i j-entry
is ln(1 − zᵀ

i z j). Using the definition of the weights ws(·, ·), it is easy to check that for
any vector s it holds that

sᵀAs = (s, s)ᵀÂ(s, s),

so it suffices to prove that Â is negative definite. We will show here that Â is negative
semi-definite; the proof that Â is nonsingular (and hence negative definite) is trickier
and is given in the proof of the more general Lemma 6.5. Note that the entries of Â
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are obtained by applying z �→ ln(1 − z) to each entry of the Gram matrix of the vectors
z1, . . . , zQ. Since, for |z| < 1, we have ln(1 − z) = −z − z2/2 − z3/3 − · · · , by Schur’s
product theorem (see Corollary 7.5.9 in Horn and Johnson [2013]) we obtain that Â is
negative semidefinite, as desired.

To construct the gadget J1, we overlay two copies of K as follows. Let Ku (respectively
Kv) be a copy of K, where the image of bQ′ is renamed to u (respectively v). Overlay
Ku, Kv by identifying the images of b1, . . . , bQ′−1 in the two copies. Thus, the resulting
graph J1 has two self loops on bi for i ∈ [Q′ − 1], four edges between bi and bj for every
i, j ∈ [Q′ − 1] with i �= j, two edges between u and bi for i ∈ [Q′ − 1], two edges between
v and bi for i ∈ [Q′ − 1] and a self loop on u, v.

Note that, for every phase labeling Y of J1, we have LWTJ1 (Y) = LWTKu(Y) + LWTKv
(Y)

and hence MAXLWT(J1) ≤ 2MAXLWT(K). Using that the optimal phase labelings for K are
those which assign each vertex a distinct phase from Q′, we obtain that the inequality
holds at equality for those (and only those) phase labelings which assign u, v a common
phase p ∈ Q′ and vertices b1, . . . , bQ′−1 a distinct phase from Q′ − {p}. This yields the
ε1 in the statement of the lemma. Note that ε1 depends only on Q′, which in turn is
completely determined by k,�.

6. GENERAL REDUCTION

6.1. Phase Labeling Problem

We first introduce the phase labeling problem for a general antiferromagnetic spin
system (which satisfies the hypotheses of Theorem 1.5). As in the case for the colorings
model (see Section 5), we let Q′ be the union of {x, y} over all dominant phases, that is,

Q′ = {{x1, y1}, . . . , {xQ′ , yQ′ }}.
Henceforth, we will refer to elements of Q′ as unordered phases. Note that for fixed
q,�, B the global maxima of �1 correspond to fixpoints of (22) and hence can be
approximated to any desired polynomial accuracy of their values. The values of x, y
may then be recovered using (23) (see Footnote 4 for an explicit description of the
correspondence in the case of colorings). The assumption of Theorem 1.5 translates
into xi �= yi for all i ∈ [Q′].

Given an unordered phase {x, y} an ordering of the pair will be called “assigning spin
to the phase”. Let

Q = {(x1, y1), . . . , (xQ, yQ)}
be the collection of ordered phases. Note that Q = 2Q′. We will denote unordered
phases using p; the two ordered phases corresponding to the unordered phase p will
be denoted by p+ and p−. Given a graph H with vertex set V , we will assign ordered
phases to its vertices—the labeling (also called phase assignment) will be denoted by
Y : V → Q. The corresponding labeling by unordered phases (where the ordering is
removed) will be denoted by Y ′.

Now we define the weight of a phase assignment. We will have two types of edges in
H: parallel or symmetric; the type of an edge will only impact the weight of a phase
assignment. In particular, a parallel edge whose endpoints have labels (x1, y1) and
(x2, y2) incurs weight

wp((x1, y1), (x2, y2)) = ln
(
xᵀ

1Bx2
)+ ln

(
yᵀ

1By2
)
,

while a symmetric edge incurs weight

ws((x1, y1), (x2, y2)) = wp((x1, y1), (x2, y2)) + wp((x1, y1), (y2, x2)).

Note that if we flip (x1, y1), that is, replace it by (y1, x1), the weight of the symmetric
edge does not change.
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We will use the following problem in our reduction.

PHASE LABELING PROBLEM(B,Q)

INPUT: undirected edge-weighted multigraph H = (V, E) and a partition of the edges
{Ep, Es}.
OUTPUT: MAXLWT(H) := maxY LWTH(Y), where the maximization is over all possible
phase labelings Y : V → Q and

LWTH(Y) =
∑

{u,v}∈Es

ws(Y(u),Y(v)) +
∑

{u,v}∈Ep

wp(Y(u),Y(v)).

The motivation for the PHASE LABELING PROBLEM is the following lemma. The proof
roughly follows the lines of Sly and Sun [2012] and is given in Section 6.4.

LEMMA 6.1. In the setting of Theorem 1.5, the following holds. A (randomized) algo-
rithm that approximates the partition function on triangle free �-regular graphs within
an arbitrarily small exponential factor yields a (randomized) algorithm that approx-
imates the solution to the Phase Labeling Problem with parameters B,Q on bounded
degree graphs within a factor of 1 − o(1).

The following lemma requires more work in our setting and is proved in Section 6.3.

LEMMA 6.2. A (randomized) algorithm that approximates the solution to the phase
labeling problem with parameters B,Q on bounded degree graphs within a factor of
1−o(1) yields a (randomized) algorithm that approximates MAXCUT on 3-regular graphs
within a factor of 1 − o(1).

Using Lemmas 6.1 and 6.2, we obtain Theorem 1.5.

PROOF OF THEOREM 1.5. Suppose that there exists a (randomized) algorithm to ap-
proximate the partition function on �-regular graphs with interaction matrix B up to
an arbitrarily small exponential factor. Then, combinining Lemmas 6.1 and 6.2, we
obtain a (randomized) algorithm to approximate MAXCUT on 3-regular graphs within a
factor of 1 − o(1). This contradicts the result of Alimonti and Kann [1997].

6.2. Properties of Antiferromagnetic Spin Systems

In this section, we prove two basic properties of antiferromagnetic systems that will be
used in our general reductions.

As a consequence of the Perron-Frobenius theorem and the antiferromagnetism def-
inition (cf., Definition 1.3), we may decompose the interaction matrix B of an antifer-
romagnetic model as

B = uuᵀ − PᵀP, (74)

where the vector u has positive entries and P is a square matrix. In (74), u corre-
sponds to the Perron-Frobenius eigenvector of the matrix B and P is the Cholesky
decomposition of uuᵀ − B (which is positive semidefinite by the assumption that B is
antiferromagnetic). Using the decomposition (74), we prove the following two lemmas
which are used in the reduction.

LEMMA 6.3. For antiferromagnetic B, and vectors z1, z2 ∈ R
q
≥0 with ‖z1‖1 = ‖z2‖1 =

1, we have (
zᵀ

1Bz1
)(

zᵀ
2Bz2

) ≤ (
zᵀ

1Bz2
)2

.

Equality holds iff z1 = z2.
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PROOF. Set w1 = Pz1, w2 = Pz2, a1 = uᵀz1, a2 = uᵀz2. Then

zᵀ
1Bz1 = a2

1 − wᵀ
1w1, zᵀ

2Bz2 = a2
2 − wᵀ

2w2, zᵀ
1Bz2 = a1a2 − wᵀ

1w2.

Since B, z1, z2 have nonnegative entries, these equalities imply a2
1 − wᵀ

1w1, a2
2 −

wᵀ
2w2, a1a2 − wᵀ

1w2 ≥ 0. The inequality reduces to(
a2

1 − wᵀ
1w1

)(
a2

2 − wᵀ
2w2

) ≤ (
a1a2 − wᵀ

1w2
)2

.

This is known as Aczél’s inequality. The fastest proof goes as follows: set b2
1 = a2

1 −wᵀ
1w1

and b2
2 = a2

2 − wᵀ
2w2, so that by Cauchy-Schwarz a1a2 ≥ b1b2 + wᵀ

1w2, implying the
inequality.

Equality can only hold if a1 = λa2 and w1 = λw2, yielding uᵀ(z1 − λz2) = 0 and
P(z1 − λz2) = 0. We easily obtain B(z1 − λz2) = 0 and since B is invertible, z1 = λz2.
The assumption ‖z1‖1 = ‖z2‖1 = 1 implies λ = 1, as wanted.

COROLLARY 6.4. By plugging in the inequality of Lemma 6.3, the vectors with a
single 1 in the positions i and j respectively, we obtain that any two spins i, j induce an
antiferromagnetic two-spin system.

LEMMA 6.5. Let z1, . . . , zn ∈ R
q be a collection of distinct nonnegative vectors such

that ‖zi‖1 = 1 for i ∈ [n]. Let ai = zᵀ
i u, where u is as in (74). Let A′ be the n × n matrix

whose ijth entry is ln(zᵀ
i Bz j) − ln(ai) − ln(aj). Then A′ is negative definite.

PROOF. Let wi = 1
ai

Pzi and let W be the q × n matrix whose columns are w1, . . . , wn.
We first argue wi �= w j for i �= j. Suppose wi = w j . Let z = 1

ai
zi − 1

aj
z j . We have

Pz = wi − w j = 0 and uᵀz = 1 − 1 = 0 and hence Bz = 0. Since B is nonsingular, we
have z = 0. Thus, 0 = zᵀ1 = 1

ai
− 1

aj
which implies ai = aj which in turn implies zi = z j ,

a contradiction. Thus, wi �= w j for i �= j.
Note that we have

ln
(
1 − wᵀ

i w j
) = ln

(
aiaj − zᵀ

i PᵀPz j
)− ln(aiaj) = A′

i j .

Thus the i jth entry in A′ is obtained by applying z �→ ln(1 − z) to each entry of the
Gramm matrix WᵀW. Note that for |z| < 1 we have ln(1 − z) = −z − z2/2 − z3/3 − · · ·
and hence by Schur product theorem A′ is negative semidefinite (see Corollary 7.5.9
in Horn and Johnson [2013]).

Now we argue that A′ is nonsingular (and hence negative definite). We have

−A′ =
∞∑

k=1

1
k

Wᵀ
kWk, (75)

where Wk is the qk×nmatrix whose columns are w⊗k
1 , . . . , w⊗k

n . Note that if A′ is singular
then there exists a nonzero vector v such that vᵀA′v = 0 and for this to happen, we
would have to have

Wkv = 0 (76)
for all k ≥ 1 (the terms on the right-hand side of (75) are nonnegative and if even one
of them is positive then vᵀA′v < 0).

There exists a vector r ∈ R
q such that αi = rᵀwi, i = 1, . . . , n are distinct real

numbers (the wi ’s are distinct and hence for any i �= j the measure of r ∈ [0, 1]q such
that rᵀwi = rᵀw j is zero). Note that (r⊗k)ᵀWk is (αk

1, . . . , α
k
n). From (76) we obtain that

for every integer k ≥ 1 we have (αk
1, . . . , α

k
n)v = 0 and hence v = 0 (by considering

the Vandermonde matrix {αk
i }), a contradiction. Hence A′ is nonsingular and negative

definite.
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6.3. Reducing MAXCUT to PHASE LABELING

In this section, we prove Lemma 6.2.

6.3.1. An Intermediate Gadget. We will use the following gadget which, among the set of
all ordered phase assignments, “prefers” the unordered phase of two vertices to agree.

LEMMA 6.6. A constant sized gadget J1 with two distinguished vertices u, v can be
constructed with the following property: all edges of J1 are symmetric and the following
is true,

max
Y;Y ′(u)=Y ′(v)

LWTJ1 (Y) > ε1 + max
Y;Y ′(u)�=Y ′(v)

LWTJ1 (Y), (77)

where ε1 > 0 is a constant depending only on the spin model and �.

Note that Lemma 5.2, which was proved in Section 5, is a special case of Lemma 6.6
in the case of the colorings model. The proof of Lemma 6.6 follows roughly the same
lines with slightly more intricate technical details.

PROOF OF LEMMA 6.6. Let z1, . . . , zQ := x1, . . . , xQ′ , y1, . . . , yQ′ . Let u be defined as in
Eq. (74). In Section 6.2, Lemma 6.5, it is proved that the Q × Q matrix Â whose i jth
entry is ln(zᵀ

i Bz j) − ln(zᵀ
i u) − ln(zᵀ

j u) is negative definite. Let A′ be the Q′ × Q′ matrix
obtained by the following “folding” of Â:

A′
i j = Âi, j + Âi+Q′, j + Âi, j+Q′ + Âi+Q′, j+Q′ .

We have that A′ is also negative definite (since xᵀA′x = yᵀÂy′, where yᵀ = (xᵀ, xᵀ)).
Note that

A′
i j = ws((xi, yi), (x j, y j)) − a′

i − a′
j,

where a′
i := 2 ln(xᵀ

i u) + 2 ln(yᵀ
i u).

Let λ1 be largest eigenvalue of −A′ and let λ2 be the smallest eigenvalue of −A′. Note
that 0 < λ2 ≤ λ1. Define A to be the Q′ × Q′ matrix with Aij = A′

i j + a′
i + a′

j and consider
the following maximization problem

max
x;xᵀ1=1,x≥0

xᵀAx. (78)

Note that, for x with xᵀ1 = 1, we have

xᵀAx = 2a′ᵀx + xᵀA′x, (79)

where A′ is negative definite. Note that, if x and y are distinct optimal solutions of (78),
then (x + y)/2 satisfies all the constraints, and from (79) and negative definiteness of
A′ we have

((x + y)/2)ᵀA((x + y)/2) > (xᵀAx + yᵀAy) /2,

a contradiction (with optimality of both x and y). Thus, (78) has a unique maximum;
let x∗ be the value of x achieving it. Note, by the method of Lagrange multipliers, the
local optimality of x∗ implies that the coordinates of a′ᵀ + (x∗)ᵀA′ are identical, that is,
a′ᵀ + (x∗)ᵀA′ = ρ1ᵀ for some ρ ∈ R. Let O∗ be (x∗)ᵀAx∗. Let S be the set of nonzero
coordinates in x∗.

Let y ∈ R
Q′

be such that yᵀ1 = 0 and y is zero on coordinates outside S. Then, from
(local) optimality of x∗, we have

(x∗ + y)ᵀA(x∗ + y) = O∗ + 2(a′ᵀ + (x∗)ᵀA′)y + yᵀA′y = O∗ + yᵀA′y ≥ O∗ − λ1‖y‖2
2, (80)
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where, in the second equality, we used that a′ᵀ + (x∗)ᵀA′ is a vector whose coordinates
are identical and yᵀ1 = 0. Equation (80) tells us that moving slightly from the optimum
the objective decreases at most quadratically in the length of y.

Let y ∈ R
Q′

be such that yᵀ1 = 0 and y is nonnegative on coordinates outside S.
Then, from (local) optimality of x∗, we have

(x∗ + y)ᵀA(x∗ + y) = O∗ + 2(a′ᵀ + (x∗)ᵀA′)y + yᵀA′y = O∗ + yᵀA′y ≤ O∗ − λ2‖y‖2
2. (81)

Equation (81) tells us that moving slightly from the optimum the objective decreases
at least quadratically in the length of y.

Let Z ≥ (4Q′λ1/λ2)Q′
. Note that Z is a constant depending only on the model

and �. Let z1/z, . . . , zQ′/z be the optimal simultaneous Diophantine approximation
of x∗

1, . . . , x∗
Q′ with z1, . . . , zQ′ , z ∈ Z and 1 ≤ z ≤ Z. By Dirichlet’s theorem, we have∣∣zx∗

i − zi
∣∣ ≤ Z−1/Q′

< 1. (82)

Note that (82) implies

if x∗
i = 0, then zi = 0. (83)

Also note that ∣∣∣∣∣∣
Q′∑

i=1

zx∗
i −

Q′∑
i=1

zi

∣∣∣∣∣∣ ≤
Q′∑

i=1

∣∣zx∗
i − zi

∣∣ ≤ Q′Z−1/Q′
< 1,

and since z and zi ’s are integers and (x∗)ᵀ1 = 1, we have
Q′∑

i=1

zi

z
= 1. (84)

From (83) and (84), we have that, for y := (z1/z, . . . , zQ′/z) − x∗, we can apply (80) and
hence

(z1/z, . . . , zQ′/z)A(z1/z, . . . , zQ′/z)ᵀ ≥ O∗ − λ1 Q′Z−2/Q′
z−2. (85)

Now we are ready to construct the gadget J1. First, let K be the multigraph on z vertices
b1, b2, . . . , bz with the following symmetric edges: self-loop on bi for i ∈ [z] and two edges
between bi and bj for every i, j ∈ [z] with i �= j. To obtain J1, we overlay two copies
of K as follows. Let Ku (respectively Kv) be a copy of K, where the copy of bz in Ku is
renamed to u (respectively v). Overlay Ku, Kv by identifying the copies of b1, . . . , bz−1 in
the two copies. Thus, the resulting graph J1 has z + 1 vertices and the following edges:
two self loops on bi for i ∈ [z − 1], four edges between bi and bj for every i, j ∈ [Q′ − 1]
with i �= j, two edges between u and bi for i ∈ [z − 1], two edges between v and bi for
i ∈ [z − 1] and a self loop on u, v. Note that the weight of a phase assignment on J1 is
the sum of the induced phase assignments on Ku and Kv.

Consider an assignment of phases Yo such that in each complete graph zi vertices
get the unordered phase i (note that this forces the phases of u and v to be the same).
The weight of the phase assignment Yo is

LWTJ1 (Yo) = S1 := 2(z1, . . . , zQ′)A(z1, . . . , zQ′ )ᵀ ≥ 2z2O∗ − 2λ1 Q′Z−2/Q′
. (86)

Now suppose that we have a phase assignment Y for J1 where the unordered phases
of u and v are different. Let û be the vector with ûi counting the number of vertices
with phase i in Ku and define similarly v̂. Note that ‖û − v̂‖2

2 = 2 (since û and v̂ differ
in two coordinates—the phases of u and v in the assignment). By triangle inequality
we have ‖û/z − x∗‖2 ≥ 1/(z

√
2) or ‖v̂/z − x∗‖2 ≥ 1/(z

√
2) (otherwise we would have
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‖û/z − v̂/z‖2 <
√

2/z). Without loss of generality, assume that û/z has the greater
distance from x∗. Using (81), we obtain

LWTJ1 (Yo) = S2 := ûᵀAû + v̂ᵀAv̂ ≤ z2(2O∗ − λ2/(2z2)) = 2z2O∗ − λ2/2. (87)

By our choice of Z we have S1 > S2 and hence in an optimal phase assignment for J1
we have that u and v get the same unordered phase. Note that we did not show which
phase assignment is optimal; we only found a phase assignment in which u, v have the
same unordered phase that is better than any assignment in which u, v have different
unordered phases.

6.3.2. The Reduction. In Section 6.2, Lemma 6.3, we proved that, for a parallel edge
and any unordered phase p, we have wp(p+, p+) = wp(p−, p−) < wp(p+, p−) and hence
there exists a constant ε2 > 0 depending only on the model and � such that, for every
unordered phase p ∈ Q′, we have

wp(p+, p+) = wp(p−, p−) < wp(p+, p−) − ε2. (88)

Combining Lemma 6.6 with Eq. (88), we can construct a gadget that “prefers” the
unordered phase of two vertices to agree and also “prefers” the spin assignment to
disagree.

LEMMA 6.7. A constant sized gadget J2 can be constructed with two distinguished
vertices u, v and the following property: there exists a phase p ∈ Q′ satisfying simulta-
neously all of the following:

(1) A1(p) = MAXLWT(J2), where
A1(p) := max

Y;Y(u)=p+,Y(v)=p−
LWTJ2 (Y) = max

Y;Y(u)=p−,Y(v)=p+
LWTJ2 (Y). (89)

(2) Among p that satisfy Item 1, p maximizes
A2(p) := max

Y;Y(u)=p+,Y(v)=p+
LWTJ2 (Y) = max

Y;Y(u)=p−,Y(v)=p−
LWTJ2 (Y). (90)

(3) The following inequalities hold
A1(p) > A2(p) + ε3 and A2(p) > ε3 + max

Y;Y ′(u)�=Y ′(v)
LWTJ2 (Y), (91)

where ε3 > 0 is a constant (depending only on the model and �).

PROOF. To construct J2, we take t := 3�(maxp1,p2 wp(p1, p2) − minp1,p2 wp(p1, p2))/ε1�
copies of gadget J1 from Lemma 6.6, identify (merge) their u vertices, and identify
(merge) their v vertices. Finally we add a parallel edge between u and v.

Let p be the unordered phase that is the common value of Y ′(u) and Y ′(v) for which
the maximum on the left-hand side of (77) is achieved (note that p is not unique; we
just take one such p). Let

A4 := max
Y;Y ′(u)=p,Y ′(v)=p

LWTJ2 (Y) and A5 := max
Y;Y ′(u) �=Y ′(v)

LWTJ2 (Y).

Then, applying (77) on each copy of J1 in J2 we obtain

A4 > A5 + 2(max
p1,p2

wp(p1, p2) − min
p1,p2

wp(p1, p2)). (92)

Thus, the maximizer of maxY LWTJ2 (Y) happens for Y with Y ′(u) = Y ′(v). Only the
parallel edge is influenced by the spin and hence, by (88), we have

max
Y

LWTJ2 (Y) = max
p

max
Y:Y(u)=p+,Y(v)=p−

LWTJ2 (Y). (93)
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Let p be the maximizer on the right-hand side of (93) that (secondarily) maximizes the
second expression in (90). Note that p satisfies the first and second conditions of the
lemma. The first part of the third condition is satisfied for any ε3 ≤ ε2 (using the fact
that the edges of J1 are symmetric and inequality (88)). Recall that ε2 > 0. The second
part of the third condition is satisfied for ε3 ≤ maxp1,p2 wp(p1, p2) − minp1,p2 wp(p1, p2).
Recall that maxp1,p2 wp(p1, p2) − minp1,p2 wp(p1, p2) > 0. Thus, we can take ε3 > 0 to
be the smaller of the two upper bounds (each of which is a constant depending on the
model and � only).

LEMMA 6.8. Let B be the interaction matrix of an antiferromagnetic spin model.
Let A1, A2 be the constants defined in Lemma 6.7. There exists constants D1, D2, D3
depending only on the model and � such that the following is true. Given a cubic
graph H, we can, in polynomial-time, construct a max-degree-D1 graph G with |V (G)| ≤
D2|V (H)| such that

MAXLWT(G) = (A1 − A2)MAXCUT(H) + A2|E(H)| + A1 D3|V (H)|.
We can now go back and prove the inapproximability result for the phase labeling

problem.

PROOF OF LEMMA 6.2. Let H be a cubic graph which is an input to MAXCUT. We have
the standard bound MAXCUT(H) ≥ 1/2|E(H)| = 3/4|V (H)|. We apply Lemma 6.8. Since
A1, A2, D3 are constants depending only on the model and �, we obtain the result.

PROOF OF LEMMA 6.8. Let H = (V, E) be a cubic graph which is an input to MAX-CUT.
We construct the graph G as follows. For every edge (u′, v′) of H, take a copy of the
gadget J2 from Lemma 5.2, identify (merge) its u vertex with u′, and identify (merge)
its v vertex with v′. Also, for an integer D3 ≥ 0 which we will determine shortly, for each
vertex w ∈ V (H) add D3 new vertices w1, . . . , wD3 and add a gadget J2 between w and
wi for i ∈ [D3] (i.e., identify the distinguished vertices u, v of J2 with w,wi respectively).

The purpose of the D3 copies of J2 is to force phase p (from Lemma 6.7) to be assigned
on all vertices in V (H) in a labeling of G with maximum weight. A phase r �= p can
have

�1(r) := max
Y;Y(u)=r+,Y(v)=r+

LWTJ2 (Y) − max
Y;Y(u)=p+,Y(v)=p+

LWTJ2 (Y) > 0, (94)

but then by the choice of p

�2(r) := max
Y;Y(u)=p+,Y(v)=p−

LWTJ2 (Y) − max
Y;Y(u)=r+,Y(v)=r−

LWTJ2 (Y) > 0. (95)

Let

D3 = 4 + 3
⌈

max
r

�1(r)
�2(r)

⌉
,

where the maximum is taken over r such that (94) is satisfied (if no such r exists, we
can take D3 = 0). Note that D3 is a constant depending on the model and � only.

Now we want to find the maximum weight labeling of G. The union of the dis-
tinguished vertices u, v of the J2 gadgets in the graph G will be referred to as the
distinguished vertices of G. Note, to find the maximum weight labeling of G, we may
focus on labeling the distinguished vertices of G, since once those are fixed one just
finds the optimal labeling in each gadget (conditioned on the labels of the distinguished
vertices). Let W be a labeling of the distinguished vertices that leads to the maximum
weight labeling of G. Let Ŵ be the labeling obtained from W by changing the phase of
each distinguished vertex to p while (1) keeping the original spin on the vertices of H,
and (2) making the spin of w1, . . . , wD3 the opposite of the spin of w (for each w ∈ V (H)).
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Now we compare W and Ŵ for each J2 gadget corresponding to an edge of H:

—if in W the unordered phases of u and v were different, then Ŵ has greater weight
than W on the gadget, using (91);

—if in W the unordered phases of u and v are the same but the spins are different,
then Ŵ has greater or equal weight than W on the gadget, using (89);

—if in W the unordered phases of u and v are the same and the spins are the same,
then the loss of Ŵ on the gadget (compared to W) is �1(r) (where r is the phase of u,
v in W).

For the J2 gadgets connecting w to w1, . . . , wD3 , we have

—if the (unordered) phase of w in W was r such that �1(r) > 0, then the gain of Ŵ on
each gadget (compared to W) is at least �2(r);

—otherwise, by (89), then Ŵ has greater or equal weight than W on the gadget.

For each vertex whose phase in W was r such that �1(r) > 0, there are three edges
where Ŵ can lose �1(r) (compared to W) but there are D3 edges where Ŵ gains �2(r)
(compared to W). Since D3�2(r) > 3�1(r), we have that Ŵ has at least as large weight
as W (and hence is also optimal).

Now we just argue how the spins should be assigned. The largest number of J2
gadgets with opposite spins on the distinguished vertices arises when we take the
max-cut of H and assign the spin according to the cut.

6.4. Connection between Approximating the Partition Function
and the Phase Labeling Problem

In this section, we prove Lemma 6.1.
Let H = (V, E) be an instance of the phase labeling problem, where {Ep, Es} is a

partition of the edges of H. Let |V | = m. The degree of a vertex v ∈ V will be defined as
2ds +dp+4ls +2lp, where ds, dp are the numbers of symmetric and parallel edges joining
v to a distinct vertex u and ls, lp are the numbers of symmetric and parallel loops from
v to itself. The bounded degree assumption means there is an absolute constant D (not
depending on m) which bounds the degree of any v ∈ V .

To approximate the phase labeling problem on H with parameters B,Q, we will
replace each vertex in the graph H by a suitable graph in a family of gadgets F . The
construction has a parameter k which roughly controls the accuracy of the approxima-
tion we want to achieve. The family F will be of the form {Gd}d∈[D] and the gadget for a
vertex v will be Gd where d is the degree of v. Note that the cardinality of F is bounded
by the absolute constant D. The gadgets Gd are selected from a graph distribution Gkd

n
for some appropriate n to be specified later. For integer r, n satisfying n > r ≥ 0, we
next describe the graph distribution Gr

n := Gr
n(�).

(1) Gr
n is supported on bipartite graphs. The two parts of the bipartite graph are labeled

by +,− and each is partitioned as U s ∪ Ws where |U s| = n, |Ws| = r for s = {+,−}.
U denotes the set U+ ∪ U− and similarly W denotes the set W+ ∪ W−.

(2) To sample G ∼ Gr
n, sample uniformly and independently � matchings: (i) (� − 1)

perfect matchings between U+ ∪ W+ and U− ∪ W−, (ii) a n-matching between U+
and U−. The edge set of G is the union of the � matchings. Thus, vertices in U
have degree �, while vertices in W have degree � − 1.

Note that, in the special case r = 0, the distribution Gr
n is identical to the graph

distribution Gn defined in Section 2.
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Before further specifying the family F , we first describe the properties that a gadget
in F should have. We assume throughout that r is an arbitrarily large constant (inde-
pendent of n). Let G ∼ Gr

n and denote by μG the Gibbs distribution on G with interaction
matrix B. Note that G is a random graph on 2(n + r) vertices.

For σ : U ∪W → [q], the footprint of σ is a pair of q-dimensional vectors (ασ ,βσ ). The
ith entry of ασ (respectively βσ ) is equal to |σ−1(i) ∩ U+|/n (respectively |σ−1(i) ∩ U−|/n).
Let p ∈ Q and recall that p corresponds to a dominant phase (α,β) of �1. The phase of
a configuration σ : U ∪ W → [q] will be denoted by Y (σ ) and equals p if the closest5

dominant phase to the footprint (ασ ,βσ ) of σ is (α,β). Note that the phase of σ depends
only on the spins of vertices in U .

We shall display shortly that, conditioned on Y (σ ) = p, the marginal distribution of
μG on the vertices in W can be well approximated by an appropriate product measure
ν⊗

p (·). To do this, recall that every phase p ∈ Q corresponds to a fixpoint of the tree
recursions (22). Let (R̂1, . . . , R̂q) be a scaled version of (R1, . . . , Rq) so that

∑
i R̂i = 1

(and define similarly Ĉ1, . . . , Ĉq). We now define a product measure ν⊗
p (·) on the space

of spin assignments to vertices in W . For η : W → [q] and p ∈ Q, let

ν⊗
p (η) =

∏
i∈[q]

(R̂i)|η
−1(i)∩W+| ∏

j∈[q]

(Ĉ j)|η
−1( j)∩W−|. (96)

For σ : U ∪ W → [q], denote by σW the restriction of σ to vertices in W .

LEMMA 6.9. Let r be an arbitrarily large constant. In the setting of Theorem 1.5, for
every ε > 0, there exists N(ε) such that for n ≥ N, a random graph G ∼ Gr

n satisfies with
positive probability the following.

(1) The graph G is simple.
(2) For each p ∈ Q, (1 − ε)/|Q| ≤ μG(Y (σ ) = p) ≤ (1 + ε)/|Q|. That is, the phases in Q

appear with roughly equal probability.
(3) Let σ ∼ μG. Then, μG(σW = η | Y (σ ) = p)/ν⊗

p (η) ∈ [1 − ε, 1 + ε] for all η : W → [q].
That is, conditioned on the phase p of the configuration, the spins of the vertices in
W are roughly independent and the marginal distribution on them can be approxi-
mated by the distribution ν⊗

p (·).
(4) There is no edge between W+ and W−. Moreover, there is no vertex in G which has

two neighbors in W+ ∪ W−.

Lemma 6.9 is proved in Section 6.4.1. An immediate consequence of Lemma 6.9 is
the following.

COROLLARY 6.10. Let k be an arbitrarily large constant. For d ∈ [D], let Gd ∼ Gkd
n and

set F = {Gd}d∈[D]. Then, for all sufficiently large n, Gd satisfies Items (1), (2), (3), and (4)
of Lemma 6.9 with positive probability for every d ∈ [D].

Corollary 6.10 also yields a trivial randomized algorithm to construct the family F
for an arbitrary constant k. In fact, since all the parameters are constants, one can
construct the family F by brute force search. With the family F in our hands, we can
now give the details of the construction.

The first step consists of replacing each vertex v ∈ H with degree d with a distinct
copy of the gadget Gd ∈ F . We will denote the gadget corresponding to vertex v by Gv

and the images of the sets W, W±,U± in Gv by Wv, W±
v ,U±

v . Further, denote by Ĥ the
graph obtained by the disconnected copies of the gadgets.

5See Appendix B, Eq. (161) for the precise definition.



Inapproximability for Antiferromagnetic Spin Systems in the Tree Nonuniqueness Region 50:39

The second step consists of encoding the edges of H in Ĥ, that is, making connections
between the gadgets. The final graph will be denoted by HF . The edges we are going
to place will form a perfect matching on ∪v∈HWv and as a result HF will be �-regular.
Every parallel edge of H corresponds to 2k edges in HF , while every symmetric to 4k.
Roughly, parallel and symmetric indicate which parts of two gadgets get connected
(recall that the gadgets are bipartite). Loops in H connect distinct vertices in Ĥ.

In detail, let (u, v) be an edge e of H. Suppose first that u �= v. If e is parallel, place
k edges between Ws

u and Ws
v for s ∈ {+,−}. If e is symmetric, place k edges between Ws

u
and Ws

v and k edges between Ws
u and W−s

v for s ∈ {+,−}. Suppose now that u = v. If e
is parallel, place k edges between distinct vertices in W+

v and k edges between distinct
vertices in W−

v . If e is symmetric, place 2k edges between W+
v and W−

v , k edges between
distinct vertices in W+

v and k edges between distinct vertices in W−
v .

The first step of the construction guarantees that the second step can be done in a
(deterministic) way so that HF is �-regular. Moreover, by Corollary 6.10 and item 4 of
Lemma 6.9, HF is a simple, triangle-free graph.

PROOF OF LEMMA 6.1. Using Corollary 6.10 and specifically items (2) and (3) of
Lemma 6.9, the argument in Sly and Sun [2012, Lemma 4.3] almost verbatim gives

(1 − ε)2m

|Q|m ≤ ZHF /ZĤ

exp(k · MAXLWT(H))
≤ (1 + ε)m.

This can be rearranged into

1
k

log
(

ZHF

ZĤ

)
− m

k
log(1+ε) ≤ MAXLWT(H) ≤ 1

k
log

(
ZHF

ZĤ

)
− m

k
[2 log(1−ε)−log |Q|]. (97)

The argument in Sly and Sun [2012, Proof of Theorems 1 and 2] gives the desired
result. We give the short details. The graph Ĥ consists of m disconnected subgraphs,
each of constant size. Hence, we can compute ZĤ exactly in polynomial time. Assume
now that ZHF can be approximated within a factor of exp(c|Ĥ|) in polynomial time for
any c > 0. Since log(ZHF ) is bounded above by O(|Ĥ|), the ratio log(ZHF /ZĤ) can be
approximated within an additive O(c|Ĥ|) = O[cm(n + kD)] = O(cnm) since n > kD.
Thus, by (97), we obtain upper and lower bounds for MAXLWT(H) which differ by O[(cn +
1)m/k]. A random phase labeling yields the lower bound MAXLWT(H) ≥ �(m). Thus, the
final approximation is within a multiplicative factor O[(cn + 1)/k] of MAXLWT(H). To
make the multiplicative factor arbitrarily small, we need to take k large. This might
increase n, but we can compensate by taking c small. This concludes the proof.

6.4.1. Proof of Lemma 6.9. Let G ∼ Gr
n. To get a handle on Items 2 and 3 of Lemma 6.9,

we first define the partition functions conditioned on a phase p ∈ Q. Similar definitions
appear in [Sly 2010]. Let �p be the configurations σ ∈ � whose phase Y (σ ) equals p,
that is,

�p = {σ ∈ � | Y (σ ) = p}. (98)

Similarly, for a configuration η : W → [q], let

�p(η) = {σ ∈ � | Y (σ ) = p, σW = η}. (99)

Note that �p = ∪η �p(η) and � = ∪p∈Q �p. The conditioned partition functions Zp
G and

Zp
G(η) are defined as

Zp
G(η) :=

∑
σ∈�p(η)

wG(σ ), Zp
G :=

∑
σ∈�p

wG(σ ) =
∑

η:W→[q]

Zp
G(η). (100)
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The following equalities display the relevance of these quantities to Lemma 6.9.

μG(Y (σ ) = p) = Zp
G∑

p∈Q Zp
G

, μG(σW = η |Y (σ ) = p) = Zp
G(η)
Zp

G

. (101)

Note that the definition of Zp
G also makes sense in the case r = 0. Note that for r = 0,

there are no vertices of degree � − 1 (and hence no set W), so the graph distribution
G0

n is identical to the graph distribution Gn defined in Section 2.
To start, we are going to show that Items (2) and (3) of Lemma 6.9 hold in expectation.

This is the scope of the following lemma which expresses EGr
n
[Zp

G], EGr
n
[Zp

G(η)] in terms
of EGn[Z

p
G]. Note that o(1) refers to quantities that tend to 0 as n → ∞.

LEMMA 6.11. Let r be a fixed constant and let p be a phase, that is, p ∈ Q. There
exists a constant C(p) such that for every η : W → [q], it holds that

EGr
n

[
Zp

G(η)
] = (1 + o(1))Crν⊗

p (η)EGn

[
Zp

G

]
, and thus max

η:W→[q]

∣∣∣∣EGr
n

[
Zp

G(η)
]

EGr
n

[
Zp

G

] − ν⊗
p (η)

∣∣∣∣ = o(1).

(102)
Moreover, when the phases Q are permutation symmetric, EGn[Z

p
G] = (1+o(1))EGn[Z

p′
G ] for

any two phases p, p′ ∈ Q and the constant C in (102) does not depend on the particular
phase p. Consequently, for p, p′ ∈ Q

EGr
n

[
Zp

G

] = (1 + o(1))EGr
n

[
Zp′

G

]
, and thus

EGr
n

[
Zp

G

]∑
p∈Q EGr

n

[
Zp

G

] = (1 + o(1))
1

|Q| . (103)

PROOF. The second equalities in each of (102) and (103) follow immediately from
the first. The equality EGn[Z

p
G] = (1 + o(1))EGn[Z

p′
G ] for permutation symmetric phases

follows from Eq. (193) in the Appendix (see also Lemma A.4). Thus, the first equality
in (103) follows by adding the first equality in (102) over all configurations η. The first
equality in (102) may be proved by explicit calculations following the same arguments
as in Sly [2010, Lemma 3.3]. The details can be found in Appendix D.1, see Lemma D.1
(where also the explicit value of the constant C is given).

It is worthy to note that (102) holds even if the phases are not permutation symmetric,
which is not in general true for (103).

In light of Eqs. (101), (102), and (103), the path to obtain Items (2) and (3) of
Lemma (6.9) is now paved: it suffices to show that the conditioned partition func-
tions Zp

G(η) are (with positive probability) arbitrarily close to their expectations for
large n. Note that we want this to be simultaneously true for all p and η, that is, for
the same graph G. This in turn requires using in full strength a theorem by Janson
[1995], which is an extension of the small subgraph conditioning method introduced
by Robinson and Wormald [1994].

We do an exposition of these theorems and their application in Appendix A. For satis-
fying the reader who is more interested in the proof of Lemma 6.9, the following lemma
is a distilled version of the results in Appendix A, yet at the same point containing
some important bits which will allow us to motivate it.

LEMMA 6.12. Let G ∼ Gr
n and denote by Xin, i = 1, 2, . . . , the number of cycles of length

2i in G. There exist random variables Wp
mn, a deterministic function of X1n, X2n, . . . , Xmn,

such that for every ε > 0

lim
m→∞ lim sup

n→∞
PrGr

n

(⋃
p

⋃
η

[∣∣∣∣∣ Zp
G(η)

EGr
n
[Zp

G(η)]
− Wp

mn

∣∣∣∣∣ > ε

])
= 0. (104)
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There also exists a positive constant c > 0 such that Wp
mn > c uniformly in m, n. Moreover,

when the phases Q are permutation symmetric, the random variables Wp
mn do not depend

on the phase p.

Lemma 6.12 provides a straightforward proof of Lemma 6.9, so we shall elucidate
its most important aspects in an attempt to demystify its rather unintuitive state-
ment. Equation (104) says that for all sufficiently large m, n the random variables
Zp

G(η)/EGr
n
[Zp

G(η)] are well approximated by the variables Wp
mn, with large probability.

To get a feeling about this statement, it is a well-known fact that a random �-regular
graph is locally tree-like and its girth diverges as n → ∞. That is, as n grows large, for
any positive integer t, for all but o(n) vertices, the t-depth neighborhood of a vertex is
isomorphic to the first t levels of the infinite �-regular tree. This is in alignment with
the fact that EGr

n
[Zp

G(η)] is determined by the Gibbs measure on the infinite �-regular
tree associated to the phase p. On the other hand, a graph G ∼ Gr

n does have o(n) ver-
tices which are contained in constant sized cycles. Thus, it is reasonable to expect that
Zp

G(η) fluctuates from its expectation. It is equally reasonable to expect the fluctuations
to depend on the presence of small cycles which occur with small but nonzero proba-
bility. Equation (104) thus provides an explicit handle on these fluctuations, given by
the variables Wp

mn, which are a deterministic function of the small cycle counts in G.
Crucially for our proof of Lemma 6.9, when the phases are permutation symmetric,
the fluctuations from the expectation are captured by a single random variable, which
allows us to control them uniformly over all the phases p and configurations η.

We should point out that the notation Wp
mn should not be confused by any means to

the labeling of the degree � − 1 vertices in G, that is, the set of vertices W .

PROOF OF LEMMA 6.9. We assume that the ε in the statement of the lemma is fixed.
Let ε′ > 0 be sufficiently small, to be picked later.

By Lemma 6.12, we have that for all m, n sufficiently large the random variables
Zp

G(η)/EGr
n
[Zp

G(η)] are well approximated by Wp
mn with large probability. That is, there

exist M(ε′), N(ε′) such that for m ≥ M and n ≥ N, it holds with probability 1 − ε′ over
the choice of the graph G that, for every phase p and every configuration η : W → [q],

Zp
G(η) = (Wp

mn ± ε′)EGr
n

[
Zp

G(η)
]
. (105)

We will show that whenever this is the case, Items (2) and (3) hold. To do this, sum
(105) over η to obtain that for each phase p, it holds

Zp
G = (

Wp
mn ± ε′)EGr

n

[
Zp

G

]
, (106)

Using the positive constant c in Lemma 6.12, we obtain that for ε′ sufficiently smaller
than c, the ratio Zp

G(η)/Zp
G is within a multiplicative (1 ± ε) from EGr

n
[Zp

G(η)]/EGr
n
[Zp

G].
This gives Item (3) of the lemma, when used in conjuction with (101) and (102). Note
that this part of the argument did not use that the phases p are permutation symmetric.

To obtain Item (2), we have to use that the phases p are permutation symmetric.
Then Wp

mn =: Wmn by the last assertion in Lemma 6.12. Thus, a summation of (106)
over p ∈ Q gives ZG = (Wmn ± ε′)EGr

n
[ZG]. Exactly the same reasoning as before (using

now (101) and (103)) yields the thesis.
It is a standard union bound to show that Item (4) holds with probability 1 − O(1/n)

over the choice of the graph G, essentially because G is an expander. Perhaps the second
assertion there requires a brief proof sketch. Let v be a vertex in the part of G labeled
+, that is, v ∈ U+ ∪ W+, and consider two vertices w1, w2 ∈ W−. For i = 1, 2, let Ei be
the event that (v,wi) is an edge of G. The events E1, E2 are negatively correlated since
v has a fixed number of edges incident to it, either � or �− 1. It is also easy to see that
PrGr

n
(Ei) ≤ 1− (1−1/n)� = O(1/n), so that PrGr

n
(E1 ∩ E2) = O(1/n2). A union bound over
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the roughly (n+ r)r2 = O(n) possibilities for the selection of the vertices v,w1, w2 gives
the desired bound.

Thus, a graph G ∼ Gr
n satisfies Items (2), (3), and (4) with large probability for

all sufficiently large n. The first assertion in Item (1) of Lemma 6.12 can hence be
guaranteed by contiguity, see Janson [1995, Section 2].

7. DOMINANT PHASES FOR POTTS MODEL AND COLORINGS

7.1. Proof Outline

In this section, we prove Theorem 1.6 which establishes the hypotheses of Theorem 1.5
for the dominant phases of the antiferromagnetic Potts and colorings models on random
�-regular bipartite graphs (and, as we showed in Section 1.2.3, Theorems 1.1 and 1.2
follow as corollaries).

Recall, the interaction matrix B for the Potts model is completely determined by
a parameter B, which is equal to exp(−β) where β is the inverse temperature in the
standard notation for the Potts model. The antiferromagnetic regime corresponds to
0 < B < 1. The coloring model is the zero temperature limit of the Potts model and
corresponds to the particular case B = 0 in what follows. We should note that in
Statistical Physics terms, the arguments of this section are closely related to the phase
diagrams of the models.

By Theorem 4.1 specialized to the antiferromagnetic Potts and colorings models,
studying the global maxima of �1 is equivalent to studying the global maxima of 
.
Moreover, the global maxima of 
 and �1 occur at their critical points. Since there is
a one-to-one correspondence between the critical points of 
 and the critical points of
�1 (given by (23)), we will freely interchange our focus between critical points of 
 and
�1.

The critical points of 
, by the first part of Theorem 4.1, are given by fixpoints of the
tree recursions (22), which for the Potts model read as

Ri ∝
(

BCi +∑
j �=i C j

)d
, C j ∝

(
BRj +∑

i �= j Ri

)d
, (107)

where i, j = 1, . . . , q and d is the notational convenient substitution d := � − 1 ≥ 2.
Given a fixpoint of the tree recursions (107), we will classify whether it is a Hessian
local maximum of �1 using Theorem 4.2.

Once we find the global maxima of �1, it will be simple to prove that they are Hessian
and permutation symmetric. Finding however the global maxima of �1 is going to
be more intricate, mainly because the number of local maxima varies according to
the value of B. We will thus have to compare the values of �1 at the critical points.
Rather than doing this directly (which seems to be a difficult task), we solve a relaxed
optimisation problem, which for q even can be tied to the maximization of �1. We next
give the details.

We begin our considerations by examining when a fixpoint (107) is translation in-
variant, that is, satisfies Ri ∝ Ci for every i ∈ [q].

LEMMA 7.1. Let 0 ≤ B < 1 and � ≥ 3. If a solution of (107) satisfies Ri ∝ Ci for
i ∈ [q], then it holds that R1 = · · · = Rq and C1 = · · · = Cq.

PROOF OF LEMMA 7.1. By the symmetries of the model, we may assume an arbitrary
ordering of the Ri ’s. Since 0 ≤ B < 1, (107) easily implies the reverse ordering of the
Ci ’s. Thus, Ri ∝ Ci for every i ∈ [q] yields that the ordering must be trivial, that is,
R1 = · · · = Rq and C1 = · · · = Cq.

COROLLARY 7.2. Translation-invariant fixpoints of (107) always exist and are unique
up to scaling.
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We next explore in which regimes of B, the critical points of 
 consist solely of
translation-invariant fixpoints. In this regime, we immediately obtain by Theorem 4.1
that the global maximum of �1 (and hence the global maximum of 
 as well) is achieved
at a translation-invariant fixpoint.

LEMMA 7.3. Let 0 ≤ B < 1 and q,� ≥ 3. When B ≥ �−q
�

, the solution of the system of
Eq. (107) satisfies R1 = · · · = Rq and C1 = · · · = Cq.

The proof of Lemma 7.3 is an extension of an argument in Brightwell and Winkler
[2002] for colorings and is given in Appendix C. The next lemma states that in the
complementary regime of Lemma 7.3, the translation-invariant fixpoint does not cor-
respond to a local maximum of �1 and hence, by Theorem 4.1, the global maximum of
�1 occurs at a fixpoint of (107) which is not translation invariant. In particular, in this
regime, we have semitranslational nonuniqueness.

LEMMA 7.4. For 0 ≤ B <
�−q

�
, the global maximum of �1 is not achieved at the

translation-invariant fixpoint.

PROOF OF LEMMA 7.4. We apply Theorem 4.2 by showing that the translation-
invariant fixpoint is Jacobian unstable and hence not a local maximum of �1. By
Lemma 4.16, for a general interaction matrix B, the condition for Jacobian stability of
a fixpoint of the tree recursions is related to the spectrum of L = [ 0 A

Aᵀ 0 ], where A is
the q × q matrix whose (i, j)-entry is given by Aij = Bij RiC j/

√
αiβ j and αi, β j are given

by (29). Recall that ±1 are eigenvalues of L and the condition for Jacobian stability is
that all the other eigenvalues have absolute value less than 1/(� − 1) (for details, see
the proof of Theorem 4.2 in Section 4.2.3).

In the setting of the lemma, the matrix A for the translation-invariant fixpoint has
off-diagonal entries equal to 1/(B+ q − 1) and diagonal entries equal to B/(B+ q − 1).
It follows that the eigenvalues of L are ±1 by multiplicity 1 and ±(1 − B)/(B+q − 1) by
multiplicity q − 1. The absolute value of the latter is greater than 1

�−1 for 0 ≤ B <
�−q

�
,

as claimed.

We summarize these results into the following corollary.

COROLLARY 7.5. Let 0 ≤ B < 1 and q,� ≥ 3. When B ≥ �−q
�

, �1 has a unique
global maximum for α1 = · · · = αq = β1 = · · · = βq = 1/q or, in other words, the
global maximum of �1 is achieved by the fixpoint which corresponds to the (unique)
translation-invariant Gibbs measure. In the complementary regime 0 ≤ B <

�−q
�

, the
maximum of �1 is not achieved at the translation-invariant fixpoint, and hence it is
achieved at a semitranslation-invariant fixpoint which is not translation invariant.

Corollary 7.5 is not sufficient to obtain Theorems 1.1 and 1.2, since we need to
verify that the global maxima of �1 in semitranslational nonuniqueness are Hessian
and permutation symmetric. We do this by identifying the critical points which are
maxima of �1.

To state the result, we first need the following structural statement for the solutions
of Eq. (107), namely that solutions of (107) are supported on at most three values for
the Ri ’s and similarly for the Ci ’s.

LEMMA 7.6. Let (R1, . . . , Rq, C1, . . . , Cq) be a positive solution of the system (107). Let
tR be the number of values on which the Ri’s are supported and define similarly tC. Then
tR, tC ≤ 3 and tR = tC =: t.

The proof of Lemma 7.6 is given in Section 7.5. Lemma 7.6 motivates the following
definition.
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Definition 7.7. From Lemma 7.6, the Ri ’s and C j ’s of a fixpoint of (107) attain
at most t ≤ 3 different values. Let R̃1, . . . , R̃t and C̃1, . . . , C̃t be their values and let
q1, . . . , qt ≥ 1 be their multiplicities. When t = 1, define q2 = q3 = 0; when t = 2,
define q3 = 0; when qi = 0, define the values of R̃i, C̃i to be zero. The corresponding
solution of (107) or equivalently the fixpoint of the tree recursions is then defined to
be of type (q1, q2, q3). Note that q1 + q2 + q3 = q and the qi ’s are nonnegative integers.
Call a (q1, q2, q3)-type fixpoint to be t-supported if the number of qi ’s which are nonzero
equals t.

Finding the types of fixpoints which correspond (via (23)) to global maxima of �1 is
a nontrivial task. While 2-supported fixpoints are simple to handle for all q ≥ 2, this is
not the case for 3-supported fixpoints (this is the only reason we obtain Theorems 1.1
and 1.2 for even k and q, respectively). The main lemma we prove is the following,
which identifies the type of fixpoints maximizing �1.

LEMMA 7.8. For 0 ≤ B <
�−q

�
and even q ≥ 3, the maximum of �1 over (q1, q2, q3)-type

fixpoints of (107) is attained (uniquely) at fixpoints of type (q/2, q/2, 0).

The final piece is to show that fixpoints of type (q/2, q/2, 0) correspond to Hessian
maxima of �1 and are permutation symmetric. This is the scope of the next lemma,
whose proof is given in Section 7.5.

LEMMA 7.9. For 0 ≤ B <
�−q

�
and even q ≥ 3, fixpoints of type (q/2, q/2, 0) are

Jacobian stable and hence correspond to Hessian local maxima of �1. The values of Ri’s
and Cj’s for fixpoints of type (q/2, q/2, 0) are unique up to scaling and permutations of
the colors.

We are now ready to prove Theorem 1.6.

PROOF OF THEOREM 1.6. Item (1) follows from Corollary 7.5 (see also Lemmas 7.3
and 7.4). Item (2) follows from Lemmas 7.8 and 7.9, after using the correspondence
between fixpoints of the tree recursions (107) and dominant phases of Theorem 4.1
(Eq. (23)).

7.2. Proof of Lemma 7.8

In this section, we outline the proof of Lemma 7.8. We need to find the type(s) of the
fixpoints of (107) which maximize �1.

Let q = (q1, q2, q3) specify the type of a fixpoint of (107) and let r = (R̃1, R̃2, R̃3), c =
(C̃1, C̃2, C̃3) be the respective values of the Ri ’s and Cj ’s, see Definition 7.7. Henceforth,
we will use for simplicity the notation r = (R1, R2, R3), c = (C1, C2, C3). Note that the
qi ’s are nonnegative integers satisfying q1 + q2 + q3 = q.

Using Theorem 4.1, we obtain that the value of �1(α,β) corresponding to such a
fixpoint of (107) is given by the value of the function 
S, where


S(q, r, c) := (d + 1) ln
(∑3

i=1 qi Ri
∑3

j=1 qjC j + (B− 1)
∑

i qi RiCi

)
− d ln

(∑3
i=1 qi R

(d+1)/d
i

)
− d ln

(∑3
j=1 qjC

(d+1)/d
j

)
,

(108)

and d = �−1. We remark here that in the derivation of (108), we used that if a solution
of (107) satisfies Ri = Rj for some i, j then also Ci = C j (and vice-versa).

It is a nontrivial task to directly compare the values of 
S over fixpoints of (107).
Instead, we will solve a relaxed version of the problem, seeking to maximize 
S over
nonnegative qi ’s which satisfy q1 + q2 + q3 = q. If this maximum happens to occur for
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integer q and the respective values of Ri ’s and C j ’s satisfy (107), then we have also
found the solution to the original maximization problem. It turns out that all of these
conditions are satisfied if and only if q is even.

To formalize the argument, for nonnegative qi ’s such that q1 + q2 + q3 = q, define


(q) := max
r,c


S(q, r, c), (109)

where the maximum is over r = (R1, R2, R3)ᵀ, c = (C1, C2, C3)ᵀ which satisfy∑3
i=1 qi Ri

∑3
j=1 qjC j + (B− 1)

∑3
i=1 qi RiCi > 0,

R1, R2, R3, C1, C2, C3 ≥ 0.
(110)

It is simple to see that 
S is well defined in the region (110). It is not completely
immediate that the maximum in (109) is well defined since the region (110) is not
compact. Nevertheless, the maximum turns out to be well defined as a consequence of
the following scale-free property of 
S with respect to r and c:

for every c1, c2 > 0 it holds that 
S(q, c1r, c2c) = 
S(q, r, c). (111)

Using (111), it is simple to obtain the following (see Section 7.5).

LEMMA 7.10. Let B ≥ 0 and q ≥ 2. For all q1, q2, q3 ≥ 0 which satisfy q1 +q2 +q3 = q,
the maximum in (109) is well defined. Moreover, the maximum of 
(q1, q2, q3) over all
such q1, q2, q3 is attained.

We next seek to connect the maximizers of (109) with solutions of (107). To do this,
we first need to consider whether the maximum in (109) happens on the boundary of
the region (110); it turns out that the maximum can happen at the boundary Ri = 0 or
Ci = 0 if qi is close to zero. While the boundary cases are an artifact of allowing qi ’s to
be noninteger, we will need to treat them explicitly to find the maximum of 
.

Definition 7.11. A triple q = (q1, q2, q3) is good if the r, c which achieve the maxi-
mum in (109) satisfy: for i = 1, 2, 3, qi > 0 implies Ri, Ci > 0. A triple q = (q1, q2, q3) is
bad if it is not good.

To complete the connection, we need to further restrict the set of triples q. To motivate
this restriction, note that if we consider the region (110) in the subspace R1 = R2 and
C1 = C2, we obtain 
(q1 + q2, q3, 0) ≤ 
(q1, q2, q3). To avoid degenerate cases, roughly,
we consider only triples q where such simple inequalities do not hold at equality.

Definition 7.12. Let t = 2 or 3. A triple q = (q1, q2, q3) is called t-maximal if exactly
t of the qi ’s are nonzero and there exist r = (R1, R2, R3) and c = (C1, C2, C3) which
achieve the maximum in (109) such that, for all distinct i, j ∈ {1, 2, 3} with qiqj > 0, it
holds that Ri �= Rj and Ci �= C j .

Remark 7.13. In general, determining whether a triple q = (q1, q2, q3) is maximal
is a difficult task. For example, if the qi ’s are positive integers, it is conceivable that
q being maximal relates to whether a 3-supported fixpoint of (107) of type (q1, q2, q3)
exists. Our use of the notion of maximality is going to be roughly along the following
lines: if for some q, B it holds that max �1 = max 
 and a fixpoint of (107) of type
(q1, q2, q3) is assumed to maximize �1, then the triple (q1, q2, q3) has to be maximal.
(Recall that for q even, we will be able to show that max �1 = max 
.)

Our interest is in maximal good triples q = (q1, q2, q3). This is justified by the follow-
ing lemma, whose proof is given in Section 7.5.
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LEMMA 7.14. Suppose that q1, q2, q3 are nonnegative integers and the triple q =
(q1, q2, q3) is t-maximal and good. Then, there exist r, c which achieve the maximum in
(109) and specify a t-supported fixpoint of (107) of type (q1, q2, q3).

Roughly, to prove Lemma 7.8, it will suffice to prove that the triple (q/2, q/2, 0) is
2-maximal and good and that the maximum of 
(q) is achieved at (q/2, q/2, 0).

The next lemma examines which maximal good triples can be maximizers of 

(proved in Section 7.3).

LEMMA 7.15. Let q ≥ 3 and 0 ≤ B < 1. There do not exist 3-maximal good triples
q which maximize 
(q). The only 2-maximal good triples q where a maximum of 
(q)
can occur are (q/2, q/2, 0) or its permutations.

Lemma 7.15 is not sufficient to yield Lemma 7.8 because the maximum of 
(q) can
occur at a bad triple q. This possibility is excluded by the following lemma (proved in
Section 7.4).

LEMMA 7.16. Let q ≥ 3 and 0 ≤ B <
�−q

�
. There do not exist bad triples q which

maximize 
(q).

We will also need the following property of good triples (proved in Section 7.5).

LEMMA 7.17. Let q = (q1, q2, q3) be a good triple and suppose that i, j ∈ {1, 2, 3} are
such that qi, qj > 0. Let r = (R1, R2, R3), c = (C1, C2, C3) achieve the maximum in (109).
Then Ri = Rj iff Ci = Cj.

Using Lemmas 7.15, 7.16, and 7.17, we can now give the proof of Lemma 7.8.

PROOF OF LEMMA 7.8. Let q be an even integer ≥ 4 and 0 ≤ B <
�−q

�
. Recall that the

maximizers of �1 correspond to a fixpoint of (107). Recall that for a fixpoint r, c of type
q = (q1, q2, q3), the corresponding value of �1 is given by 
S(q, r, c).

Let MAX := maxq 
(q) (recall that the maximum of 
(q) over triples q is at-
tained by Lemma 7.10). Since 
(q) = maxr,c 
S(q, r, c), we also have that MAX =
maxq,r,c 
S(q, r, c). It follows that MAX ≥ max �1.

Let q̂ := (q/2, q/2, 0). We will show that6

MAX = 
(q̂) and q̂ is 2-maximal and good. (112)

Assuming (112) for the moment, let us conclude the lemma. Since q̂ is 2-maximal and
good, by Lemma 7.14, there exist r̂, ĉ such that 
(q̂) = 
S(q̂, r̂, ĉ) and r̂, ĉ specify a
2-supported fixpoint of (107) of type q̂ (here we used that q is even). It follows that
MAX = max �1.

Now, let r∗, c∗ be a t-supported fixpoint of type q∗ (cf., Definition 7.7) which achieves
the maximum of �1 (note that the entries of q∗ are integers). Since MAX = max �1,
we have that q∗ also achieves the maximum of 
(q) and r∗, c∗ achieve the maximum
of 
S(q∗, r, c). It follows that the triple q∗ is both good (Lemma 7.16) and t-maximal
(by definition, using the maximizers r∗, c∗). By Lemma 7.14, it must be the case that
q∗ = (q/2, q/2, 0) and hence the only fixpoints of (107) which correspond to maximizers
of �1 are of type (q/2, q/2, 0), yielding the statement of the lemma.

It remains to prove (112). The following hold for any maximizer q∗ of 
(q).

6In fact, the proof of (112) holds for all integer q ≥ 3 (not just even).
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(1) q∗ is a good triple. This is an immediate consequence of Lemma 7.16.
(2) q∗ has at least two positive entries, that is, q∗ �= (q, 0, 0), and thus MAX > 
(q, 0, 0).

Otherwise, MAX = 
(q, 0, 0), in which case the global maximum of �1 is achieved
at a translation-invariant fixpoint which is excluded by Lemma 7.4 (in the regime
0 ≤ B <

�−q
�

).
(3) If q∗ has exactly two nonzero entries, then q∗ is 2-maximal. For the sake of contra-

diction, assume that this is not the case for some q∗ = (q1, q2, 0) with q1, q2 > 0.
Consider a maximizer r∗, c∗ of 
S(q∗, r, c). Since q∗ is not 2-maximal, it holds ei-
ther that R1 = R2 or C1 = C2. Since q∗ is good (by Item (1)), from Lemma 7.17, we
can in fact conclude that R1 = R2 and C1 = C2. It follows that 
(q∗) = 
(q, 0, 0)
and hence MAX = 
(q, 0, 0), contradicting Item 2.

(4) If q∗ has exactly two nonzero entries, then q∗ = (q/2, q/2, 0). We have that q∗ is
good (by Item 1) and q∗ is 2-maximal (by Item 3). By the second part of Lemma 7.15,
we obtain that q∗ = (q/2, q/2, 0).

(5) If all the entries of q∗ are positive, then q∗ is not 3-maximal. Since q∗ is good (by
Item (1)), this follows by the first part of Lemma 7.15.

(6) If all the entries of q∗ are positive, then 
(q∗) = 
(q/2, q/2, 0). To see this, note
that q∗ is good (by Item 1) and not 3-maximal (by Item (5)). Consider a maximizer
r∗, c∗ of 
S(q∗, r, c). By the argument used in Item (3), we can conclude that there
exist distinct indices i, j such that Ri = Rj and Ci = Cj . Let k be the remaining
index, that is, k ∈ {1, 2, 3} with k �= i, j. Let q′ := (qi + qj, qk, 0), r′ := (Ri, Rk, 0)
and c′ := (Ci, Ck, 0). We have that 
(q∗) = 
S(q∗, r∗, c∗) = 
S(q′, r′, c′) ≤ 
(q′) for
some q′ which has exactly two nonzero entries. Since q∗ is a maximizer of 
, we
have that q′ is also a maximizer of 
. It follows by Item (4) that q′ = (q/2, q/2, 0)
and hence 
(q∗) = 
(q/2, q/2, 0).

(7) 
(q∗) = MAX = 
(q/2, q/2, 0). This follows by combining Items (2), (4), and (6).

By Item (7), we have that the triple q̂ = (q/2, q/2, 0) maximizes 
 and thus all
Items (1)–(7) apply for q∗ = q̂. In particular, by Items (1) and (3), we obtain that
(q/2, q/2, 0) is good and 2-maximal. This proves (112), thus finishing the proof of
Lemma 7.8.

For the proofs of Lemmas 7.15 and 7.16, we will often perturb the values of qi ’s. The
following lemma, proved in Section 7.5, will be very helpful (holds for any triple q).

LEMMA 7.18. Let q = (q1, q2, q3) and I = {i | qi > 0}. Suppose that r, c achieve the
maximum in (109). Then, for i ∈ I it holds that

∂
S

∂qi
(q, r, c) = Ri

∑
j qjC j + Ci

∑
j qj Rj + (d − 1)(1 − B)RiCi∑

j qj Rj
∑

j qjC j + (B− 1)
∑

j qj RjC j
. (113)

Moreover, if there exist i, j ∈ I such that ∂
S

∂qi
− ∂
S

∂qj
�= 0, the maximum of 
 is not achieved

at the triple q.

7.3. Good Triples: Proof of Lemma 7.15

We first prove the statement of the lemma for 3-maximal good triples q = (q1, q2, q3),
the proof for 2-maximal good triples will be easily inferred by appropriately modifying
the arguments in the special case q2 = 0.

Let q = (q1, q2, q3) be a 3-maximal good triple. Since q is 3-maximal all of the qi ’s
are positive. Moreover, q is good, and hence the maximum in (109) for q is attained
at positive Ri ’s and Cj ’s. Thus, the Ri ’s and Cj ’s satisfy ∂
S/∂ Ri = ∂
S/∂Cj = 0
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which give

R1/d
i ∝ q1C1 + q2C2 + q3C3 + (B− 1)Ci, C1/d

j ∝ q1 R1 + q2 R2 + q3 R3 + (B− 1)Rj . (114)

Since q is 3-maximal, we may choose r, c such that Ri �= Rj and Ci �= Cj for all i �= j.
Thus, we may assume a strict ordering of the Ri ’s, which by (114) implies the reverse
ordering of the Cj ’s. Without loss of generality, we will use the following ordering:

R1 > R2 > R3 > 0 and 0 < C1 < C2 < C3. (115)

The following lemma, together with the second part of Lemma 7.18, establishes that
the maximum of 
 cannot occur at a 3-maximal triple.

LEMMA 7.19. Suppose that Ri’s and Cj’s satisfy (114) and (115). If R1/R3 �= C3/C1,

then ∂
S

∂q1
− ∂
S

∂q3
�= 0. If R1/R3 = C3/C1, then ∂
S

∂q1
− ∂
S

∂q2
�= 0.

We next give the proof of Lemma 7.19. We will utilize Lemma 7.18 by specifying a
particular scaling of the Ri ’s and C j ’s which will be beneficial. To do this, set

rd
1 = R1/R3, rd

2 = R2/R3, cd
2 = C2/C1, cd

3 = C3/C1. (116)

The Ri ’s and C j ’s may be recovered from ri ’s, c j ’s using

R1 ∝ rd
1 , R2 ∝ rd

2 , R3 ∝ 1, and C1 ∝ 1, C2 ∝ cd
2, C3 ∝ cd

3 . (117)

Translating (115) into r1, r2, c2, c3 gives

r1 > r2 > 1 and c3 > c2 > 1. (118)

Moreover, dividing appropriate pairs of (114), we also obtain

r1 = B+ q1 − 1 + q2cd
2 + q3cd

3

q1 + q2cd
2 + (B+ q3 − 1)cd

3

, c3 = B+ q3 − 1 + q2rd
2 + q1rd

1

q3 + q2rd
2 + (B+ q1 − 1)rd

1

,

r2 = q1 + (B+ q2 − 1)cd
2 + q3cd

3

q1 + q2cd
2 + (B+ q3 − 1)cd

3

, c2 = q3 + (B+ q2 − 1)rd
2 + q1rd

1

q3 + q2rd
2 + (B+ q1 − 1)rd

1

.

(119)

As we shall display shortly, the system of Eq. (119) (together with (118)) gives

q1 = (1 − B) f (r1, c3) + q2 P
(
cd

2 − cd
3rd

2

)
P
(
rd

1 cd
3 − 1

) , q3 = (1 − B) f (c3, r1) + q2 P
(
rd

2 − rd
1 cd

2

)
P
(
rd

1 cd
3 − 1

) (120)

r2 = r1cd
3 − 1 − cd

2(r1 − 1)
cd

3 − 1
, rd

2 = rd
1 c3 − 1 − c2(rd

1 − 1)
c3 − 1

, (121)

f (x, y) := xd+1yd+1 − xdyd+1 − xyd+1 + yd + y − 1, P := (r1 − 1)(c3 − 1) > 0.

We first show (121). Using the expressions for r1, r2 in (119), we obtain r1−1
r2−1 = cd

3−1
cd

3−cd
2

and solving for r2 gives the first equation in (121). Similarly, using the expressions for
c2, c3 in (119), we obtain c3−1

c2−1 = rd
1 −1

rd
1 −rd

2
and solving for rd

2 gives the second equation in

(121). For future use, note that the equation c3−1
c2−1 = rd

1 −1
rd

1 −rd
2

yields also the expression c2 =
rd

1 c3−1−rd
2 (c3−1)

rd
1 −1 . To derive (120), we plug this expression for c2 as well as the expression
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for r2 in (121) in the last two equations in (119). This yields the following two equations:

r1cd
3 − 1 − cd

2(r1 − 1)
cd

3 − 1
= q1 + (B+ q2 − 1)cd

2 + q3cd
3

q1 + q2cd
2 + (B+ q3 − 1)cd

3

,

rd
1 c3 − 1 − rd

2 (c3 − 1)
rd

1 − 1
= q3 + (B+ q2 − 1)rd

2 + q1rd
1

q3 + q2rd
2 + (B+ q1 − 1)rd

1

.

By clearing denominators, this pair of equations yields a linear system in terms of
q1, q3. Solving this system, yields the expressions for q1, q3 in (120).

Having established (120) and (121), we show the following lemma which will be
important for the proof of Lemma 7.19.

LEMMA 7.20. Assume that q1, q2, q3, r1, r2, c2, c3 satisfy (118), (120), and (121). If
r1 = c3, then r2 = c2 and q1 = q3.

PROOF OF LEMMA 7.20. We prove that r1 = c3 implies r2 = c2. Once this is done, (120)
easily gives that r1 = c3 implies q1 = q3 as well, thus proving the lemma.

So, suppose that z = r1 = c3 and for the sake of contradiction assume r2 �= c2. From
(118), we have that r2, c2 ∈ (1, z). Eliminating r2 from (121) we obtain that c2 (and, by
a symmetric argument, r2) satisfies

g(s) :=
(

zd+1 − 1 − sd(z − 1)
zd − 1

)d

+ s(zd − 1) − (zd+1 − 1)
z − 1

= 0.

In fact, g(1) = g(z) = 0 as well, so that g has at least four distinct roots in [1, z]. It
follows that g′(s) = 0 has at least three distinct solutions in [1, z], say si for i = 1, 2, 3.
As a consequence of g′(si) = 0, we easily obtain that the si ’s satisfy h(si) = c where
h(s) := (zd+1 − 1)s − sd+1(z − 1) and c is a constant which depends only on z, d. Thus,
h′(s) = 0 has at least two distinct solutions in [1, z] which is clearly absurd.

PROOF OF LEMMA 7.19. Set

DIF1,3 := ∂
S

∂q1
− ∂
S

∂q3
, DIF1,2 := ∂
S

∂q1
− ∂
S

∂q2
.

Our goal is to check when DIF1,3 = 0 or DIF1,2 = 0. To do this, we will write DIF1,3
and DIF1,2 in terms of the ri ’s and c j ’s. Note that the expressions in (113) for the

derivatives ∂
S

∂qi
are scale-free with respect to Ri ’s and C j ’s, so we just need to make the

substitutions (117). For DIF1,3, we obtain

DIF1,3 = 1
S

[(
rd

1 − 1
)(

q1 + q2cd
2 + q3cd

3

)
− (

cd
3 − 1

)(
q1rd

1 + q2rd
2 + q3

)+ (d − 1)(1 − B)
(
rd

1 − cd
3

)]
,

(122)

where S := (q1rd
1 + q2rd

2 + q3)(q1 + q2cd
2 + q3cd

3) + (B− 1)(q1rd
1 + q2rd

2 cd
2 + q3cd

3). Note that
S > 0 because of (110).

To prove the first part of the lemma, we eliminate q1, q3 from the expression (122)
for DIF1,3 using (120) (one does not need to worry about S). This substitution has
the beneficial effect of eliminating q2, r2, c2 from the final expression. In particular, we
obtain the following:

DIF1,3 = − (1 − B) g(r1, c3)
S(r1 − 1)(c3 − 1)

, where

g(r1, c3) := (r1 − c3)
(
rd

1 − 1
)(

cd
3 − 1

)− d(r1 − 1)(c3 − 1)
(
rd

1 − cd
3

)
.

(123)
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Observe that if r1 = c3, then g(r1, c3) = 0. If r1 �= c3, we have

g(r1, c3)
d2(r1 − 1)(c3 − 1)(r1 − c3)

=
∑d−1

i=0 ri
1

d

∑d−1
i=0 cd−i

3

d
−
∑d−1

i=0 ri
1cd−i

3

d
> 0,

where in the last inequality we used Chebyshev’s sum inequality: since r1 > 1 and
c3 > 1 from (118), the sequence ri

1 (respectively, cd−i
3 ) is strictly increasing (respectively,

decreasing) with i. It follows that g(r1, c3) = 0 iff r1 = c3 iff R1/R3 = C3/C1, which
yields the first part of the lemma.

We next prove the second part of the lemma. Since R1/R3 = C3/C1, we have r1 = c3
and by Lemma 7.20, r2 = c2 and q1 = q3. Using these, (120) and (121) simplify to

q1 = (1 − B)
(
rd+1

1 − 1
)− q2rd

2 (r1 − 1)

(r1 − 1)
(
rd

1 + 1
) , r2 = rd+1

1 − 1 − rd
2 (r1 − 1)

rd
1 − 1

. (124)

Moreover, using the substitutions (117) and q1 = q3, we obtain

DIF1,2 = 1
S

[(
q1rd

1 + q2rd
2 + q1

)(
rd

1 − 2rd
2 + 1

)+ (d − 1)(1 − B)
(
rd

1 − r2d
2

)]
= − (1 − B)

(r1 − 1)S
[
(d − 1)(r1 − 1)r2d

2 + 2rd
2

(
rd+1

1 − 1
)− (

r2d+1
1 + drd+1

1 − drd
1 − 1

)]
,

where in the second equality we substituted the value of q1 from (124). Observe that
the numerator is a quadratic polynomial in rd

2 and, by inspection, for r1 > 1, its roots
are of opposite sign. Thus, DIF1,2 = 0 iff rd

2 = ρ1, where

ρ1(r1) :=
√

D − (rd+1
1 − 1)

(d − 1)(r1 − 1)
and D := (

drd+1
1 − (d − 1)rd

1 − 1
)(

rd+1
1 + (d − 1)r1 − d

)
.

For the sake of contradiction, suppose that rd
2 = ρ1. Then, (124) gives that r2 = ρ2,

where

ρ2(r1) := d
(
rd+1

1 − 1
)− √

D

(d − 1)
(
rd

1 − 1
) .

Thus, ρ1 = ρd
2 . We obtain a contradiction by showing that for every r1 > 1, it holds

that ρd
2 < ρ1 or equivalently d ln ρ2 < ln ρ1. It is easy to see that in the limit r1 ↓ 1

the inequality is satisfied at equality, thus it suffices to prove that the derivative
of the right-hand side with respect to r1 is greater than the respective derivative of
the left-hand side for r1 > 1.

This differentiation is cumbersome but otherwise straightforward. The final result is

1
ρ1

∂ρ1

∂r1
− d

ρ2

∂ρ2

∂r1
= (d + 1)g(r1)h(r1)

2(r1 − 1)
(
rd

1 − 1
) (√

D − (
rd+1

1 − 1
)) (

d
(
rd+1

1 − 1
)− √

D
) , (125)

g(r1) := r2d
1 − d2rd+1

1 + 2(d2 − 1)rd
1 − d2rd−1

1 + 1,

h(r1) := (d + 1)
(
rd+1

1 − 1
)− (d − 1)

(
rd

1 − r1
)− 2

√
D.

Note that the denominator in the right-hand side of (125) is positive for r1 > 1: the
terms involving

√
D are positive since they are the numerators of ρ1, ρ2. The final

part of the proof consists of proving that g(r1) > 0 and h(r1) > 0 for r1 > 1.
The polynomial g has four sign changes and hence, by the Descartes’ rule of signs

has at most four positive roots. In fact, a tedious calculation shows that r1 = 1 is a
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root by multiplicity 4, thus proving that g(r1) > 0 for r1 > 1. To prove that h(r1) > 0 for
r1 > 1, note the identity[

(d + 1)
(
rd+1

1 − 1
)− (d − 1)

(
rd

1 − r1
)]2 − 4D = (d − 1)2(r1 − 1)2(rd

1 − 1
)2

.

This completes the proof of Lemma 7.19.

To prove the second part of Lemma 7.15, assume that q = (q1, q2, q3) is a 2-maximal
good triple. Since q is 2-maximal, without loss of generality, we may assume that q2 = 0.
Note that the values of R2, C2 do not affect the value of the derivatives ∂
S/∂q1, ∂
S/∂q3
when q2 = 0. Similarly, (120) continues to hold even when q2 = 0. Thus, the proof of the
first part of Lemma 7.19 carries through verbatim. In particular, if R1/R3 �= C3/C1, then
∂
S/∂q1 −∂
S/∂q3 �= 0. By the second part of Lemma 7.18, it follows that q = (q1, 0, q3)
cannot be a maximum unless R1/R3 = C3/C1. In this case, (120) gives q1 = q3. Since
q1 + q3 = q, we obtain that the only 2-maximal good triples where the maximum of 

may occur are (q/2, q/2, 0) or its permutations, as desired.

This concludes the proof of Lemma 7.15.

7.4. Bad Triples: Proof of Lemma 7.16

To get a handle on bad triples, we first give necessary conditions so that the maximum in
(109) happens at the boundary. The proof of the following lemma is given in Section 7.5.

LEMMA 7.21. Let 0 ≤ B < 1. For a triple q = (q1, q2, q3), let r, c achieve the maximum
in (109). Then, if qi > 0, the following implications hold:

Ri = 0 ⇒ ∑
j qjC j ≤ (1 − B)Ci, Ci = 0 ⇒ ∑

j qj Rj ≤ (1 − B)Ri.

In particular, if qi > 1 − B, it holds that Ri, Ci > 0. Hence, for every q ≥ 3, there exists
i ∈ {1, 2, 3} such that Ri, Ci > 0.

We next examine bad triples. Note that a bad triple q = (q1, q2, q3), by the second
part of Lemma 7.21, must have at least two positive entries. We consider cases whether
the triple q has two or three positive entries. We start with the case where exactly two
of the qi ’s are positive. We assume throughout the rest of the section that r, c achieve
the maximum in (109).

Let q = (q1, q2, 0) be a bad triple where q1, q2 > 0. Since q is bad, we may assume
that at least one of R1, R2, C1, C2 is zero. Without loss of generality, we may assume
C2 = 0. By the second part of Lemma 7.21, it follows that R1, C1 > 0. There are two
cases to consider.

(I) R2 = 0, (II) R2 > 0. (126)

Case (I) is straightforward. By the first part of Lemma 7.18, we trivially have ∂
S

∂q1
> 0

and ∂
S

∂q2
= 0, so that the second part of Lemma 7.18 yields that q does not maximize 
.

Case (II). Since 
S is scale-free (see (111)), we may assume that C1 = 1. Since R1, R2

are positive, it holds that ∂
S/∂ R1 = ∂
S/∂ R2 = 0, yielding (analogously to (114))

R1 ∝ yd, R2 ∝ 1, where y = (q1 + B− 1)/q1.

Observe that q1yd+1 + q2 = q2 + (q1 + B − 1)yd. Substituting the values of Ri ’s, Cj ’s in

S, we obtain the value of 
(q):


(q) = (d + 1) ln
(
(q1yd + q2)q1 + (B− 1)q1yd)− d ln

(
q1yd+1 + q2

)− d ln q1

= ln
(
q1
(
q2 + (q1 + B− 1)yd)).
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In terms of y, we have that q1 = (1 − B)/(1 − y) and q2 = q − q1 = q − (1 − B)/(1 − y),
so we obtain


(q) = ln h(y), where h(y) := (1 − B)(q(1 − y) − (1 − B)(1 − yd+1))
(1 − y)2 .

Let I be the interval [0, (q+B−1)/q]. Note that for any y ∈ I, there exists a nonnegative
q1 ∈ [0, q] such that y = (q1 + B − 1)/q1. Obviously, if q maximizes 
, it must be the
case that y maximizes h(y) in the interval I. We compute h′(y).

h′(y) = (1 − B) r(y)
(1 − y)3 , where r(y) := q(1 − y) − (1 − B)((d − 1)yd+1 − (d + 1)yd + 2).

It is immediate to see that r(y) is convex for y ∈ [0, 1]. Since r(0) = q − 2(1 − B) > 0 and
r(1) = 0, we obtain that either

(i) r(y) > 0 for all y ∈ I, or

(ii) ∃ yo ∈ I: r(yo) = 0, r(y) > 0 iff y < yo.

In case (i), h(y) is increasing and hence h(y) is maximized at y = (q + B− 1)/q. This
value of y corresponds to q1 = q and thus 
(q) = 
(q, 0, 0).

In case (ii), we have h(y) ≤ h(yo). The value of q1 corresponding to yo is qo := (1 −
B)/(1 − yo). We will show that the maximum in (109) does not happen at the boundary
C2 = 0 when q = (qo, q − qo, 0), implying that h(yo) does not equal 
(q) and hence the
maximum of 
 as well. To prove the former, we utilize the first part of Lemma 7.21. In
particular, we prove that

qo yd
o + (q − qo) > (1 − B). (127)

Note that r(yo) = 0 yields q = (1 − B)
(
(d− 1)yd+1

o − (d+ 1)yd
o + 2

)
/(1 − yo). Plugging this

expression into (127), we only need to show that

(d − 1)yd+1
o − dyd

o + 1
1 − yo

> 1 or (d − 1)yd
o + 1 > dyd−1

o , (128)

which holds by the AM-GM inequality for any positive yo �= 1.
Let q = (q1, q2, q3) be a bad triple where all of the qi ’s are positive. Since q is bad, we

may assume that at least one of the Ri ’s and Cj ’s is zero. Without loss of generality, we
may assume C2 = 0. Moreover, by the second part of Lemma 7.21, we may also assume
that R1, C1 > 0. There are four cases to consider.

(I) R2 = 0, (II) R2, R3 > 0, C3 = 0, (III) R2, R3, C3 > 0, (IV) R2, C3 > 0, R3 = 0.

We omitted the case R2 > 0 and R3 = C3 = 0, which is identical to Case (I) after
renaming the qi ’s.

Case (I) is straightforward. Since R2 = C2 = 0, (113) gives ∂
S/∂q2 = 0. Since
R1, C1 > 0, (113) also gives that ∂
S/∂q1 > 0, so the second part of Lemma 7.18 yields
that q does not maximize 
.

Case (II). Since 
S is scale-free (see (111)), we may substitute C1 = 1. Setting the
derivatives of ∂
S/∂ R1, ∂
S/∂ R2, ∂
S/∂ R3 equal to zero, we obtain

R1 ∝ (q1 + B− 1)d/qd
1 , R2 ∝ 1, R3 ∝ 1.

It follows that 
(q) = 
(q1, q2 + q3, 0) and hence the maximum of 
 does not occur at
q by the argument for Case (II) in (126).
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Case (III). The partial derivatives of 
S with respect to R1, R2, R3, C1, C3 must vanish
so we obtain

R1/d
1 ∝ q1C1 + q2C3 − (1 − B)C1, R1/d

2 ∝ q1C1 + q3C3, R1/d
3 ∝ q1C1 + q3C3 − (1 − B)C3,

C1/d
1 ∝ q1 R1 + q2 R2 + q3 R3 − (1 − B)R1, C1/d

3 ∝ q1 R1 + q2 R2 + q3 R3 − (1 − B)R3.

(129)
If C1 = C3, then R1 = R3 and thus we obtain 
(q1, q2, q3) ≤ 
(q1 + q3, q2, 0).

For the sake of contradiction, suppose that the maximum of 
 was attained at
q = (q1, q2, q3). Then, it must also be attained by q′ := (q1 + q3, q2, 0), that is,

(q) = max 
 = 
(q′). Note that the same r, c which achieve the maximum in (109)
for q = (q1, q2, q3) must also achieve the maximum in (109) for q′ = (q1 +q3, q2, 0) (since

S(q′, r, c) = 
S(q, r, c) = 
(q) = max 
 = 
(q′)). We can thus apply the argument for
Case (II) in (126) to show that the maximum of 
 is not attained at q′ = (q1 + q3, q2, 0)
and hence not at q = (q1, q2, q3) as well.

Thus, we may assume that C1 �= C3 and, without loss of generality, we may further
assume that C1 < C3. By (129), this yields

R2 > R1 > R3, C1 < C3. (130)

We have the following analogue of Lemma 7.19, which proves that the maximum cannot
occur at q by the second part in Lemma 7.18.

LEMMA 7.22. Suppose that Ri’s and C j’s satisfy (129) and (130). If R1/R3 �= C3/C1,

then ∂
S

∂q1
− ∂
S

∂q3
�= 0. If R1/R3 = C3/C1, then ∂
S

∂q1
− ∂
S

∂q2
�= 0.

PROOF OF LEMMA 7.22. The proof is analogous to the proof of Lemma 7.19, we high-
light the main differences. Let rd

1 = R1/R3, rd
2 = R2/R3, cd

3 = C3/C1. The Ri ’s and Cj ’s
may be recovered by the ri ’s and c j ’s by

R1 ∝ rd
1 , R2 ∝ rd

2 , R3 ∝ 1, and C1 ∝ 1, C3 ∝ cd
3 . (131)

By (130), we have

r2 > r1 > 1 and c3 > 1.

The expressions for r1, r2, c3 in (119) are exactly the same after substituting c2 = 0.
The same is true for (120) and (121) (our derivation for r2 in (121) holds as is; for (120),
one needs to view the expressions for r1, c3 in (119) as a system of q1, q3 and solve it).
It follows that the proof for the first part of Lemma 7.19 holds verbatim in this case
as well (note that the ordering of r1, r2 is different here but that part of the argument
does not use the ordering).

While the proof for the second part of Lemma 7.19 does not carry through as simply,
the changes are minor. We assume that r1 = c3 and set DIF1,2 := ∂
S

∂q1
− ∂
S

∂q2
. Plugging

r1 = c3 and c2 = 0 in (120) and (121) (recall that only the expression for r2 in (121) is
valid) yields, with T := (rd

1 − 1)(rd+1
1 − 1),

q1 = (1 − B)T − q2(r1 − 1)rd
1 rd

2

(r1 − 1)
(
r2d

1 − 1
) , q3 = (1 − B)T + q2(r1 − 1)rd

2

(r1 − 1)
(
r2d

1 − 1
) , r2 = rd+1

1 − 1
rd

1 − 1
. (132)
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We then use the expressions for ∂
S

∂q1
, ∂
S

∂q2
given in Lemma 7.18 together with the sub-

stitutions for Ri ’s and Cj ’s in (131) (and C2 = 0). We obtain

DIF1,2 = 1
S

[(
rd

1 − rd
2

)(
q1 + q3cd

3

)− (
q1rd

1 + q2rd
2 + q3

)+ (d − 1)(1 − B)rd
1

]
= (1 − B) h(r1)

S(r1 − 1)
, where h(r1) := (

r2d+1
1 + drd+1

1 − drd
1 − 1

)−
(
rd+1

1 − 1
)d+1(

rd
1 − 1

)d ,

where S := (q1rd
1 + q2rd

2 + q3)(q1 + q3cd
3) + (B− 1)(q1rd

1 + q3cd
3) (recall that S > 0 because

of (110)). To obtain the second equality, one first substitutes the values of q1, q3 from
(132) and c3 = r1; this results in q2 being eliminated, and then it remains to substitute
the value of r2 given in (132).

By a first derivative argument, the function

g(r1) := log
( (

rd+1
1 − 1

)d+1(
rd

1 − 1
)d (r2d+1

1 + drd+1
1 − drd

1 − 1
)),

is strictly increasing for r1 > 1. Indeed, by a direct differentiation, we obtain

g′(r1) = (d + 1)rd
1

(
r2d

1 − d2rd+1
1 + 2

(
d2 − 1

)
rd

1 − d2rd−1
1 + 1

)(
rd

1 − 1
)(

rd+1
1 − 1

) (
r2d+1

1 + drd+1
1 − drd

1 − 1
) .

The denominator of this last expression is positive for r1 > 1. To prove that the numera-
tor is also positive for r1 > 1, it suffices to show that r2d

1 −d2rd+1
1 +2(d2−1)rd

1 −d2rd−1
1 +1 >

0 for r1 > 1. This has been proved earlier, see (125) and the argument thereafter. Hence,
we can conclude that g is an increasing function of r1 in the interval [1,+∞). It follows
that g(r1) < g(+∞) = 0, so that h(r1) > 0 for all r1 > 1. This proves that DIF1,2 �= 0, as
desired.

Case (IV). The partial derivatives of 
S with respect to R1, R2, C1, C3 must vanish
so we obtain

R1/d
1 ∝ q1C1 + q3C3 − (1 − B)C1, R1/d

2 ∝ q1C1 + q3C3,

C1/d
1 ∝ q1 R1 + q2 R2 − (1 − B)R1, C1/d

3 ∝ q1 R1 + q2 R2.
(133)

Note that we have R1 < R2 and C1 < C3.

LEMMA 7.23. If R2/R1 �= C3/C1, then either ∂
S

∂q2
− ∂
S

∂q3
�= 0 or ∂
S

∂q1
− ∂
S

∂q2
�= 0. If

R2/R1 = C3/C1 and ∂
S

∂q1
− ∂
S

∂q2
= 0, then the maximum in (109) does not happen at the

boundary C2 = 0.

PROOF OF LEMMA 7.23. The approach for the first part is similar to the proof of
Lemma 7.19. Set rd

2 = R2/R1 and cd
3 = C3/C1, so that r1, c3 > 1. Dividing appropriate

pairs in (133), we obtain

r2 = q1 + q3cd
3

(q1 + B− 1) + q3cd
3

, c3 = q1 + q2rd
2

(q1 + B− 1) + q2rd
2

. (134)

It follows that

q2 = q1 − (q1 + B− 1)c3

rd
2 (c3 − 1)

, q3 = q1 − (q1 + B− 1)r2

cd
3(r2 − 1)

. (135)



Inapproximability for Antiferromagnetic Spin Systems in the Tree Nonuniqueness Region 50:55

Using these, we obtain

∂
S

∂q2
− ∂
S

∂q3
= 0 ⇒ f (r2) = f (c3), where f (x) := xd+1

x − 1
, (136)

∂
S

∂q1
− ∂
S

∂q2
= 0 ⇒ rd+1

2 (c3 − 1) − (d + 1)r2c3 + d(r2 + c3) − (d − 1) = 0. (137)

From (137), we obtain

c3 = g(r2), where g(r2) := rd+1
2 − dr2 + (d − 1)

rd+1
2 − (d + 1)r2 + d

. (138)

It follows that r2 = c3 is equivalent to

rd+1
2 = (d + 1)r2 − (d − 1). (139)

A standard first derivative argument shows that (139) has exactly one solution for
r2 > 1, say r2 = x. Using the expression for c3 from (138), (136) gives

h(r2) = 0, where h(r2) := rd+1
2 −

(
rd+1

2 − dr2 + (d − 1)
)d+1(

rd+1
2 − (d + 1)r2 + d

)d .

Lengthy calculations show that h is strictly increasing for r2 > 1 (and every d ≥ 2), see
Appendix D.3 for the details. Moreover, it holds that h(x) = 0, so that (136) and (137)
can only hold simultaneously when r2 = c3, which yields the first part of the lemma.

For the second part, we have that r2 = c3 and ∂
S

∂q1
− ∂
S

∂q2
= 0, and hence from (137),

we obtain that r2 also satisfies (139). To prove that the maximum does not happen at
the boundary C2 = 0, we use the first part of Lemma 7.21. It suffices to prove that

q1 + q2rd
2 > (1 − B)rd

2 . (140)

Since r2 = c3, Eq. (135) gives q2 = q3 = (q − q1)/2 (using also that q1 + q2 + q3 = q), so
(134) gives

q1 = q
(
rd+1

2 − rd
2

)− 2r2(1 − B)

(r2 − 1)
(
rd

2 − 2
) , q2 = q3 = q − r2(q + B− 1)

(r2 − 1)
(
rd

2 − 2
) . (141)

Since r2 satisfies (139), we have that rd
2 > 2 (otherwise, rd+1

2 ≤ 2r2 < (d+ 1)r2 − (d− 1)).
Plugging (141) into (140) thus yields the equivalent inequality

(1 − B)
(
rd

2 + r2 − rd+1
2

)
r2 − 1

> 0.

To see the latter, use (139) to obtain

rd
2 + r2 − rd+1

2 = rd
2 + (d − 1) − dr2 > 0, for all r2 > 1 by the AM-GM inequality.

This completes the proof.

7.5. Remaining Proofs

PROOF OF LEMMA 7.6. Without loss of generality, we may assume that the scaling
factors in (107) are equal to 1. Let Ri = rd

i , Ci = cd
i , r = ∑q

i=1 rd
i , and c = ∑q

i=1 cd
i . We

have

ri = c − (1 − B)cd
i and ci = r − (1 − B)rd

i ,
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It is clear from this equation that Ri = Rj iff Ci = Cj and hence also tR = tC . We also
obtain that for i = 1, . . . , q,

ri = c − (1 − B)(r − (1 − B)rd
i )d. (142)

Since r is the sum of rd
i and the ri are positive, we have (1 − B)rd

i < r. Fix the values
of r, c and let I be the interval where (1 − B)xd < r. Using (142), we shall prove that
tR ≤ 3 by arguing that f (x) = c − (1 − B)(r − (1 − B)xd)d − x has at most three positive
roots in the interval I, counted by multiplicities. We have

f ′(x) = (1 − B)2d2(r − (1 − B)xd)d−1xd−1 − 1 =
(

d−2∑
i=0

g(x)i

)
(g(x) − 1),

where

g(x) = ((1 − B)d)2/(d−1)(r − (1 − B)xd)x.

Note that g(x) > 0 in the interval I and hence all roots of f ′(x) in this interval come
from g(x) − 1. The polynomial g(x) − 1 has at most two positive roots by Descartes’ rule
of signs, hence f ′(x) has at most two positive roots in I. Thus, f (x) has at most three
positive roots in I, all roots counted by their multiplicities. This concludes the proof.

PROOF OF LEMMA 7.9. Let q′ = q/2. Recall from Theorem 4.1 that the maxima of �1
are in one-to-one correspondence with fixpoints of the tree recursions (107). To better
align with the results of Section 7.3, let us assume that the fixpoint is of type (q′, 0, q′)
(note, by Lemma 7.8, such a fixpoint corresponds to a maximum of �1). In Section 7.3,
we proved that this can be the case only if R1/R3 = C3/C1 or (in the parameterization
of Section 7.3) r1 = c3 =: x where x > 1. Equation (119) for q2 = 0, q1 = q3 = q′ gives
that x satisfies

x = B+ q′ − 1 + q′xd

q′ + (B+ q′ − 1)xd , (143)

where recall that d = �− 1. We first prove that (143) has exactly one solution x > 1 for
all 0 ≤ B <

�−q
�

. We can rewrite (143) as

p(x) := (B+ q′ − 1)xd+1 − q′xd + q′x − (B+ q′ − 1) = 0.

We have p(1) = 0 and p′(1) = (d + 1)(B + q′ − 1) − (d − 1)q′ < 0, where in the last
inequality we used that B < (� − q)/�. Thus, p(x) is negative for some x > 1 and since
p(x) is positive for large x, we can conclude that a root ρ with ρ > 1 exists. Note that
1/ρ, 1, ρ are three distinct roots of p(x). Applying Descartes’ rule of signs, we obtain
that these must be the only roots and hence ρ is the only positive root of p(x) greater
than 1, as wanted.

The values of R1, C1, R3, C3 may be recovered by (117), which in the case q2 = 0 give

R1 ∝ xd, R3 ∝ 1 and C1 ∝ 1, C3 ∝ xd.

This proves the second part of Lemma 7.9.
For the first part, to check Jacobian stability of the fixpoint (R1, . . . , Rq, C1, . . . , Cq)

with type (q′, q′, 0), we proceed as in the proof of Lemma 7.4. Note that a fixpoint of type
(q′, q′, 0) has R1 = · · · = Rq′ and Rq′+1 = · · · = R2q′ (and similarly for the C ′

js). Recall
that the condition for Jacobian stability is related to the spectrum of L = [ 0 A

Aᵀ 0 ] where
A is the q×q matrix whose (i, j)-entry is given by Bij RiC j/

√
αiβ j and αi, β j are given by

(29). Moreover, 1 and −1 are eigenvalues of L and the condition for Jacobian stability
is that all the other eigenvalues have absolute value less than 1/(� − 1). Finally, recall
that the spectrum of L is symmetric with respect to 0, see footnote 3.
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The eigenvalues of the matrix L in this case (with the specific matrix B and the values
of Ri ’s and C j ’s) can be computed as follows. Let i �= j be such that Ri = Rj , we then
have Ci = Cj , αi = α j and βi = β j as well. The (2q)-dimensional vector whose nonzero
entries are 1’s at the positions of Ri, Ci (i.e., the ith and (i + q)-th coordinate) and −1’s
at the positions of Rj, C j is an eigenvector of L; also the vector with 1’s at the positions
of Ri, C j and −1’s at the positions of Rj, Ci (and zero elsewhere) is an eigenvector of L.
This gives us the eigenvalues ±λ1 each with multiplicity 2q′ − 2 = q − 2, where

λ1 := (1 − B)
R1C1√
α1β1

= (1 − B)xd/2√
(q′ + (B+ q′ − 1)xd)(B+ q′ − 1 + q′xd)

.

Denote by ±X the remaining eigenvalues of L. We can compute X by consider-
ing the determinant of L. We have Det(L) = (−1)q(Det(A))2. Note that Det(A) =
Det(B)

∏
i

Ri√
αi

∏
j

C j√
β j

, so Det(A) = (−1)q−1(1 − B)q−1(B + q − 1)( R1C1√
α1β1

)q. We thus

obtain

X2(1 − B)2(q−2)
(

R1C1√
α1β1

)2(q−2)

= (B+ q − 1)2(1 − B)2(q−1)
(

R1C1√
α1β1

)2q

,

and hence the eigenvalues of L are given by ±1 by multiplicity 1, ±λ1 by multiplicity
q − 2 and ± B+q−1

1−B λ2
1 by multiplicity 1.

To prove that the absolute values of the eigenvalues different from 1 are less than
1/d, it suffices to prove that λ1 < 1/d (since B+q−1

1−B < d for B <
d+1−q

d+1 ). Use (143) to
solve for q′ and plug the value into the expression for λ1. This yields that λ1 is equal to
x(d−1)/2(x − 1)/(xd − 1), which by the AM-GM inequality is less than 1/d for x > 1.

PROOF OF LEMMA 7.10. For nonnegative q = (q1, q2, q3) with q1 + q2 + q3 = q, consider
the function

F(q) = max
r,c

F(q, r, c), where F(q, r, c) := ∑3
i=1 qi Ri

∑3
j=1 qjC j + (B− 1)

∑3
i=1 qi RiCi,

(144)
and the maximum is over the compact region (by restricting to Ri = Ci = 0 whenever
qi = 0) ∑3

i=1 qi R
(d+1)/d
i ≤ 1,

∑3
j=1 qjC

(d+1)/d
j ≤ 1,

R1, R2, R3, C1, C2, C3 ≥ 0.
(145)

Note that F(q) > 0, since we can set all of the Ri ’s and C j ’s equal to x, where qx(d+1)/d =
1. We have that 
(q) ≥ (d + 1) ln F(q) since for the r, c which achieve the maximum
in (144) we have 
S(q, r, c) ≥ (d + 1) ln F(q). Also, since 
S(q, r, c) is scale-free with
respect to r and c (see (111)), we may scale r, c to satisfy (145) and hence 
(q) =
supr,c 
S(q, r, c) ≤ (d+1) ln F(q), proving that 
(q) = (d+1) ln F(q) and consequently
the supremum is attained.

To prove that supq 
(q) is attained, it suffices to prove that L := supq F(q) is attained.
This can be accomplished by using variants of Berge’s Maximum Theorem and showing
that the function F(q) is upper semicontinuous. We give a more direct argument, which
is similar to the proof of Berge’s Maximum Theorem and can also easily be adapted to
show that F(q) is upper semicontinuous.

Note first that L < ∞ by a simple application of Hölder’s inequality. Let qn, n =
1, 2, . . . be a sequence such that F(qn) ↑ L. Since the qn lie in a compact region, by
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restricting to a subsequence we may assume that qn → q. Let rn, cn be maximizers for
F(qn) in (144).

Suppose first that q has positive entries. Then, for sufficiently large n, the maximizers
rn, cn lie in a compact set and hence a standard diagonalisation argument yields a
convergent subsequence (qnk, rnk, cnk) → (q, r, c). By continuity, r, c must lie in the
region (145) defined by q and moreover F(qnk) = F(qnk, rnk, cnk) → F(q, r, c). Thus,
L = F(q, r, c) and the supremum is attained.

Suppose now that q has an entry equal to zero, say q1, so that q1n → 0 (with the
natural notation for entries of the subsequences). In this setting, R1n, C1n might escape
to infinity, so assume that R1n, C1n ↑ ∞, by restricting to a subsequence if neces-
sary. (145) implies q1nR(d+1)/d

1n , q1nC(d+1)/d
1n ≤ 1 and hence q1nR1n, q1nC1n → 0. Note that

q1nR1nC1n → 0 as well; otherwise there exists a subsequence with q1nk R1nkC1nk ≥ ε > 0.
This contradicts that rnk, cnk maximize F(qnk, ·, ·), since setting R1,nk = C1,nk = 0
would maintain feasibility in (145) and achieve a bigger value of F for all sufficiently
large k (recall that B < 1). Thus, q1nR1n, q1nC1n, q1nR1nC1n → 0, yielding once again
L = F(q, r, c).

PROOF OF LEMMAS 7.14, 7.17 AND 7.18. We first prove Lemma 7.18. Recall that I =
{i ∈ [3] | qi > 0}. Let IR = {i ∈ I | Ri > 0} and define analogously IC (note that it may be
that IR �= IC). For i ∈ IR, it must hold that ∂
S/∂ Ri = 0. Since qi > 0 for i ∈ I, it follows
that

R1/d
i ∝ ∑

j qjC j − (1 − B)Ci for all i ∈ IR, (146)

and hence
R(d+1)/d

i ∝ Ri
(∑

j qjC j − (1 − B)Ci
)

for all i ∈ I.

Thus, for i ∈ I, it holds that

R(d+1)/d
i∑

j qj R
(d+1)/d
j

= Ri
(∑

j qjC j − (1 − B)Ci
)∑

j qj Rj
∑

j qjC j + (B− 1)
∑

j qj RjC j
, (147)

and an analogous argument for the Ci ’s gives

C(d+1)/d
i∑

j qjC
(d+1)/d
j

= Ci
(∑

j qj Rj − (1 − B)Ri
)∑

j qj Rj
∑

j qjC j + (B− 1)
∑

j qj RjC j
. (148)

Moreover, by a direct calculation we have

∂
S

∂qi
= (d + 1)

(
Ri
∑

j qjC j + Ci
∑

j qj Rj + (B− 1)RiCi
)∑

j qj Rj
∑

j qjC j + (B− 1)
∑

j qj RjC j

− dR(d+1)/d
i∑

j qj R
(d+1)/d
j

− dC(d+1)/d
i∑

j qjC
(d+1)/d
i

.

(149)

Plugging (147) and (148) in (149) proves the first part of Lemma 7.18.
For the second part of Lemma 7.18, assume without loss of generality, that q1, q2 > 0

and ∂
S

∂q1
− ∂
S

∂q2
> 0. For ε > 0, consider q′ = (q1 + ε, q2 − ε, q3). Since q1, q2 are positive,

for small enough ε, q′ has positive entries which sum to q. Moreover, for small enough ε

the value of 
S increases, while still maintaining feasibility in the region (110). Hence,
q does not maximize 
, as desired.

Lemma 7.14 and Lemma 7.17 follow from our earlier considerations. In the setting of
Lemma 7.17, we have the extra assumption that q is good, which means that for every
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maximizer r, c it holds that I = IR = IC . Let i, j be such that qi, qj > 0, that is, i, j ∈ I.
We have that i, j ∈ IR and hence the desired equivalence Ri = Rj iff Ci = Cj follows
from (146). In the setting of Lemma 7.14, in addition to q being good, we have that q
is maximal and that the qi ’s are nonnegative integers. By maximality of q, there exists
a maximizer r, c such that, for every two distinct indices i, j ∈ I, it holds that Ri �= Rj
and Ci �= C j . Now just use (146) and the fact that q1, q2, q3 are nonnegative integers to
obtain that this maximizer r, c specifies a fixpoint of (107) of type (q1, q2, q3).

PROOF OF LEMMA 7.21. Suppose that qi > 0 and
∑

j qjC j > (1 − B)Ci. We look at the

derivative ∂
S/∂ Ri evaluated at Ri = 0:

∂
S

∂ Ri
= (d + 1)qi(q1C1 + q2C2 + q3C3 − (1 − B)Ci)∑

j qj Rj
∑

j qjC j + (B− 1)
∑

j qj RjC j
> 0.

Thus, increasing the value of Ri by a sufficiently small amount, increases the value of

S. Hence, the maximum cannot be obtained at the boundary Ri = 0.

The second part of the lemma follows easily from the first part. Suppose that qi >
1 − B. Since the Cj ’s are nonnegative, we have that

∑
j qjC j ≥ (1 − B)Ci with equality

only if qjC j = 0 for all j ∈ [3]. This is excluded from (110). Thus, by the first part of the
lemma, we may conclude that Ri > 0 and, similarly, Ci > 0.

To derive that there always exists an index i ∈ [3] with Ri, Ci > 0 whenever q ≥ 3,
note that q1 + q2 + q3 = q implies that the largest qi is ≥ q/3 ≥ 1 ≥ 1 − B. Equality
can only hold when B = 0, q = 3 and q1 = q2 = q3 = 1. This (very) special case can be
handled as follows. From (110), at least one of the Cj ’s has to be positive, say C1 > 0. We
may assume that R1 = 0, otherwise we are done. Since R1 = 0 and q2 = q3 = 1 > 0, by
the first part of the lemma, we obtain that C2 = C3 = 0. By the same token, C2 = C3 = 0
implies that R2 = R3 = 0. Thus, R1 = R2 = R3 = 0, which is excluded from (110).

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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