
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

FERROMAGNETIC POTTS MODEL: REFINED #BIS-HARDNESS
AND RELATED RESULTS∗

ANDREAS GALANIS† , DANIEL ŠTEFANKOVIČ‡ , ERIC VIGODA§ , AND LINJI YANG¶

Abstract. Recent results establish for the hard-core model (and more generally for 2-spin anti-
ferromagnetic systems) that the computational complexity of approximating the partition function on
graphs of maximum degree ∆ undergoes a phase transition that coincides with the uniqueness/non-
uniqueness phase transition on the infinite ∆-regular tree. For the ferromagnetic Potts model we
investigate whether analogous hardness results hold. Goldberg and Jerrum showed that approximat-
ing the partition function of the ferromagnetic Potts model is at least as hard as approximating the
number of independent sets in bipartite graphs, so-called #BIS-hardness. We improve this hardness
result by establishing it for bipartite graphs of maximum degree ∆. To this end, we first present
a detailed picture for the phase diagram for the infinite ∆-regular tree, giving a refined picture of
its first-order phase transition and establishing the critical temperature for the coexistence of the
disordered and ordered phases. We then prove for all temperatures below this critical temperature
(corresponding to the region where the ordered phase “dominates”) that it is #BIS-hard to approxi-
mate the partition function on bipartite graphs of maximum degree ∆. As a simple corollary of this
result, we obtain that it is #BIS-hard to approximate the number of k-colorings on bipartite graphs
of maximum degree ∆ whenever k ≤ ∆/(2 ln ∆). The #BIS-hardness result for the ferromagnetic
Potts model uses random bipartite regular graphs as a gadget in the reduction. The analysis of these
random graphs relies on recent results establishing connections between the maxima of the expec-
tation of their partition function, attractive fixpoints of the associated tree recursions, and induced
matrix norms. In this paper we extend these connections to random regular graphs for all ferromag-
netic models. Using these connections, we establish the Bethe prediction for every ferromagnetic spin
system on random regular graphs, which says roughly that the expectation of the log of the partition
function Z is the same as the log of the expectation of Z. As a further consequence of our results,
we prove for the ferromagnetic Potts model that the Swendsen–Wang algorithm is torpidly mixing
(i.e., exponentially slow convergence to its stationary distribution) on random ∆-regular graphs at
the critical temperature for sufficiently large q.
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1. Background.

1.1. Spin systems. We study the ferromagnetic Potts model and present tools
which are useful for any ferromagnetic spin system on random regular graphs. Hence
we begin with a general definition of a spin system.

A spin system is defined, for an n-vertex graph G = (V,E) and integer q ≥
2, on the space Ω of configurations σ which are assignments σ : V → [q]. The
model is characterized by its energy or Hamiltonian H(σ) which is a function of the
spin assignments to the vertices. In the classical examples of the Ising (q = 2) and
Potts (q ≥ 3) models without external field, the Hamiltonian H(σ) is the number of
monochromatic edges in σ. Each configuration has a weight w(σ) = exp(−βH(σ)) for
a parameter β corresponding to the “inverse temperature” which controls the strength
of edge interactions.

In our general setup, a specification of a q-state spin model is defined by a sym-
metric q×q interaction matrix B = {Bij}i,j∈[q] with nonnegative entries. For a graph
G = (V,E), the weight of a configuration σ : V → [q] is given by

wG(σ) =
∏

{u,v}∈E

Bσ(u),σ(v).

We will occasionally drop the subscript G when the graph under consideration is
clear from context. The Gibbs distribution µ = µG is defined as µ(σ) = w(σ)/Z,
where Z = ZG(B) =

∑
σ w(σ) is the partition function. We remark here that many

of our results also apply to models with arbitrary external fields since we will work
with ∆-regular graphs and in this case the external field can be incorporated into the
interaction matrix.

The Ising (q = 2) and Potts (q > 2) models have interaction matrices with
diagonal entries B := exp(−β) and off-diagonal entries 1. The models are called
ferromagnetic if B > 1 since then neighboring spins prefer to align and are antiferro-
magnetic if B < 1. The hard-core model is an example of a 2-spin antiferromagnetic
system, its interaction matrix is defined so that Ω is the set of independent sets of G
and, for activity (external field) λ > 0, a configuration σ ∈ Ω has weight w(σ) = λ|σ|

(with |σ| denoting the cardinality of the independent set σ).

1.2. Ferromagnetic models. In this paper, we will focus on ferromagnetic
models and pay special attention to the ferromagnetic Potts model. We are not aware
of a general definition of ferromagnetic and antiferromagnetic models. We use the
following notions which generalize the analogous notions for 2-spin and for the Potts
model. The ferromagnetic definition captures that neighboring spins prefer to align
(see Observation 2 below).

To avoid degenerate cases,1 we assume throughout this paper that the interac-
tion matrix B is ergodic, that is, irreducible and aperiodic. Hence, by the Perron–
Frobenius theorem (since B has nonnegative entries) the eigenvalue of B with the
largest magnitude is positive.

1If B is reducible, by a suitable permutation of the labels of the spins, B can be put in a block
diagonal form where each of the blocks is either irreducible or zero. Such a model can be studied by
considering the induced submodels of each block corresponding to irreducible symmetric matrices,
since the partition function for the original model is simply the sum of the partition functions of
each of these submodels. If B is periodic, and since B is symmetric, its period must be two. Such a
model is interesting only on bipartite graphs (otherwise the partition function is zero), and the focus
of our general results is for random ∆-regular graphs which are nonbipartite with high probability.
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Definition 1. A model is called ferromagnetic if B is positive definite. Equiva-
lently we have that all of its eigenvalues are positive and also that

B = B̂ᵀB̂

for some q × q matrix B̂.

In contrast to the above notion of a ferromagnetic system, in [17] a model is called
antiferromagnetic if all of the eigenvalues of B are negative except for the largest
(which, as noted above, is positive). Note that when the number of spins is greater
than 2, there are models which are neither ferromagnetic nor antiferromagnetic.

The most alluring aspect of this definition is that for ferromagnetic models, neigh-
boring vertices prefer to have the same spin. To see this, the following more general
inequality is proved in [17], which is a simple application of the Cauchy–Schwarz
inequality.

Observation 2. Let z1, z2 ∈ Rq≥0 with ‖z1‖1 = ‖z2‖1 = 1. For ferromagnetic B,
we have

(zᵀ1Bz1)(zᵀ2Bz2) ≥ (zᵀ1Bz2)2.

Equality holds iff z1 = z2. For antiferromagnetic B, the inequality is reversed.

Observe that if we plug in to the above inequality the vectors with a single 1 in the
positions i and j, respectively, we obtain that any two spins i, j induce a ferromagnetic
2-spin system.

As observed in [17], an appealing aspect of defining ferromagnetism in terms of
the signature of the interaction matrix is that the definition remains invariant in the
presence of external fields. More precisely, for ∆-regular graphs, any external field
can be incorporated into the interaction matrix by a congruence transformation of
the matrix B. The modified interaction matrix has the same number of positive,
zero, and negative eigenvalues as the original (this follows from the Sylvester’s law of
inertia), and hence it remains ferromagnetic/antiferromagnetic.

1.3. Known connections to phase transitions. Exact computation of the
partition function is #P-complete, even for very restricted classes of graphs [24].
Hence we focus on whether there is a fully polynomial (randomized or deterministic)
approximation scheme, a so-called FPRAS or FPTAS.

One of our goals in this paper is to refine our understanding of connections be-
tween approximating the partition function on graphs of maximum degree ∆ with
phase transitions on the infinite ∆-regular tree T∆. A phase transition of particular
interest in the infinite tree T∆ is the uniqueness/nonuniqueness threshold. Roughly
speaking, in the uniqueness phase, if one fixes a so-called boundary condition which
is a configuration σ` (for instance, an independent set in the hard-core model) on the
vertices distance ` from the root, then in the Gibbs distribution conditioned on this
configuration, is the root “unbiased”? Specifically, for all sequences (σ`) of boundary
conditions, in the limit `→∞, does the root have the same marginal distribution? If
so, there is a unique Gibbs measure on the infinite tree and hence we say the model
is in the uniqueness region. If there are sequences of boundary conditions which
influence the root in the limit, then we say the model is in the nonuniqueness region.

For 2-spin antiferromagnetic spin systems, it was shown that there is an FPTAS
for estimating the partition function for graphs of maximum degree ∆ when the
infinite tree T∆ is in the uniqueness region [32]. On the other side, unless NP=RP,
there is no FPRAS for the partition function for ∆-regular graphs when T∆ is in the
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nonuniqueness region [44] (see also [16]). Recently, an analogous NP-hardness result
was shown for approximating the number of k-colorings on triangle-free ∆-regular
graphs for even k when k < ∆ [17]. In contrast to the above inapproximability results
for antiferromagnetic systems, for the ferromagnetic Ising model with or without
external field [29] and for 2-spin ferromagnetic spin systems without external field [23]
there is an FPRAS for all graphs. The situation for ferromagnetic multispin models,
the ferromagnetic Potts being the most prominent example, is more intricate.

#BIS refers to the problem of computing the number of independent sets in
bipartite graphs. A series of results has presented evidence that there is unlikely to be
a polynomial-time algorithm for #BIS, since a number of unsolved counting problems
have been shown to be #BIS-easy (for example, see [14, 3, 8]). The growing anecdotal
evidence for #BIS-hardness suggests that the problem is intractable, though weaker
than NP-hardness. More recently, it was shown in [7] that for antiferromagnetic 2-spin
models it is #BIS-hard to approximate the partition function on bipartite graphs of
maximum degree ∆ when the parameters of the model lie in the nonuniqueness region
of the infinite ∆-regular tree T∆. Also, for ferromagnetic 2-spin models with external
field, [33] shows #BIS-hardness for some region of the parameter space (note that the
known regions of the parameter space where an FPRAS exists (see [23, 33, 20]) do
not yet completely complement the #BIS-hardness result).

1.4. Outline of results. Our focus in this paper is on understanding the behav-
ior of ferromagnetic spin systems. Our main tools are bipartite random regular graphs
and random regular graphs. Whether we use bipartite or general graphs depends on
the context, and we use whichever yields the strongest results in that context. For
instance, we establish #BIS-hardness for the ferromagenetic Potts model in section
2.1; to obtain hardness results on the class of bipartite graphs we use bipartite random
regular graphs as the core of the gadget. In section 2.3 we establish results for the
Swendsen–Wang algorithm; such results are more interesting for general graphs and
hence we prove this result for random regular graphs.

In [17] we established concentration of the partition function for general spin
systems on bipartite random regular graphs. At first glance the picture for random
regular graphs is more complicated than for their bipartite counterparts since the
connection to trees is less clear for general models; however, for ferromagnetic models
an analogous connection holds, as we will establish in section 3.2. For ferromagnetic
systems, we establish concentration on random regular graphs as detailed in section
3.1. As a consequence we establish the so-called Bethe prediction for random regular
graphs as discussed in section 3.1.

2. Results for the Potts model.

2.1. #BIS-hardness for the Potts model. Goldberg and Jerrum [21] showed
that approximating the partition function of the ferromagnetic Potts model is #BIS-
hard, hence it appears likely that the ferromagnetic Potts model is inapproximable
for general graphs. We refine this #BIS-hardness result for the ferromagnetic Potts
model. We prove that approximating the partition function for the ferromagnetic
Potts model on bipartite graphs of maximum degree ∆ is #BIS-hard for temperatures
below the appropriate phase transition point in the infinite tree T∆. The appropriate
phase transition in the Potts model is not the uniqueness/nonuniqueness threshold,
but rather it is the ordered/disordered phase transition which occurs at B = Bo as
explained in the next section.

Formally, we study the following problem.
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Name. #BipFerroPotts(q,B,∆).
Instance. A bipartite graph G with maximum degree ∆.
Output. The partition function for the q-state Potts model on G.
We use the notion of approximation-preserving reductions, denoted as ≤AP, for-

mally defined in [14] (roughly, for counting problems #Π1 and #Π2, #Π1 ≤AP #Π2

implies that the existence of an FPRAS for #Π2 implies the existence of an FPRAS
for #Π1). We can now formally state our main result.

Theorem 3. For all q ≥ 3, for all ∆ ≥ 3, for the ferromagnetic q-state Potts
model, for any B > Bo,

#BIS ≤AP #BipFerroPotts(q,B,∆),

where Bo is given by (3).

Theorem 3 has a simple, yet interesting, consequence for the problem of approx-
imately counting k-colorings on bipartite graphs of maximum degree ∆. Recall that
for general graphs of maximum degree ∆, approximately counting k-colorings is NP-
hard whenever k < ∆ (and k is even) due to the result of [17]. Theorem 3 yields
#BIS-hardness for bipartite k-colorings whenever k ≤ ∆/(2 log ∆). Formally, we are
interested in the following problem.

Name. #BipColorings(k,∆).
Instance. A bipartite graph G with maximum degree ∆.
Output. The number of proper k-colorings of G.
We use a relatively simple reduction from the ferromagnetic Potts model to bi-

partite colorings, first observed in [14], which works even for bounded-degree graphs.
Theorem 3 then yields the following corollary (which is proved in section 9.2).

Corollary 4. For all k,∆ ≥ 3, whenever k ≤ ∆/(2 ln ∆), it holds that

#BIS ≤AP #BipColorings(k,∆).

It would be interesting to extend Corollary 4 to all k < ∆.

2.2. Potts model phase diagram. To understand the critical point Bo we
need to delve into the nature of the phase transition in the ferromagnetic Potts model
on the infinite ∆-regular tree T∆. We focus on how the phase transition manifests on
a random ∆-regular graph.

For a configuration σ ∈ Ω, denote the set of vertices assigned spin i by σ−1(i).
Let 4q denote the (q − 1)-simplex, where we recall that

4t = {(x1, x2, . . . , xt) ∈ Rt |
∑t
i=1 xi = 1 and xi ≥ 0 for i = 1, . . . , t}.

We refer to α ∈ 4q as a phase. For a phase α, denote the set of configurations with
frequencies of colors given by α as2

Σα =
{
σ : V → {1, . . . , q}

∣∣ |σ−1(i)| = αin for i = 1, . . . , q
}
,

and denote the partition function restricted to these configurations by

Zα
G =

∑
σ∈Σα wG(σ).

2Technically we need to define Σα =
{
σ : V → [q]

∣∣ |σ−1(i) ∩ V | = α̂i

}
, where {α̂i} are {αin}

rounded in a canonical fashion so that their sum is preserved (for example, using “cascade rounding”).
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Let G denote the uniform distribution over ∆-regular graphs with n vertices (for ∆n
even). Denote the exponent of the first moment as

(1) Ψ1(α) := ΨB
1 (α) := lim

n→∞

1

n
log EG

[
Zα
G

]
.

We derive the expression for Ψ1 in section 4. Those α which are global maxima of Ψ1

we refer to as dominant phases. We will see in section 3.2 that, for all ferromagnetic
models, roughly speaking, the candidates for dominant phases correspond to stable
fixpoints of the so-called tree recursions.

For the ferromagnetic Potts model, there will be two types of phases with particu-
lar interest; we refer to these two types as the disordered phase and the ordered phase.
The disordered phase is the uniform vector α = (1/q, . . . , 1/q). The ordered phase
refers to a phase with one color dominating in the following sense: one coordinate is
equal to a > 1/q and the other q−1 coordinates are equal to (1−a)/(q−1). Due to the
symmetry of the Potts model, when the ordered phase dominates, in fact, the q sym-
metric ordered phases dominate. These ordered phases have a specific a = a(q,B,∆)
which corresponds to a fixpoint of the tree recursions. The exact definition of this
marginal a is not important at this stage, and hence we defer its definition to a more
detailed discussion which takes place in section 8 (see (38)).

One of the difficulties for the Potts model is that the nature of the uniqueness/non-
uniqueness phase transition on T∆ is inherently different from that of the Ising model.
The ferromagnetic Ising model undergoes a second-order phase transition on T∆ which
manifests itself on random ∆-regular graphs in the following manner. In the unique-
ness region the disordered phase dominates, and in the nonuniqueness region the two
ordered phases dominate.

In contrast, the ferromagnetic Potts model undergoes a first-order phase transition
at the critical activity Bu. For B < Bu there is a unique Gibbs measure on T∆. For
B ≥ Bu there are multiple Gibbs measures on T∆; however, there is a second critical
activity Bo corresponding to the disordered/ordered phase transition: for B ≤ Bo

the disordered phase dominates, and for B ≥ Bo the ordered phases dominate (and
at the critical point Bo all of these q + 1 phases dominate).

We present a detailed picture of the phase diagram for the ferromagnetic Potts
model. Previously, Häggström [26] established the uniqueness threshold Bu by study-
ing percolation in the random cluster representation. In addition, Dembo et al.
[12, 13] studied the ferromagnetic Potts model (including the case with an exter-
nal field) and proved that for B > Bu, either the disordered or the q ordered phases
are dominant, but they did not establish the precise regions where each phase domi-
nates. For the simpler case of the complete graph (known as the Curie–Weiss model),
[10] detailed the phase diagram.

Häggström [26] established that the uniqueness/nonuniqueness threshold for the
infinite tree T∆ occurs at Bu which is the unique value of B for which the following
polynomial has a double root in (0, 1):

(2) (q − 1)x∆ + (2−B − q)x∆−1 +Bx− 1.

The disordered phase is dominant in the uniqueness region and continues to dom-
inate until the following activity (which was considered by Peruggi, Di Liberto, and
Monroy [41]):

(3) Bo :=
q − 2

(q − 1)(1−2/∆) − 1
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2010

Finally, Häggström [26] considers the following activity Brc, which he conjectures
is a (second) threshold for uniqueness of the random cluster model, defined as

Brc := 1 +
q

∆− 2
.

Note Bu < Bo < Brc.
We prove the following picture for the phase diagram for the ferromagnetic Potts

model in section 8. Note that to prove that a function has a local maximum at a
point, a standard approach is to show that its Hessian matrix is negative definite. We
often need this stronger condition in our proofs, hence we use the following definition.
Those dominant phases α with negative definite Hessian are called Hessian dominant
phases. Note that dominant phases always exist but a dominant phase can fail to
be Hessian (when some eigenvalue of the underlying Hessian is equal to zero). In
section 3.2, we give an alternative formulation of the Hessian condition in terms of
the local stability of fixpoints of the tree recursions.

Theorem 5. For the ferromagnetic Potts model the following holds at activity B:
B < Bu. There is a unique infinite-volume Gibbs measure on T∆. The disordered

phase is Hessian dominant, and there are no other local maxima of Ψ1.
Bu < B < Brc. The local maxima of Ψ1 are the disordered phase u and the q

ordered phases (the ordered phases are permutations of each other). All of
these q + 1 phases are Hessian local maxima. Moreover:

Bu < B < Bo: The disordered phase is Hessian dominant.
B = Bo: Both the disordered phase and the ordered phases are Hessian

dominant.
Bo < B < Brc: The ordered phases are Hessian dominant.

B ≥ Brc. The q ordered phases (which are permutations of each other) are
Hessian dominant. For B > Brc there are no other local maxima of Ψ1.

2.3. Swendsen–Wang algorithm. An algorithm of particular interest for the
ferromagnetic Potts model is the Swendsen–Wang algorithm. The Swendsen–Wang
algorithm is an ergodic Markov chain whose stationarity distribution is the Gibbs
distribution. It utilizes the random cluster representation to overcome potential “bot-
tlenecks” for rapid mixing that are expected to arise in the nonuniqueness region. As
a consequence of the above picture for the phase diagram on the infinite tree T∆

and our tools for analyzing random regular graphs, we can prove torpid mixing of
the Swendsen–Wang algorithm at the disordered/ordered phase transition point Bo.
(Torpid mixing means that the mixing time is exponentially slow.)

The Swendsen–Wang algorithm utilizes the random cluster representation (see
[25]) of the Potts model to potentially overcome bottlenecks that obstruct the simpler
Glauber dynamics. It is formally defined as follows. From a configuration Xt ∈ Ω,

1. let M be the set of monochromatic edges in Xt;
2. for each edge e ∈M , delete it with probability 1/B; let M ′ denote the set of

monochromatic edges that were not deleted;
3. in the graph (V,M ′), for each connected component, choose a color uniformly

at random from [q] and assign all vertices in that component the chosen color.
Let Xt+1 denote the resulting spin configuration.

There are few results establishing rapid mixing of the Swendsen–Wang algorithm
beyond what is known for the Glauber dynamics, see [47] for recent progress showing
rapid mixing on the two-dimensional lattice. However, there are several results es-
tablishing torpid mixing of the Swendsen–Wang algorithm at a critical value for the
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q-state ferromagnetic Potts model: on the complete graph (q ≥ 3) [22], on Erdös–
Rényi random graphs (q ≥ 3) [9], and on the d-dimensional integer lattice Zd (q
sufficiently large) [4, 5].

Using our detailed picture of the phase diagram of the ferromagnetic Potts model
and our generic second moment analysis for ferromagnetic models on random regular
graphs which we explain in a moment, we establish torpid mixing on random ∆-regular
graphs at the phase coexistence point Bo.

Theorem 6. For all ∆ ≥ 3 and q ≥ 2∆/ log ∆, with probability 1− o(1) over the
choice of a random ∆-regular graph, for the ferromagnetic Potts model with B = Bo,
the Swendsen–Wang algorithm has mixing time exp(Ω(n)).

We believe that the lower bound on q in Theorem 6 is an artifact of our proof;
see Remark 34 in section 10 for details.

3. Results for ferromagnetic models.

3.1. Second moment and Bethe prediction. We analyze the Gibbs distribu-
tion on random ∆-regular graphs using second moment arguments. The challenging
aspect of the second moment is determining the phase that dominates, as we will
describe more precisely momentarily. In a straightforward analysis of the second mo-
ment, this reduces to an optimization problem over q4 variables for a complicated
expression. Even for q = 2 tackling this requires significant effort (see, for example,
[40] for the hard-core model).

In a recent paper [17] we analyzed antiferromagnetic systems on bipartite random
∆-regular graphs, to use as gadgets for inapproximability results. In that work we
presented a new approach for simplifying the analysis of the second moment for anti-
ferromagnetic models using the theory of matrix norms. In this paper we extend that
approach using the theory of matrix norms to analyze the second moment for random
∆-regular graphs (nonbipartite) for ferromagnetic systems. We obtain a short, elegant
proof that the exponential order of the second moment is twice the exponential order
of the first moment.

Denote the leading term of the second moment as

(4) Ψ2(α) := ΨB
2 (α) := lim

n→∞

1

n
log EG

[
(Zα

G)
2 ]
.

Our main technical result is the analysis of the second moment for ferromagnetic
models. We will relate the maximum of the second moment to the maximum of the
first moment. To analyze the second moment we need to determine the phase α
that maximizes Ψ2. We will first show how to reexpress the critical points of Ψ1

in a form that can be readily expressed in terms of matrix norms (see section 5.1).
Then, using the Cholesky decomposition of the interaction matrix B and properties
of matrix norms we will show that the second moment is maximized at a phase which
is a tensor product of the dominant phases of the first moment. This results in the
following theorem, which is proved in section 5.2.

Theorem 7. For a ferromagnetic model with interaction matrix B,

max
α

Ψ2(α) = 2 max
α

Ψ1(α).

More specifically, for dominant α, Ψ2(α) = 2Ψ1(α).

Combining Theorem 7 with an elaborate variance analysis known as the small
subgraph conditioning method allows us to obtain a lower bound on Zα

G which matches
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its expectation up to a polynomial factor (see Lemma 16). In particular, we verify the
so-called Bethe prediction (see [13, 12]) for general ferromagnetic models on random
∆-regular graphs, which is captured in our setting by (5) in the following theorem (the
proof is in section 7.2). Our interest in the quantity EG [logZG] stems from the fact
that it gives information about the typical configurations on a random regular graph
and hence Theorem 8 gives its value in terms of a much simpler quantity, log EG [ZG],
which can be calculated much more easily; see section 4. (The equality in (5) is closely
related to the cavity method; see [36].)

Theorem 8. Let B specify a ferromagnetic model. Then, if there exists a Hessian
dominant phase, it holds that

(5) lim
n→∞

1

n
EG [logZG] = lim

n→∞

1

n
log EG [ZG].

Note that for a ferromagnetic model the interaction matrix B is positive definite
and hence the entries on the diagonal are all positive. Thus ZG is always positive for
every graph G (and hence logZG in (5) is well-defined).

Theorem 8 holds for all ferromagnetic models at any temperature. Dembo, Mon-
tanari, and Sun [13] consider general factor models on graph sequences converging
locally to trees and verify the Bethe prediction when the underlying tree is in the
uniqueness regime. In [12], the case of the ferromagnetic Potts model (with external
field) is considered for graph sequences converging locally to trees and they obtain a
general formula for the logarithm of the partition function.

Perhaps the most important conceptual content of Theorem 8 is that it shows that
all ferromagnetic models, at any temperature, do not exhibit the complex behavior
that other spin models, such as colorings or the antiferromagnetic Potts model, exhibit
on random (regular) graphs. In particular, when the equality in (5) fails, we have the
so-called condensation regime, and in that case calculating 1

nEG [logZG] is a far more
intricate task (see the recent works [1, 45]).

Theorem 8 can be extended to general models (not necessarily ferromagnetic)
on random ∆-regular graphs under the stronger assumption that there is a unique
semitranslation invariant Gibbs measure on T∆. In this setting, one also obtains the
analogue of Theorem 7 and as a consequence concentration for Zα

G for the (unique)
dominant phase α, which can be used to verify (in complete analogy) the Bethe
prediction; see section 11.3 for more details.

3.2. Connection to tree recursions. As a consequence of Theorem 7, to an-
alyze ferromagnetic models on random regular graphs, one only needs to analyze the
first moment. To simplify the analysis of the first moment, we establish the following
connection to the so-called tree recursions. An analogous connection was established
in [17] for antiferromagnetic models on random bipartite ∆-regular graphs.

A key concept is the following recursions corresponding to the partition function
on trees, and hence we refer to them as the (depth one) tree recursions:

(6) R̂i ∝
( q∑
j=1

BijRj

)∆−1

.

The fixpoints of the tree recursions are those R = (R1, . . . , Rq) such that R̂i ∝
Ri for all i ∈ [q]. We refer to a fixpoint R of the tree recursions as Jacobian attractive
if the Jacobian at R has spectral radius less than 1. We prove the following theorem
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detailing the connections between the tree recursions and the critical points of the
partition function for random regular graphs.

Theorem 9. Assume that the model is ferromagnetic. Jacobian attractive fix-
points of the (depth one) tree recursions are in one-to-one correspondence with the
Hessian local maxima of Ψ1.

The above connection fails for antiferromagnetic models, e.g., for the antiferro-
magnetic Potts model the uniform distribution is a global maximum but it is not
a stable fixpoint of the tree recursions for small enough temperature. (In fact, for
antiferromagnetic models every solution of the tree recursions is a local maximum;
see Remark 14.)

Using the above connection we establish the detailed picture for the dominant
phases of the ferromagnetic Potts model as stated in Theorem 5.

4. Expressions for Ψ1 and Ψ2. In this section, we derive expressions for the
first and second moments of Zα

G , which will allow us to derive explicit expressions for
the functions Ψ1(α) and Ψ2(α). Similar expressions have appeared in [12, section 2.1]
in a slightly different form. Our exposition here is such that it provides a straightfor-
ward alignment with the analogous expressions in [17]. The minor differences are due
to the model of ∆-regular random graphs, which in this paper is the pairing model
G(n,∆). We first specify the model of ∆-regular random graphs.

The distribution G(n,∆) on ∆-regular multigraphs is generated by the following
random process. For ∆n even, consider the set [∆n]. Elements of [∆n] will be called
points. First, a random perfect matching of the ∆n points is sampled. Then, for
i = 1, . . . , n, we identify the points ∆(i− 1) + 1, . . . ,∆i as a single vertex of a graph
G. The edges of G are naturally induced by the edges of the random matching and
hence every vertex has degree ∆. Note that G may contain parallel edges or self-
loops. It is well-known that any property which holds asymptotically almost surely
for the pairing model (i.e., with probability 1− o(1) as n→∞) holds asymptotically
almost surely for the uniform distribution on ∆-regular (simple) graphs as well; see,
for example, [28]. This is going to be the case for our results.

Recall 4t denotes the simplex

(7) 4t = {(x1, x2, . . . , xt) ∈ Rt |
∑t
i=1 xi = 1 and xi ≥ 0 for i = 1, . . . , t}.

Let G ∼ G(n,∆) and denote by V the vertex set of G. For a configuration σ : V →
{1, . . . , q}, we denote the set of vertices assigned color i by σ−1(i). For α ∈ 4q and
nα ∈ Zq, let

Σα = {σ : V → {1, . . . , q}
∣∣ |σ−1(i)| = αin for i = 1, . . . , q},

that is, Σα is the set of configurations σ which assign αin vertices of V the color i,
for each i ∈ [q]. We are interested in the total weight Zα

G of configurations in Σα,
namely,

Zα
G =

∑
σ∈Σα wG(σ).

Note that Zα
G is a random variable, and as indicated earlier, we will look at its

moments EG [Zα
G ] and EG [(Zα

G)2].
We begin with the first moment. For σ ∈ Σα and i, j ∈ [q], let eijn denote the

number of edges between vertices in σ−1(i) and σ−1(j). Clearly, eij = eji. It will be
notationally convenient to reparameterize the variables eij as follows: for i 6= j we set
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eij = ∆xij and for i = j we set eii = ∆xii/2. For future use, when G ∼ G(n,∆), we
denote by xG(σ) the random vector (x11, . . . , xqq).

The number of perfect matchings between 2n vertices is (2n−1)!! = (2n)!/(n!2n).
Under the convention that 00 ≡ 1, we then have

(8) EG [Zα
G ] =

(
n

α1n, . . . , αqn

)∑
x

{∏
i

(
∆αin

∆xi1n, . . . ,∆xiqn

)

×
[∏

i 6=j(∆xijn)!
]1/2∏

i(∆xiin− 1)!!

(∆n− 1)!!

∏
i,j

B
∆xijn/2
ij

 ,

where the sum ranges over all the possible values of the random vector xG(σ). In
particular, x = (x11, . . . , xqq) satisfies

(9)

∑
j xij = αi

(
∀i ∈ [q]

)
,

xij = xji ≥ 0
(
∀i, j ∈ [q]

)
.

The first line in (8) accounts for the cardinality of Σα, while the second line is
EG [wG(σ)] for a fixed σ ∈ Σα, since by symmetry we may focus on any fixed σ.
The first product is the number of ways to choose a partition of the points which
is consistent with the values prescribed by x, the fraction is the probability that the
random matching connects the points as prescribed, and the last product is the weight
of the configuration σ conditioned on x.

We next consider the second moment of Zα
G . The desired expression may be

derived analogously to (8). For (σ1, σ2) ∈ Σα×Σα, we need to compute the quantity
EG [wG(σ1)wG(σ2)]. To do this, for i, k ∈ [q], let γikn = |σ−1

1 (i)∩σ−1
2 (k)|. The vector

γ captures the overlap of the configurations σ1, σ2. Denote by eikjln the number of
edges matching vertices in σ−1

1 (i) ∩ σ−1
2 (k) and σ−1

1 (j) ∩ σ−1
2 (l). We reparameterize

as follows: for (i, k) 6= (j, l) we set eikjl = ∆yikjl and for (i, k) = (j, l) we set
eikjl = ∆yikjl/2.

(10) EG [(Zα
G)2] =

∑
γ

(
n

γ11n, . . . , γqqn

)∑
y

∏
i,k

(
∆γikn

∆yik11n, . . . ,∆yikqqn

)

×
[∏

(i,k)6=(j,l)(∆yikjln)!
]1/2∏

i,k(∆yikikn− 1)!!

(∆n− 1)!!

∏
i,j,k,l

(
BijBkl

)∆yikjln/2

 ,

where the sums range over γ = (γ11, . . . , γqq), y = (y1111, . . . , yqqqq) satisfying

(11)

∑
k γik = αi

(
∀i ∈ [q]

)
,∑

i γik = αk
(
∀k ∈ [q]

)
,∑

j,l yikjl = γik
(
∀(i, k) ∈ [q]2

)
,

γik ≥ 0
(
∀(i, k) ∈ [q]2

)
, yikjl = yjlik ≥ 0

(
∀(i, k, j, l) ∈ [q]4

)
.

The sums in (8) and (10) are typically exponential in n. The most critical com-
ponent of our arguments is to find the quantitative structure of configurations which
determine the exponential order of the moments. Formally, we study the limits of
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1
n log EG

[
Zα
G

]
and 1

n log EG
[
(Zα

G)2
]

as n →∞. These limits can be derived from (8)
and (10) using Stirling’s approximation formula. In particular, we shall use that for
a constant c > 0 with cn even, we have

(12)
1

n
ln
[
(cn)!

]
∼ c lnn+ c ln c− c and

1

n
ln
[
(cn− 1)!!

]
∼ c

2
lnn+

c

2
ln c− c

2
.

Under the usual conventions that ln 0 ≡ −∞ and 0 ln 0 ≡ 0, the above formulas are
correct even in the degenerate case c = 0.

We now derive asymptotics for the first moment EG
[
Zα
G

]
in order to obtain the

function Ψ1(α); see (1). Applying (12) yields

Ψ1(α) := lim
n→∞

1

n
log EG

[
Zα
G

]
= max

x
Υ1(α,x),(13)

where Υ1(α,x) := (∆− 1)f1(α) + ∆g1(x),

f1(α) :=
∑
i αi lnαi,

g1(x) := 1
2

∑
i,j xij lnBij − 1

2

∑
i,j xij lnxij ,

defined on the region (9).
Completely analogously, for the second moment we obtain

Ψ2(α) := lim
n→∞

1

n
log EG

[
(Zα

G)2
]

= max
γ

max
y

Υ2(γ,y),

(14)

where Υ2(γ,y) := (∆− 1)f2(γ) + ∆g2(y),

f2(γ) :=
∑
i,k γik ln γik,

g2(y) := 1
2

∑
i,k,j,l yikj` ln(BijBkl)− 1

2

∑
i,k,j,l yikjl ln yikjl,

defined on the region (11).

Remark 10. It is useful to think of the second moment as the first moment of a
paired-spin model with interaction matrix B⊗B. Indeed, from (14), we can interpret
BijBkl as the activity between the paired spins (i, k) and (j, l), thus giving the desired
alignment.

5. Second moment analysis using induced matrix norms.

5.1. Critical points and matrix norms. It will be useful to reformulate func-
tion Ψ1 into the following version, which will preserve the critical points and readily
yield a formulation in terms of matrix norms. Let

(15) Φ1(R) =
∆

2
ln
( q∑
i=1

q∑
j=1

BijRiRj

)
− (∆− 1) ln

( q∑
i=1

R
∆/(∆−1)
i

)
,

where R = (R1, . . . , Rq)
ᵀ ≥ 0, i.e., R has nonnegative entries. Let p := ∆/(∆ − 1).

Note that (15) has the following appealing form:

(16) exp(2Φ1(R)/∆) =
RᵀBR

‖R‖2p
,

where ‖R‖p = (
∑n
i=1R

p
i )

1/p. This will allow us to use the techniques from the area of
matrix norms in our arguments, more specifically, results on induced matrix norms.
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The induced matrix norms will be denoted ‖ · ‖p→q′ :

(17) ‖B‖p→q′ := max
‖z‖p=1

‖Bz‖q′ .

Since we assume that B is ferromagnetic we have B = B̂ᵀB̂ and hence we can write

(18) exp(Φ1(R)/∆) =
‖B̂R‖2
‖R‖p

.

The next lemma describes the connection between Φ1 and Ψ1. We note that Φ1 is
not a reparameterization of Ψ1; however, they do agree at the critical points. This is
sufficient for our purpose: to understand the maxima of Ψ1 it is enough to understand
the maxima of Φ1. The maximization

(19) max
R≥0

‖B̂R‖2
‖R‖p

= max
R

‖B̂R‖2
‖R‖p

= ‖B̂‖p→2

is the induced p→ 2 matrix norm of B̂. The first equality in (19) follows from the fact
that the maximum on the right-hand side (r.h.s.) of (16) is achieved for nonnegative
R (this follows from the fact that B has nonnegative entries).

Lemma 11. There is a one-to-one correspondence between the fixpoints of the tree
recursions and the critical points of Φ1 (both considered for Ri ≥ 0 in the projective
space, that is, up to scaling by a constant). The following transformation R 7→ α
given by

(20) αi = R
∆/(∆−1)
i /

∑
iR

∆/(∆−1)
i

yields a one-to-one-to-one correspondence between the critical points of Φ1 and the
critical points of Ψ1 (in the region defined by αi ≥ 0 and

∑
i αi = 1). Moreover, for

the corresponding critical points R and α one has

(21) Φ1(R) = Ψ1(α).

Finally, the local maxima of Φ1 and Ψ1 happen at the critical points (that is, there
are no local maxima on the boundary).

We omit the proof of Lemma 11 since it follows the proof of Theorem 4.1 in
[17, section 4]. In that paper we consider random ∆-regular bipartite graphs and in
analogy to Ψ1(α) and Φ1(R) we define Ψ1(α,β) and Φ1(R,C), respectively, where
α,R now correspond to the left side of the bipartition and β,C to the right side of the
bipartition. The expressions in our setting (random ∆-regular graphs) are identical
to those in [17] (random ∆-regular bipartite graphs) after identifying α with β and
R with C. In fact, the proof of Theorem 4.1 in [17] works almost verbatim in our
case after this identification.

5.2. Second moment analysis. For ferromagnetic models, Lemma 11 allows
us to reexpress the optimization problem associated with the first moment in terms
of matrix norms.

Lemma 12. Let B = B̂ᵀB̂ be the interaction matrix of a ferromagnetic spin sys-
tem. We have

max
α

Ψ1(α) = ∆ ln ‖B̂‖ ∆
∆−1→2.
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Proof. Using Lemma 11 and (18) and (19), we obtain

max
α

exp(Ψ1(α)/∆) = max
R

exp(Φ1(R)/∆) = ‖B̂‖p→2.

Recall the definition of Ψ2 (see (4)) corresponding to the leading term of the
second moment. A key fact is that Ψ2 is given by a constrained first moment cal-
culation on a “paired-spin” model where the interaction matrix in this model is the
tensor product of the original interaction matrix with itself (see Remark 10 in sec-
tion 4). The second moment considers a pair of configurations, say, σ and σ′, which
are constrained to have a given phase α. We capture this constraint using a vector
γ corresponding to the overlap between σ and σ′; in particular, γij is the number of
vertices with spin i in σ and spin j in σ′.

Recall ΨB
1 indicates the dependence of the function Ψ1 on the interaction matrix

B; to simplify the notation we will drop the exponent if it is B. More precisely,

(22) Ψ2(α) = max
γ

ΨB⊗B
1 (γ),

where the optimization in (22) is constrained to γ such that

(23)
∑
i γik = αk and

∑
k γik = αi.

Ignoring the two constraints in (23) can only increase the value of (22) and hence

(24) max
α

exp(Ψ2(α)/∆) ≤ max
γ

exp(ΨB⊗B
1 (γ)/∆) = ‖B̂⊗ B̂‖2 ∆

∆−1→2
.

For induced norms ‖ · ‖p→q′ with p ≤ q′ it is known (Proposition 10.1 in [2]) that

(25) ‖B̂⊗ B̂‖p→q′ = ‖B̂‖p→q′‖B̂‖p→q′ .

Now we are ready to prove Theorem 7.

Proof of Theorem 7. Combining Lemma 12 and (24), (25) we obtain

exp(Ψ2(α)/∆) = max
γ

exp(ΨB⊗B
1 (γ)/∆) ≤ ‖B̂‖2 ∆

∆−1→2
= max

α
exp(2Ψ1(α)/∆).

This proves that if α maximizes Ψ1, we have Ψ2(α) ≤ 2Ψ1(α). The reverse inequality
is trivial, yielding Theorem 7.

Remark 13. We will illustrate the necessity of the ferromagnetism assumption
in Theorem 7 by giving an example of an antiferromagnetic model for which the
second moment method fails (i.e., the second moment is larger than the square of
the first moment by an exponential factor and therefore does not provide any useful
concentration). Consider proper 3-colorings of random 10-regular graphs. As the
size of the graph goes to infinity the probability of it being 3-colorable goes to zero.
The intuitive effect of this is that to achieve a large value in the “paired-spin” model
it is better to correlate the coordinates to agree. In terms of Ψ1 and Ψ2 we have
that the maximum in the first moment is achieved for α1 = α2 = α3 = 1/3 with
Ψ1 = 5 ln 2 − 4 ln 3 < 0. To obtain a lower bound on the maximum in the second
moment we take γ11 = γ22 = γ33 = 1/3, which yields Ψ2 = Ψ1 > 2Ψ1. The argument
actually applies whenever Ψ1 < 0 (for models whose interaction matrices have 0’s and
1’s). By continuity (taking small B in the antiferromagnetic Potts model) one can
obtain an example of a model without hard constraints for which the second moment
fails.
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6. Connections. In this section we prove Theorem 9, which describes the con-
nection between the stable fixpoints of the tree recursions and the local maxima of
Ψ1. Theorem 9 will then be a key tool in our proof of Theorem 5. The technical
core of the technique relies on the arguments in [17], where an analogous connection
has been established for random bipartite regular graphs. The arguments here are a
minor modification of this approach, suitably modified to account for random regular
graphs.

Our starting point is the one-to-one correspondence between fixpoints of the tree
recursions and the critical points of Ψ1 (see [40] and also [17]). We show, roughly, that
the stability of a fixpoint is equivalent to the local maximality of the corresponding
critical point. This will be done by relating the Jacobian of the tree recursions at a
fixpoint with the Hessian of Ψ1 at the corresponding critical point. More precisely, we
show that the Jacobian has spectral radius less than 1 (a sufficient condition for sta-
bility) iff the Hessian is negative definite (a sufficient condition for local maximality).
Both constraints on the matrices are independent of the choice of local coordinates
(that is, they are invariant under similarity transformations); however, to make the
connection between the Jacobian and the Hessian apparent we will have to choose
the local coordinates very carefully. A further technical complication is that the tree
recursions are in the projective space and that the optimization of Ψ1 is constrained.

We give a high level overview of the Jacobian; the proofs for the ∆-regular case
follow the same reasoning as for the bipartite ∆-regular case (see [17, section 4.2.2])
after simply changing Cj ’s to Rj ’s and βj ’s to αj ’s. Assume that R1, . . . , Rq is a
fixpoint of the tree recursions. Now we consider an infinitesimal perturbation of the
fixpoint R1 + εR′1, . . . , Rq + εR′q and see how it is mapped by the tree recursions.
Let αi :=

∑
j BijRiRj . The right parametrization (choice of local coordinates) is

to take R′i = riRi/
√
αi, where r1, . . . , rq determines the perturbation. Note that

Ri/
√
αi depends on the fixpoint. The tree recursions map (in the projective space)

the perturbation as follows:

(26)(
R1 + εr1

R1√
α1
, . . . , Rq + εrq

Rq√
αq

)
7→
(
R1 + εr̂1

R1√
α1
, . . . , Rq + εr̂1

Rq√
αq

)
+O(ε2),

where r̂i’s are given by the linear transformation

(27) r̂i = (∆− 1)

q∑
j=1

BijRiRj√
αiαj

rj

and where the ri’s are required to satisfy

(28)

q∑
i=1

√
αiri = 0.

The condition (28) is invariant under the map (27) and corresponds to choosing the
representative of R1, . . . , Rq with

∑
i

∑
j BijRiRj = 1.

Next we give a high level description of the Hessian; again, this is almost identical
to the one in [17, section 4.2.1] after identifying Cj ’s with Rj ’s and βj ’s with αj ’s.
Recall that Ψ1 is a function of α1, . . . , αq. There is an alternative parameterization
of Ψ1: instead of α1, . . . , αq (restricted to

∑
αi = 1) we use R1, . . . , Rq (restricted to
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i

∑
j BijRiRj = 1) and use the following:

(29) αi =
∑
j

BijRiRj ∀ i ∈ [q].

Every α can be achieved using parameterization by R. Let α1, . . . , αq be a criti-
cal point of Ψ1 and let R1, . . . , Rq satisfy (29). We are going to evaluate Ψ1 in a
small neighborhood around α1, . . . , αq. It is equivalent (and easier to understand) to
perturb the R1, . . . , Rq to R1 + εR′1, . . . , Rq + εR′q and evaluate at the point given
by (29). Again, the correct parameterization is to take R′i = riRi/

√
αi. This yields

the following expression for the value of Ψ1 at the perturbed point:

(30) Ψ1(α1, . . . , αq)

+ ε2

q∑
i=1

ri +

q∑
j=1

BijRiRj√
αiαj

rj

 q∑
j=1

(∆− 1)
BijRiRj√
αiαj

rj − ri

+O(ε3).

Note that there is no linear term, since we are at a critical point. Recall that the αi
have to satisfy

∑
i αi = 1 which corresponds to the restriction (28).

Now we are ready to prove Theorem 9. Let L be a linear map such that the
Jacobian of the map r 7→ r̂ represented by (27) is (∆ − 1)L. The Hessian of Ψ1 is
then (I + L)((∆− 1)L− I). Finally let S be the linear subspace defined by (28).

Proof of Theorem 9. We will use the correspondence between fixpoints of the tree
recursions and critical points of Ψ1 given by Lemma 11. The constraint for the fixpoint
to be Jacobian attractive is that (∆−1)L on S has spectral radius less than 1; see (26).
The constraint for the critical point to be Hessian maximum is that the eigenvalues
of (I + L)((∆− 1)L− I) on S are negative; see (30).

Note that L is symmetric and if B is positive semidefinite, then L is positive
semidefinite (since L is congruent to B; L is obtained by multiplying B by a diagonal
matrix on the left and on the right). Hence L has nonnegative real spectrum. Note
that S is invariant under L and hence the spectrum of L on S is a subset of the
spectrum of L (it is still nonnegative real; the restriction wiped out the eigenvalue 1).

The constraint for the fixpoint to be Jacobian attractive, in terms of eigenvalues,
is that for each eigenvalue x of L on S

(31) (∆− 1)|x| < 1.

The constraint for the critical point to be Hessian maximum, in terms of eigenvalues,
is that for each eigenvalue x of L on S

(32) (1 + x)((∆− 1)x− 1) < 0.

Note that conditions (31) and (32) are equivalent (since x ≥ 0).

Remark 14. For antiferromagnetic models every critical point of Ψ1 is a local
maximum. Indeed, we need only to prove that (32) is satisfied for every critical
point. The matrix L has nonnegative entries; hence 1 is the largest eigenvalue and
all the other eigenvalues have magnitude less than 1 (since B is ergodic). Moreover
the matrix L has the same signature as B (since they are congruent) and hence the
eigenvalues other than 1 are negative. These two facts imply (32).
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Remark 15. Note that one direction of the implication in Theorem 9, namely,
that a Jacobian attractive fixpoint is Hessian local maximum, holds for every model
(without the ferromagnetism assumption), since (31) always implies (32). However,
for the reverse implication, the ferromagnetic assumption is essential. For example, in
an antiferromagnetic model, by Remark 14, every critical point is a local maximum.
For the antiferromagnetic Potts model, the only critical point is the uniform vector
and hence it is always a local maximum for every value of B. On the other hand,
it is straightforward to check that for the antiferromagnetic Potts model the uniform
fixpoint is Jacobian unstable when B < ∆−q

∆ .

7. Bethe prediction for ferromagnetic models.

7.1. Small subgraph conditioning method. By Theorem 7, we have that
for the random variable Zα

G , when α is a global maximizer of Ψ1, the exponential
order of its second moment is twice the exponential order of its first moment. This is
not sufficient, however, to obtain high probability results, since it turns out that, in
the limit n → ∞, the ratio of the second moment to the square of the first moment
converges to a constant greater than 1. Hence, the second moment method fails to give
statements that hold with high probability over a uniform random ∆-regular graph.
More specifically, to obtain our results we need sharp lower bounds on the partition
function which hold for almost all ∆-regular graphs. In the setting we described,
the second moment method only implies the existence of a graph which satisfies the
desired bounds and even there in a not sufficiently strong form.

For random ∆-regular graph ensembles, the standard way to circumvent this
failure is to use the small subgraph conditioning method of Robinson and Wormald
[42]. While the method is quite technical, its application is relatively streamlined
when employed in the right framework. The method was first used for the analysis
of spin systems in the work of [40] for the hard-core model and subsequently in [43],
[16]. In [17], we extended the approach to q-spin models for all q ≥ 2, where the
major technical obstacle was the computation of certain determinants which arise
in the computation of the moments’ asymptotics. While the arguments there are for
random bipartite ∆-regular graphs, the approach extends in a straightforward manner
to random ∆-regular graphs.

We defer the details of the application of the method in the present setting to
section 11.1. We state here the following lemma, which is the final outcome of the
method.

Lemma 16. For every ferromagnetic model B, if α is a Hessian dominant phase
(cf. section 3.2) with probability 1− o(1) over the choice of the graph G ∼ G(n,∆), it
holds that Zα

G ≥ 1
nEG

[
Zα
G

]
.

7.2. Proof of Theorem 8. Using Lemma 16, the proof of Theorem 8 is straight-
forward.

Proof of Theorem 8. Let α be a Hessian dominant phase, whose existence is guar-
anteed by the assumptions. By Lemma 16, with probability 1− o(1) over the choice
of the graph, we have Zα

G ≥ 1
nEG

[
Zα
G

]
, which implies 1

n logZG ≥ Ψ1(α) + o(1).
Moreover, since the model is ferromagnetic, for ∆-regular graphs G with n ver-

tices, 1
n logZG ≥ C for some constant C > −∞ (explicitly, one can take C :=

∆
2 log maxi∈[q]Bii; see the remarks after Theorem 8). We thus obtain

lim inf
n→∞

1

n
EG [logZG] ≥ lim inf

n→∞

[
(1− o(1))Ψ1(α) + o(1)C

]
= Ψ1(α).
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By Jensen’s inequality, we also have

lim sup
n→∞

1

n
EG [logZG] ≤ lim

n→∞

1

n
log EG [ZG].

All that remains to show is that 1
n log EG [ZG] = Ψ1(α)+o(1). This is straightforward;

if we decompose ZG as ZG =
∑

α′ Z
α′

G , we obtain exp(o(n))EG [Zα
G ] ≥ EG [ZG] ≥

EG [Zα
G ]. Note the factor exp(o(n)), which is there to account for dominant phases

which are not Hessian.
This concludes the proof.

8. Phase diagram for the ferromagnetic Potts model. In this section we
prove Theorem 5 detailing the phase diagram for the Potts model.

To prove Theorem 5, we will use Theorem 9 and the results of section 6. We
briefly overview the approach. In order to determine the local maxima for the Potts
model (or, more generally, for any ferromagnetic model), we need to compute the
spectral radius of the map L : (r1, . . . , rq) 7→ (r̂1, . . . , r̂q), given by3

(33) r̂i =

q∑
j=1

BijRiRj√
αiαj

rj

in the subspace

(34)

q∑
i=1

√
αiri = 0,

where the Ri’s specify a fixpoint of the tree recursions (6) and the αi’s are given by

αi = Ri

q∑
j=1

BijRj for i = 1, . . . , q.

Our goal is to determine the local maxima by verifying when the spectral radius of
this map (in the subspace (34)) is less than 1/(∆− 1). Let

M =

{
BijRiRj√
αiαj

}q
i,j=1

be the matrix of the linear map L. Note that M is symmetric and has an eigenvalue
equal to 1 with eigenvector e =

[√
α1, . . . ,

√
αq
]ᵀ

. It follows that the eigenvalues of L
in the subspace (34) are precisely the eigenvalues different from 1 of the matrix M.

To proceed, we need to restrict our attention to the ferromagnetic Potts model.
First we argue that the fixpoints of the tree recursions (6) in the case of the ferro-
magnetic Potts model are simple—they are supported on only two values.

Lemma 17. Let (R1, . . . , Rq) be a fixpoint of the tree recursions (6) of the ferro-
magnetic Potts model. Then the Ri’s have at most two distinct values.

3Note that, relative to (27), there is a factor of (∆ − 1) “missing” in the r.h.s. of (33). This
factor will be accounted for later by demanding that the eigenvalues of the map L in (33) are less
(in absolute value) than 1/(∆− 1) (instead of 1).
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Proof. Without loss of generality we may assume that the implicit constant in

(6) is 1. Let ri = R
1/d
i and r =

∑q
i=1 r

d
i , where d := ∆− 1. We have

ri = r + (B − 1)rdi .

The polynomial f(x) = (B − 1)xd − x + r has at most two positive roots (counted
with their multiplicities, by the Descartes’ rule of signs) and hence there are at most
two different values of the ri’s.

Lemma 18. The fixpoints of the tree recursions, assuming R1 ≥ R2 ≥ . . . Rq,
satisfy R1 = R2 = · · · = Rt and Rt+1 = . . . Rq for some 1 ≤ t ≤ q. It follows that
α1 = α2 = · · · = αt and αt+1 = · · · = αq.

Proof. This follows from Lemma 17.

Remark 19. Two settings for t in the setting of Lemma 18 will be of particular
interest, namely, t = 1 and t = q. We shall refer to the latter as the uniform fixpoint,
and this corresponds to the disordered phase. We shall refer to fixpoints with t = 1 as
the “majority” fixpoints. This class includes either one or two (depending on the value
of B; cf. Lemma 24) fixpoints where color 1 dominates and the remaining appear with
equal probability. The ordered phases correspond to the majority fixpoint for which
the ratio R1/Rq is maximum (cf. the upcoming Lemma 26).

Remark 20. We note here that fixpoints with t 6= q exist iff B ≥ Bu. In
Lemma 24, we show only one side of this equivalence. In particular, we show that
B ≥ Bu implies the existence of the majority fixpoints, and this turns out to be the
only “existential” fact that is needed for the proof of Theorem 5. More precisely, in
Lemmas 21 and 23, we show that fixpoints with t 6= 1, q are not attractive, which in
turn implies that the corresponding phases are not local maxima of Ψ1 and, thus, are
not dominant as well.

Lemma 18 implies that in the case of the ferromagnetic Potts model, M has a
very simple structure. The following simple lemma describes the eigenvalues of M.

Lemma 21. In the setting of Lemma 18, M has the following eigenvalues for
1 ≤ t < q:

• 1 with multiplicity 1,
• (B − 1)R2

1/α1 with multiplicity t− 1 (assuming t > 1),
• (B − 1)R2

q/αq with multiplicity q − t− 1 (assuming t < q − 1), and
• (B + t− 1)R2

1/α1 + (B + q − t− 1)R2
q/αq − 1 with multiplicity 1.

For t = q the eigenvalues of M are
• 1 with multiplicity 1,
• (B − 1)R2

1/α1 with multiplicity q − 1.

Proof. We already described the eigenvector for eigenvalue 1. For every i such that
2 ≤ i ≤ t, a vector with 1 at position 1 and −1 at a position i (and zeros elsewhere)
yields eigenvalue (B−1)R2

1/α1. Similarly, for every i such that t+1 ≤ i < q, a vector
with 1 at position q and −1 at position i (and zeros elsewhere) yields eigenvalue
(B − 1)R2

q/αq. Note that in the case t = q this accounts for all the eigenvalues. In
the case t < q we deduce the remaining eigenvalue by considering the trace of M:

t
BR2

1

α1
+ (q − t)

BR2
q

αq
− (t− 1)

(B − 1)R2
1

α1
− (q − t− 1)

(B − 1)R2
q

αq
− 1.
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Lemma 22. The uniform fixpoint is Jacobian attractive if (∆ − 2)(B − 1) < q.
The uniform fixpoint is not attractive if (∆− 2)(B − 1) > q.

Proof. The uniform fixpoint of the tree recursions corresponds to R1 = · · · = Rq
and hence α1 = · · · = αq = (B+q−1)R2

1. By Lemma 21, the only relevant eigenvalue
is (B − 1)/(B + q− 1) (with multiplicity q− 1), which we compare with 1/(∆− 1) to
obtain the lemma.

Lemma 22 allows us to restrict our focus on q − 1 ≥ t ≥ 1. In this setting, the
tree recursions, with x := yd := R1

Rq
and d := ∆− 1, yield

(35) x =

(
(B + t− 1)x+ (q − t)
tx+ (B + q − t− 1)

)d
or B − 1 =

(y − 1)
(
tyd + q − t

)
yd − y

.

The following lemma implies that all fixpoints with q − 1 ≥ t ≥ 2 are unstable in
the whole nonuniqueness regime, since the respective matrices M have an eigenvalue
greater than 1/(∆− 1).

Lemma 23. When R1

Rq
> 1, it holds that (B − 1)

R2
1

α1
> 1

∆−1 .

Proof. The desired inequality is equivalent to

(∆− 1)(B − 1)R1 > (B + t− 1)R1 + (q − t)Rq,

which after simple manipulations reduces into(
(∆− 2)(B − 1)− t

)R1

Rq
> q − t.

Substituting R1

Rq
= yd and B − 1 from (35), the inequality becomes(

(d− 1)(y − 1)
(
tyd + q − t

)
yd − y

− t

)
yd − (q − t) > 0.

Doing the necessary simplifications, we obtain the following equivalent inequality:(
(d− 1)y1+d − dyd + y

) (
q + t

(
yd − 1

))
yd − y

> 0.

Since y > 1, the only nontrivial factor to prove positivity is p(y) := (d − 1)yd+1 −
dyd + y. By the Descartes’ rule of signs, p(y) can have at most two positive roots. It
holds that p(1) = p′(1) = 0, so that p(y) is always positive for y > 1.

In light of Lemmas 21 and 23, it remains to classify fixpoints with t = 1, i.e., the
majority fixpoints. The following lemma gives the number of the majority fixpoints
in the regimes of interest.

Lemma 24. When Bu < B < Brc, there are exactly two distinct majority fix-
points. When B ≥ Brc, there is exactly one majority fixpoint.

Remark 25. At B = Bu, it follows from the proof of Lemma 24 that there is a
unique majority fixpoint which “bifurcates” in the regime Bu < B < Brc.

Proof of Lemma 24. We need to look at (35) for t = 1 and check how many values
of y > 1 satisfy the equation in the two regimes Bu < B < Brc and B ≥ Brc. For
t = 1, (35) reads as

(36) B − 1 = f(y) :=
(y − 1)(yd + q − 1)

yd − y
so that f ′(y) =

p(y)

(yd − y)2
,
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where p(y) is the polynomial

(37) p(y) := y2d − dyd+1 − (d− 1)(q − 2)yd + d(q − 1)yd−1 − (q − 1).

Employing the Descartes’ rule of signs we see that p(y) has one or three positive roots
counted by multiplicities. It is easy to check that p(1) = p′(1) = 0, so that p has in
fact three positive roots counted by multiplicities (since 1 is a double root), and let ρ
denote the other positive root. We next prove that ρ > 1 so that p(y) ≤ 0 if 1 ≤ y ≤ ρ
and p(y) ≥ 0 if y ≥ ρ. It follows that for positive y we have p(y) > 0 iff y > ρ.

To prove that ρ > 1, for the sake of contradiction assume that 0 < ρ ≤ 1.
If ρ = 1, then 1 is a root with multiplicity 3 of the polynomial p(y) and hence
p′′(1) = 0. By straightforward calculations we see that p′′(1) = (q− 2)(d− d2), which
is clearly nonzero for q ≥ 3 and d ≥ 2. Thus, we may assume that 0 < ρ < 1. Since
p(1) = p(ρ) = 0, by Rolle’s theorem there is a root ρ′ ∈ (ρ, 1) of the polynomial
p′(y) = dyd−2g(y) where

g(y) := 2yd+1 − (d+ 1)y2 − (d− 1)(q − 2)y + (d− 1)(q − 1).

Since g(1) = g(ρ′) = 0, by the same token there is a root ρ′′ ∈ (ρ′, 1) of

g′(y) = 2(d+ 1)yd − 2(d+ 1)y − (d− 1)(q − 2).

We thus obtain the desired contradiction since, for q ≥ 3 and d ≥ 2, g′(y) < 0 for all
y ∈ [0, 1].

From the above, it follows that f(ρ) = miny≥1{f(y)}. Observe also that f(y)→
∞ as y → ∞, while f(y) → q

d−1 as y ↓ 1. Thus, when y ↓ 1, we have that B ↑ Brc

(viewing B as a function of y; see (36)).
To obtain the lemma, it thus suffices to show that Bu = f(ρ)+1. Recall that Bu

is the unique value of B for which the polynomial (q−1)zd+1 +(2−B−q)zd+Bz−1
has a double root in (0, 1). We reparameterize z → 1/z, so that Bu is the unique
value of B for which the following polynomial has a double root in (1,∞):

r(z) = zd+1 −Bzd − (2−B − q)z − (q − 1).

Let zc be the double root of this polynomial when B = Bu. Solving each of r(zc) = 0
and r′(zc) = 0 with respect to B and equating the expressions, we obtain that p(zc) =
0. It follows that for B = Bu the double root of the polynomial r(z) is equal to ρ.
Now, solving r(ρ) = 0 with respect to B gives us that Bu = f(ρ) + 1, as wanted.

We can now classify the stability of fixpoints with t = 1.

Lemma 26. For B > Bu, exactly one majority fixpoint is Jacobian attractive.
More precisely, the only Jacobian attractive fixpoint with t = 1 is the one maximizing
x = R1/Rq (among the solutions of (35) for t = 1).

We can now explicitly specify the marginal a in the definition of the ordered phase
stated in the introduction. With x as in Lemma 26, we apply (20), which yields

(38) a =
x∆/(∆−1)

x∆/(∆−1) + q − 1
.

Next, we give the proof of Lemma 26.
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Proof of Lemma 26. In the setting of Lemma 18 we have t = 1 and thus the
interesting eigenvalues of M are λ1 := (B − 1)R2

q/αq and λ2 := BR2
1/α1 + (q − 2 +

B)R2
q/αq−1. Using that α1 = R1(BR1 +(q−1)Rq) and αq = Rq(R1 +(q−2+B)Rq),

we obtain the following equivalent expressions for λ1, λ2:

(39) λ1 =
(B − 1)Rq

R1 + (q − 2 +B)Rq
, λ2 =

BR1

BR1 + (q − 1)Rq
− R1

R1 + (q − 2 +B)Rq
.

We will show that
1. λ1 < λ2,
2. if R1, Rq correspond to the fixpoint which maximizes x, it holds that λ2 <

1/(∆ − 1); otherwise (i.e., if R1, Rq correspond to the other fixpoint with
t = 1), it holds that λ2 > 1/(∆− 1).

From these two items, the lemma follows.
For item 1, let W := λ2 − λ1. Then, expanding everything out, we obtain that

W =
(B − 1)(q − 1)Rq(R1 −Rq)(

BR1 + (q − 1)Rq
)(
R1 + (q − 2 +B)Rq)

and thus W > 0 (since B > 1 and R1 > Rq).
For item 2, let Q := λ2 − 1

∆−1 . Expanding everything out, we have

Q =
R1Rq

(
(∆− 2)B(q − 2 +B)−∆(q − 1)

)
−BR2

1 − (q − 1)(q − 2 +B)R2
q

(∆− 1)(BR1 + (q − 1)Rq)(R1 + (q − 2 +B)Rq)
.

Thus, to check whether Q < 0, it is equivalent to check, with x = R1

Rq
, whether

(40)
(
(∆− 2)B(q − 2 +B)−∆(q − 1)

)
x < Bx2 + (q − 1)(q − 2 +B).

Substituting x = yd and B − 1 from (35), we obtain the equivalent inequality

0 <
y
(
yd − 1

) (
yd + q − 1

)
p(y)

(yd − y)
2 ,

where p(y) is the polynomial defined in (37). By the proof of Lemma 24, p(y) > 0 iff
y > ρ. The proof of Lemma 24 further yields that the latter inequality, throughout
the regime B > Bu, is satisfied only by the majority fixpoint with x maximum, thus
yielding item 2.

This concludes the proof.

Having classified the fixpoints which are Jacobian attractive, we now need to see
when these are dominant. This entails comparing the values of Ψ1 for the respective
phases. Rather than doing this directly, we use Lemma 11. In particular, it is equiva-
lent to compare the values of Φ1 at the fixpoints. Moreover, note that the expression
(15) is invariant upon scaling Ri’s by the same factor and hence we only need to
compare Φ1(x, 1, . . . , 1) and Φ1(1, . . . , 1), where x is a solution of (35) for t = 1.

Lemma 27. Let t = 1 and x be the solution of (35) with x maximum. Then
Φ1(x, 1, . . . , 1) ≥ Φ1(1, 1, . . . , 1) iff B ≥ Bo. Equality holds iff B = Bo.

Proof. By a direct calculation

Φ1(x, 1, . . . , 1) =
∆

2
ln
(
(x+ q − 1)2 + (B − 1)(x2 + q − 1)

)
− (∆− 1) ln

(
x∆/(∆−1) + q − 1

)
,

Φ1(1, 1, . . . , 1) =
∆

2
ln
(
q2 + (B − 1)q

)
− (∆− 1) ln(q).
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Using the substitutions d = ∆ − 1, x = yd and the second equation in (35), after
careful manipulations we obtain

DIF := Φ1(x, 1, . . . , 1)− Φ1(1, 1, . . . , 1) =
1

2
ln

(
qd−1

(
yd + q − 1

)d+1

(q + y − 1)d+1 (yd+1 + q − 1)
d−1

)
.

It is straightforward to check that for y = (q − 1)2/(d+1), DIF = 0. To find the
respective value ofB for this value of y, we just need to plug the value y = (q−1)2/(d+1)

into the second equation in (35) for t = 1. In particular, from (35) we have that

B = 1 +
(y − 1)(yd + q − 1)

(yd − y)
=
yd+1 + (q − 2)y − (q − 1)

yd − y
.

For y = (q − 1)2/(d+1), we have

yd+1 + (q − 2)y − (q − 1) = (q − 2)
(
q − 1 + (q − 1)2/(d+1)

)
and

yd − y = (q − 1)2d/(d+1) − (q − 1)2/(d+1)

=
(
(q − 1)(d−1)/(d+1) − 1

)(
q − 1 + (q − 1)2/(d+1)

)
.

It follows that

B =
q − 2

(q − 1)(d−1)/(d+1) − 1
=

q − 2

(q − 1)1−2/∆ − 1
= Bo.

To prove the lemma, it thus remains to show that y is an increasing function of B
and DIF increases as y increases. This is indeed true. Using (35), one calculates (see
the relevant (36))

∂y

∂B
· p(y)

(yd − y)2
= 1

and

∂DIF

∂y
=

1

2

(d(d+ 1)yd−1

yd + q − 1
− d+ 1

y + q − 1
− (d− 1)(d+ 1)yd

yd+1 + q − 1

)
=

(d+ 1)(q − 1)p(y)

2(y + q − 1)(yd + q − 1)(yd+1 + q − 1)
,

where p(y) is the polynomial defined in (37), whose positivity has already been es-
tablished for all y > ρ; see the proof of Lemma 24. The claim follows.

Proof of Theorem 5. We first argue about the local maxima. By Theorem 9, we
just need to check the stability of the corresponding fixpoints. By Lemmas 23 and 26,
only the uniform and the q majority fixpoints can be Jacobian attractive. The uniform
fixpoint, by Lemma 22, is Jacobian attractive when 1 < B < Brc. The q majority
fixpoints, by Lemma 26, are Jacobian attractive when B > Bu. This proves the
assertions in Theorem 5 about the local maxima of the function Ψ1.

To argue about the Hessian dominant phases, it only remains to find the regimes
where the disordered/ordered phases are dominant. From the first part of Lemma 27,
the disordered phase is dominant iff B ≤ Bo, whereas the q ordered phases are
dominant iff B ≥ Bo. From the second part of Lemma 27, all of the q + 1 phases are
dominant at B = Bo. This completes the proof of Theorem 5.
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9. #BIS-hardness for Potts. We first give a rough description of our reduc-
tion. We will construct a gadget G which is a balanced, bipartite graph on (2+o(1))n
vertices. There will be n′ = O(n1/8) vertices on each side of G which will have degree
∆ − 1, and the remainder have degree ∆. The key is that G behaves similarly to a
random bipartite ∆-regular graph. Hence, for the ferromagnetic Potts model, when
B > Bo, the q ordered phases will dominate (ferromagnetic models on random bipar-
tite ∆-regular graphs have the same dominant phases as on random ∆-regular graphs;
see footnote 6). We will take an instance H for #FerroPotts(q,B,∆), where H
has n′ vertices. We then replace each vertex in H by a gadget G. Then we will use
the degree ∆− 1 vertices in these gadgets to encode the edges of H, while preserving
bipartiteness. The resulting graph HG will have bounded degree ∆ and the Potts
model on HG will “simulate” the Potts model on H.

The gadget G is identical to the one used by Sly [43]. Before giving the detailed
description of the gadget, it would be instructive to explain at an intuitive level the
basic construction of the gadget and the properties we are trying to ensure. Roughly,
the gadget is a random bipartite graph G with (∆ − 1)-ary trees of depth Θ(log n)
attached on a small set of vertices on each side of G. We use the random bipartite
graph to ensure that the final gadget has q ordered phases when B > Bo, which will
be used to encode the q spins of the Potts model in the graph H. The trees will
ensure, roughly, that the relative error we introduce by approximating the partition
function in H with the partition function in HG is polynomially small. To explain
this further, the reader should keep in mind that the analysis of the Potts model
on the random graph G will only give estimates of its partition function within a
multiplicative factor (1± ε) for some small constant ε > 0. In turn, using this bound
to analyze the Potts model on HG would result in estimating the partition function of
H within a multiplicative factor (1± ε)|H|, which is way bigger than the polynomial
accuracy we seek in approximation-preserving reductions. This obstacle is precisely
the reason why the trees are attached to G: the trees will boost the constant ε to a
much smaller quantity of order n−O(1); then, the final approximation can be made
polynomially small as desired.4 As in [43, 16, 7], this boosting is possible due to the
fact that the ordered phases correspond to nonreconstructible Gibbs measures on the
infinite ∆-regular tree (we will expand on this later in the proof of Lemma 28, item 2).

Next, we give the description of the gadget G. The gadget G is defined by two
parameters θ, ψ, where 0 < θ, ψ < 1/8. The construction of the gadget G has two
parts. First construct the following bipartite graph G with vertex set V + ∪ V −. For
s ∈ {+,−}, |V s| = n+m′, where m′ will be defined precisely later. Take ∆ random
perfect matchings between V + and V −. Then remove a matching of size m′ from one
of the ∆ matchings. Call this graph G. For later use, let U := U+ ∪ U− denote the
vertices of degree ∆ in G and W := W+∪W− denote the vertices of degree ∆−1 in G.

4Let us remark that sometimes even the (1 ± ε) factor estimates are sufficient to get strong
inapproximability results and the attachment of the trees is not needed; see, for example, the re-
ductions in [44, 17]. The difference in those settings is that the corresponding counting problems,
i.e., counting independent sets or counting colorings, can be connected to NP-hard problems (such
as Max-Cut), yielding that it is NP-hard to approximate the corresponding partition function even
within an exponential factor. In contrast, for problems like #BIS or #FerroPotts (which corre-
spond to easy decision problems, e.g., finding the max independent set on a bipartite graph or the
maximum weight configuration in the ferromagnetic Potts model), such strong inapproximability
results are not known; in fact, we only have evidence that an FPRAS is unlikely to exist. This
necessitates the study of approximation-preserving reductions in our setting (as in, e.g., [14, 7, 33])
and thus our quest for the polynomial precision.
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In the second stage, for each side of G, partition the degree ∆ − 1 vertices into
nθ equal sized sets and attach to each set a (∆ − 1)-ary tree of depth `, where
` = bψ log∆−1 nc. (Use the vertices of G as the leaves of these trees.) Hence each

side contains nθ trees of size O(nψ). (More precisely, (∆ − 1)bθ log∆−1 nc trees, each
having (∆− 1)bψ log∆−1 nc leaves.) This defines the gadget G. For s ∈ {+,−}, let Rs

denote the roots of the trees on side s and R := R+ ∪ R−. Note that each vertex
in R has degree ∆ − 1 and these will be used to encode the edges of H (we give the
reduction explicitly just after stating the relevant gadget lemma, Lemma 28). Note
that m′ = (∆− 1)bθ log∆−1 nc+bψ log∆−1 nc and m′ = o(n1/4).

Denote by G = (V,E) the final graph. Recall, for a configuration σ ∈ Ω, that
the set of vertices assigned spin i is denoted by σ−1(i). The phase of a configuration
σ : V → [q] is defined as the dominant spin among vertices in U = U+ ∪ U− (the
vertices of degree ∆ in G):

Y (σ) := arg max
i∈[q]
|σ−1(i) ∩ U |,

where ties are broken with an arbitrary deterministic criterion (e.g., the lowest index).
The gadget G behaves like a random bipartite ∆-regular graph because m′ � n,

as we will detail in the upcoming Lemma 28. Hence, since B > Bo, Theorem 5 implies
that the q ordered phases are dominant. Therefore, we will get that for a sample σ
from the Gibbs distribution, the phase of σ will be (close to) uniformly distributed
over these q ordered phases. Let phase i refer to the ordered phase where spin i is
the majority. Once we condition on the phase for the vertices in U , say, it is phase
i, then each of the roots of the trees appended to G, roughly independently, will
have spin i with probability ≈ p and spin j 6= i with probability ≈ (1 − p)/(q − 1),
where p is the probability that the root of the infinite (∆ − 1)-ary tree has spin i
in the Gibbs measure corresponding to the ordered phase i.5 Hence, for each of the
q possible phases, we define the following product distribution on the configurations
σR : R→ [q]. For i ∈ [q], let

(41) QiR(σR) = p|σ
−1
R (i)|

(1− p
q − 1

)|R\σ−1
R (i)|

.

For future use, one can define completely analogously the product measure QiW (·) on
configurations σW : W → [q] (recall that W is the set of vertices with degree ∆ − 1
in G).

The following lemma is proved using methods in [43] and its proof is given in
section 9.1. Roughly, the first item in the lemma follows from the symmetries of
the Potts model. For the second item, the rough idea is that when the phase is
i, the marginal spin distribution of vertices in W in the graph G is close to QiW .
The purpose of the trees is to boost this effect, more precisely, to make the distance
between the marginal spin distribution of vertices in R and QiR an inverse polynomial
factor (see item 2 in Lemma 28). In turn, the reason that the trees can accomodate
the “boosting” is that the marginal distribution on W corresponds to an extremal
Gibbs measure on the tree, which results in the spins of the roots of the trees being
strongly concentrated.

5The ordered phase α = (a, (1−a)/(q−1), . . . , (1−a)/(q−1)) specifies the marginal probabilities
for the root of the infinite ∆-regular tree. To account for the root having degree ∆− 1 one obtains

that p = a(∆−1)/∆

(a/(1−a))(∆−1)/∆+(q−1)1/∆ . Alternatively, p = x/(x+ q − 1), for the same x as in (38).
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Lemma 28. For every q,∆ ≥ 3 and B > Bo, there exist constants θ, ψ > 0 such
that the graph G satisfies the following with probability 1− o(1) over the choice of the
graph:

1. The phases occur with roughly equal probability, so that for every phase i ∈ [q],
we have ∣∣∣µG(Y (σ) = i

)
− 1

q

∣∣∣ ≤ n−2θ.

2. Conditioned on the phase i, the spins of vertices in R are approximately
independent, that is,

max
σR

∣∣∣µG(σR |Y = i
)

QiR(σR)
− 1
∣∣∣ ≤ n−2θ.

With Lemma 28 at hand, we can now formally state the reduction that we
sketched earlier. Let B > Bo. Let H be a graph on n′ vertices, where n′ ≤ nθ/4

and θ is as in Lemma 28. Assuming an FPRAS for the ferromagnetic Potts model
on max-degree ∆ graphs and parameter B, we will show that we can approximate
ZH(B∗), the partition function of H in the ferromagnetic Potts model with parameter
B∗, where B∗ will be determined shortly.

To do this, we first construct a graph HG. First, take |H| disconnected copies of
the gadget G in Lemma 28 and identify each copy with a vertex v ∈ H. Denote by
ĤG the resulting graph, by Gv the copy of the gadget associated to the vertex v in
H, and by R+

v , R
−
v , Rv the images of R+, R−, R in the gadget Gv, respectively. We

next add the edges of H in ĤG. To do this, fix an arbitrary orientation of the edges
of H. For each oriented edge (u, v) of H, we add an edge between one vertex in R+

u

and one vertex in R−v , using mutually distinct vertices for distinct edges of H. The
resulting graph will be denoted by HG. Note that HG is bipartite and has maximum
degree ∆.

For a graph H and activity B ≥ 1, recall that ZH(B) is the partition function for
the ferromagnetic Potts model at activity B on the graph H. We have the following
connection.

Lemma 29. Let ∆, q ≥ 3 and B > Bo. There exists B∗ > 1 (depending only on
q,∆, B) such that the following holds for every graph H with n′ vertices:

(
1−O(n−θ)

) qn
′
ZHG(B)

CH
(
ZG(B)

)n′ ≤ ZH(B∗) ≤
(
1 +O(n−θ)

) qn
′
ZHG(B)

CH
(
ZG(B)

)n′ ,
where CH = D|E(H)| and D = 1 + (B − 1)

( 2p(1−p)
(q−1)2 + (q − 2) (1−p)2

(q−1)2

)
.

Using Lemma 29 we can now prove that for all ∆ ≥ 3, all B > Bo, it is #BIS-hard
to approximate the partition function of the ferromagnetic Potts model on bipartite
graphs of maximum degree ∆.

Proof of Theorem 3. Goldberg and Jerrum [21] showed that for every B > 1 it is
#BIS-hard to approximate the partition function of the ferromagnetic Potts model on
all graphs. Fix ∆, q ≥ 3 and B > Bo for which we intend to prove Theorem 3, and let
B∗ = B∗(q,∆, B) > 1 be specified as in Lemma 29. We first show that an FPRAS for
approximating the partition function with activity B on graphs with maximum degree
∆ implies an FPRAS for approximating the partition function with activity B∗ on all
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graphs. It will then be clear that our reduction is in fact approximation-preserving
and hence the theorem will be proven.

Suppose that there exists an FPRAS for approximating the partition function
with activity B on bipartite graphs with maximum degree ∆. Take an input instance
H for which we would like to estimate the partition function of the Potts model
at activity B∗. First generate a random gadget G using the construction defined
earlier. This graph G satisfies the properties in Lemma 28 with probability 1− o(1).
Approximate the partition function of G at activity B within a multiplicative factor
1 ± ε/10n′ using our presumed FPRAS (where, recall, n′ is the number of vertices
in H). Also, using the presumed FPRAS, approximate the partition function of HG

at activity B within a multiplicative factor 1 ± ε/5. The bounds for ZH(B∗) in
Lemma 29 are then within a factor 1± ε for sufficiently large n, implying an FPRAS
for approximating the partition function at activity B∗. This, together with the result
of [21], implies an FPRAS for counting independent sets in bipartite graphs.

Proof of Lemma 29. Recall that ĤG are the disconnected copies of the gadgets,

as defined in the construction of HG. Note that ZĤG(B) =
(
ZG(B)

)n′
. Hence to

prove the lemma it suffices to analyze
ZHG (B)

ZĤG (B) .

For a configuration σ on HG, for each v ∈ H, let Yv(σ) denote the phase of σ
on Gv. Denote the vector of these phases by Y(σ) = (Yv(σ))v∈H ∈ [q]H ; we refer to
Y(σ) as the phase vector for σ.

For U ∈ [q]H , let ΩU denote the set of configurations σ on HG, where Y(σ) = U .
Let ZHG(U) be the partition function of HG restricted to configurations σ ∈ ΩU , that
is,

ZHG(U) =
∑
σ∈ΩU

Bm(σ),

where for a configuration σ, m(σ) is the number of monochromatic edges under σ. We
may view U as an assignment V (H)→ [q], where V (H) are the vertices in the graph
H. Hence, we can consider the number of monochromatic edges in the graph H under

the assignment U , which we denote by m(U). Recall the goal is to analyze
ZHG (B)

ZĤG (B) .

To this end we will analyze
ZHG (U)

ZĤG (U) for every U and then we will use that every U is

(close to) equally likely in ĤG which will follow from property 1 in Lemma 28.
Denote by RH the set of vertices ∪vRv, i.e., the union of all the vertices of degree

∆− 1 in ĤG. Notice that once we fix an assignment to all of the vertices in RH , by
the Markov property of the model, we have that

ZHG(U)

ZĤG(U)
=
∑
σRH

µĤG(σRH
| Y(σ) = U)

∏
(u,v)∈E(HG)\E(ĤG)

B1{σRH
(u)=σRH

(v)}.

Note that µĤG(σRH
| Y(σ) = U) =

(
1 + O(n−θ)

)∏
v∈V (H)Q

Uv
Rv

(σRv
) since ĤG is a

union of disconnected copies of G and in each copy of G we have property 2 of Lemma
28. It follows that

ZHG(U)

ZĤG(U)
=
(
1 +O(n−θ)

)∑
σRH

∏
v∈V (H)

QUvRv
(σRv

)
∏

(u,v)∈E(HG)\E(ĤG)

B1{σRH
(u)=σRH

(v)}

=
(
1 +O(n−θ)

)
Am(U)D|E(H)|−m(U),
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where A (resp., D) is the expected weight of an edge connecting two gadgets which
have the same (resp., different) phases. Simple calculations show that

A = 1 + (B − 1)
(
p2 +

(1− p)2

q − 1

)
, D = 1 + (B − 1)

(2p(1− p)
q − 1

+ (q − 2)
(1− p)2

(q − 1)2

)
.

Letting B∗ = A/D and CH = D|E(H)|, we obtain

(42)
ZHG(U)

ZĤG(U)
=
(
1 +O(n−θ)

)
(B∗)m(U)CH .

Property 1 in Lemma 28 gives that for every U it holds that
(43)(
1−O(n−θ)

)
q−n

′
≤
(1

q
− n−2θ

)n′
≤
ZĤG(U)

ZĤG

≤
(1

q
+ n−2θ

)n′
≤
(
1 +O(n−θ)

)
q−n

′
.

We also have

(44) ZHG(B) =
∑
U
ZHG(U) =

∑
U

ZHG(U)

ZĤG(U)
ZĤG(U) = ZĤG

∑
U

ZHG(U)

ZĤG(U)

ZĤG(U)

ZĤG

.

Using the estimates (42), (43), in (44), we obtain

(
1−O(n−θ)

)
q−n

′
CHZH(B∗) ≤ ZHG(B)

ZĤG(B)
≤
(
1 +O(n−θ)

)
q−n

′
CHZH(B∗).

The result follows after observing that ZĤG(B) =
(
ZG(B)

)n′
and rearranging the

inequality.

9.1. Proving the properties of the gadget. In this section, we prove the
properties of the gadget we use, as stated in Lemma 28. We outline the proof and
introduce the relevant notation. The proof follows the same approach as in [43,
Theorem 2.1] and uses nonreconstruction results in [35]. We argue, however, more
thoroughly for item 1 in Lemma 28, since in [43] a cruder bound for the probability
that a phase appears was sufficient. In our case, the more delicate bound will follow
from the symmetries of the Potts model. We first illustrate how symmetry comes into
play.

Let ΣiG be the set of configurations on G which have phase i, i.e., ΣiG := {σ :
V → [q] |Y (σ) = i}. Moreover, let ΣoG be the set of configurations σ which satisfy∣∣ arg maxi∈[q] |σ−1(i) ∩ U |

∣∣ ≥ 2, that is, ΣoG consists of these configurations whose
phase was determined by breaking a tie. We first show that item 1 in Lemma 28 will
follow from showing that ΣoG has exponentially smaller contribution to the partition
function of G than ΣiG for every i ∈ [q].

To capture this, for a subset Σ ⊆ ΩG of the configuration space, denote by ZG(Σ)
the partition function restricted to configurations in Σ, that is,

ZG(Σ) =
∑
σ∈Σ

wG(σ).

Let π be a permutation of the colors [q] which maps color i to color j. For
a configuration σ, we denote by π(σ) the configuration π ◦ σ. Clearly, for every
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configuration σ ∈ ΣiG\ΣoG we have π(σ) ∈ ΣjG\ΣoG. It follows that for every two

colors i, j we have ZG(ΣiG\ΣoG) = ZG(ΣjG\ΣoG). Since

ZG = ZG(ΣoG) +
∑
i

ZG(ΣiG\ΣoG),

to get the inequality in item 1 of Lemma 28 it suffices to show that ZG(ΣoG) is smaller
than ZG by a sufficiently large polynomial factor.

We briefly outline the argument for proving that ZG(ΣoG) is smaller than ZG by
a sufficiently large polynomial factor, introducing at the same time some relevant
notation. First, note that the definition of the phase of a configuration makes sense
for configurations on G as well. For convenience, we will henceforth use ZoG, Z

i
G as

shorthand for ZG(ΣoG), ZG(ΣiG) and Zo
G
, Zi

G
for their analogues in G. Roughly, we

will first show that Zo
G

is exponentially smaller than Zi
G

with probability 1 − o(1)

(over the choice of G). This part follows from the fact that the q ordered phases are
dominant and the fact that Zi

G
matches its expectation (up to a polynomial factor)

with probability 1−o(1) (this is the analogue of Lemma 16 for the graph distribution
induced by G). We will then show that ZoG is smaller than ZiG by a factor of exp(n1/4)
by crudely accounting for the contribution of the trees attached in the second step of
the construction of G. Summing over i ∈ [q] then yields the desired bound and thus
completes the “symmetry” argument.

To formalize the outline in the previous paragraph, we will have to capture how the
partition functions ZG and ZG interplay. Due to the Markov property, this happens
only through vertices in W (recall this is the set of vertices of degree ∆−1 in the graph
G on which the trees are attached). Thus, we will partition the sets Σo

G
,Σi

G
according

to the configuration η on W . In particular, Σo
G

(η) will be those configurations σ in
Σo
G

such that σW = η and Zo
G

(η) will be the contribution to the partition function of

G from configurations in Σo
G

(η). Define similarly Σi
G

(η) and ZG(η).
We need a final piece of notation. Let J be the union of the trees appended in

the second step of the construction of the gadget G. Note that the only vertices of
G included in J are vertices in W . Let ZJ(η) be the contribution to the partition
function of J from configurations σ (on J) such that σW = η. We are now able to
put these definitions to work. In particular, we have that

ZiG =
∑

η:W→[q]

Zi
G

(η)ZJ(η) and ZoG =
∑

η:W→[q]

Zo
G

(η)ZJ(η).

We will need the following lemma, which is proved combining techniques from [43],
[17, Appendices A and B], and the phase diagram for the Potts model (note that for
ferromagnetic models, the dominant phases have the same quantitative structure in
bipartite graphs6).

Lemma 30. Let G := Gn denote the distribution of the random bipartite graph G.
For B > Bo, it holds that

6Dominant phases on random bipartite ∆-regular graphs correspond to the global maximizers of
maxR,C

RᵀBC
‖R‖p‖C‖p

, where p = ∆/(∆−1); see [17, Theorem 4.1]. As a consequence of Observation 2,

for a ferromagnetic model, any such maximum must satisfy R = C (up to a scaling factor). This
yields that the maximizers are in one-to-one correspondence with the maximizers of the r.h.s. of
(16).
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(i) There exist constants C1, C2,Ψ depending only on q,B,∆, such that for every
i ∈ [q] and η : W → [q],

(45)
EG
[
Zi
G

]
=
(
1 +O(n−1/2)

)
C1C

2m′

2 exp(nΨ),

EG [Zi
G

(η)] =
(
1 +O(n−1/2)

)
QiW (η)EG

[
Zi
G

]
.

(ii) For all sufficiently small ε > 0 and sufficiently large n, for i ∈ [q],

(46) EG
[
Zo
G

]
≤ exp(−εn)EG

[
Zi
G

]
.

(iii) maxi∈[q], η:W→[q] PrG
(
Zi
G

(η) < 1
nEG [Zi

G
(η)]

)
→ 0 as n→∞.

Proof of Lemma 30. The first equality in (45) is proved in [17, Lemma B.3]. The
second equality in (45) is proved in [17, Lemma 6.11]: the lemma is stated in the case
where m′ is a constant, but the proof also holds when m′ = o(n1/2) whenever the
dominant phases are Hessian, as was first illustrated in [43]. The explicit error factors
O(n−1/2) in (45) are a consequence of Stirling’s approximation (see [43, Lemma 3.1]
for the explicit derivation in the hard-core model which is straightforward to adapt
to the present setting as well). Combining the above yields item (i).

Item (ii) is a consequence of the fact that for some small ε′ > 0, for each ordered
phase i there exists an ε′-ball around it consisting solely of configurations which
are contained in Σi

G
\Σo

G
. Since the ordered phase i is dominant, a standard com-

pactness argument (see, for example, the upcoming proof of Lemma 36) yields that
1
n log EG

[
Zo
G

]
is strictly less than 1

n log EG
[
Zi
G

]
.

Finally, item (iii) follows from the small subgraph conditioning method in [17,
Appendix A] (see also Theorem 37).

We conclude this section by giving the proof of Lemma 28.

Proof of Lemma 28. To get item 1, by the symmetry argument described in the
beginning of the section, it suffices to show that for every i ∈ [q] it holds that ZoG ≤
exp(−n1/4)ZiG with probability 1 − o(1) over the choice of the graph G. We use
Lemma 30. In particular, Markov’s inequality yields

(47) PrG

 ∑
η:W→[q]

Zo
G

(η)ZJ(η) > n
∑

η:W→[q]

ZJ(η)EG [Zo
G

(η)]

→ 0 as n→∞.

Item (iii) of Lemma 30 yields for every i ∈ [q]

(48) PrG

 ∑
η:W→[q]

Zi
G

(η)ZJ(η) <
1

2n

∑
η:W→[q]

ZJ(η)EG [Zi
G

(η)]

→ 0 as n→∞.

From (45) and
∑
η Q

i
W (η) = 1, it follows that

(49)

∑
η:W→[q]

ZJ(η)EG [Zi
G

(η)] = (1 + o(1))EG [Zi
G

]
∑

η:W→[q]

ZJ(η)QiW (η)

≥ (1 + o(1))EG [Zi
G

] min
η:W→[q]

ZJ(η).

From the crude bound maxη ZJ(η) ≤ exp(o(n1/4)) minη ZJ(η) and (46), it follows
that

(50)

EG [Zi
G

] min
η:W→[q]

ZJ(η) ≥ exp(n1/2)EG [Zo
G

] max
η:W→[q]

ZJ(η)

≥ exp(n1/2)
∑

η:W→[q]

ZJ(η)EG [Zo
G

(η)].
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Combining (49) and (50) yields

(51)
∑

η:W→[q]

ZJ(η)EG [Zi
G

(η)] ≥ exp(n1/2)
∑

η:W→[q]

ZJ(η)EG [Zo
G

(η)],

Combining (47), (48), and (51) yields that ZoG ≤ n exp(−n1/2)ZiG ≤ exp(−n1/4)ZiG
with probability 1− o(1) over the choice of the graph G, as wanted. This proves the
first item of the lemma.

Item 2 of the lemma follows exactly the approach in [43]. The required non-
reconstruction results to push the approach in [43] are given in [35, Proof of Theorem
1.4] (ferromagnetic Potts model on the tree with constant boundary condition). To-
gether with Lemma 30, the proof of [43, Theorem 2.1] extends almost verbatim to
our case as well. We briefly outline the main ideas of the proof as carried out in [43].

Recall that the goal is to show that, conditioned on the phase i, the distribution
of the spins in vertices in R is close to QiR(·). For i ∈ [q], let (analogously to [43])

Bi :=
{
η : W → [q] | max

τ :R→[q]

∣∣∣µG(σR = τ | σW = η
)
−QiR(σR = τ)

∣∣∣ > n−3θ
}
,

i.e., Bi is the set of “bad” configurations on W which exert large influence on vertices
in R. Note that while we defined Bi using the Gibbs distribution of the graph G,
we could have used instead the Gibbs distribution of J , since, by the Markov prop-
erty, conditioned on the spins of vertices in W , the spins of the vertices in J are
conditionally independent from the rest of the vertices in the graph G. It follows that

(52) Bi =
{
η : W → [q] | max

τ :R→[q]

∣∣µJ(σR = τ | σW = η
)
−QiR(σR = τ)

∣∣ > n−3θ
}
.

Back to the proof, the result will follow from µG(σW ∈ Bi | Y (σ) = i) ≤ exp(−n2θ);
for the technical details see [43, Proof of Theorem 2.1].

Note that

(53) µG
(
σW = η |Y (σ) = i

)
=
Zi
G

(η)ZJ(η)

ZiG
=

Zi
G

(η)ZJ(η)∑
η′:W→[q] Z

i
G

(η′)ZJ(η′)
.

Using inequalities analogous to those we used to prove item 1, it can be proved that

µG
(
σW ∈ Bi |Y (σ) = i

)
≤ poly(n)νi(σW ∈ Bi),

where the measure νi is defined on the space of all configurations η : W → [q] given
by

(54) νi(η) :=
ZJ(η)QiW (η)∑

η′:W→[q] ZJ(η′)QiW (η′)
∝ µJ(σW = η)QiW (η).

Our goal is thus to show that

(55) νi(σW ∈ Bi) ≤ exp(−n2θ).

It is useful to note at this point that the bound in (55) is a property of the trees and,
in particular, does not depend on the Gibbs distribution of the (random) graph G.
(Indeed, νi is specified by the Gibbs distribution on the graph J , which is a disjoint
union of (∆ − 1)-ary trees, and the product measure Qi(η). Also, Bi is specified by
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the Gibbs distribution of the graph J ; see (52).) Also, since J is the disjoint union
of a polynomial number of identical trees, by a union bound, it suffices to show (55)
when J consists of a single (∆− 1)-ary tree with height ` = Θ(log n) and W denoting
the leaves of the tree. In turn, this will follow from the following doubly exponential
upper bound:

(56) νi(σW ∈ Bi) ≤ exp(− exp(C`)),

where C > 0 is a constant. (To recover (55) from (56), we just need to tune the
parameter θ of the gadget to ensure that the trees have sufficiently large height `
relative to θ; recall that ` = bψ log∆−1 nc, so we can choose any constant θ so that

0 < θ < Cψ
2 ln(∆−1) .)

We will conclude this proof by sketching the main idea behind the strong bound
in (56); a detailed proof of the bound with all the relevant connections can be found
in Appendix A. The bound in (56) goes back to the works of Martinelli, Sinclair, and
Weitz [34, 35], who studied the mixing time of Glauber dynamics on trees with bound-
ary conditions, and was first used for the construction of gadgets by Sly [43]. A key
idea, captured in [43, Proof of Lemma 4.3], is that the measures νi on configurations
η : W → [q] can be viewed as projections of Gibbs measures corresponding to the
ordered phases on the infinite (∆− 1)-ary tree. The Gibbs measure corresponding to
the ordered phase i can be obtained by taking the weak limit of the Potts distribution
of a finite tree with depth ` whose leaves are conditioned to have spin i as ` → ∞.
In Appendix A.2, we give an alternative Markov chain construction of these Gibbs
measures using a broadcasting process which is more convenient to work with. These
Gibbs measures are well-known to be extremal, or, equivalently, the broadcasting
process has the nonreconstruction property, which roughly says that the spin of the
root cannot be reconstructed from a typical configuration on the leaves of the tree
(asymptotically in `); see Appendix A.1 for details that are relevant in our setting
and the survey [38] for more details on broadcasting processes on trees. Then, the
techniques of [34, 35] further show that a certain eigenvalue condition of the relevant
broadcasting matrix allows us to quantify the dependence on ` and thus obtain the
bound in (56). In Appendix A, we use a similarly flavored result from Sly and Zhang
[46], which we can apply more directly in our setting.

This concludes the proof of Lemma 28.

9.2. #BIS-hardness for bipartite colorings. Using our #BIS-hardness re-
sult for the ferromagnetic Potts model on bounded-degree graphs, we now prove our
#BIS-hardness result for colorings on bounded-degree bipartite graphs (Corollary 4).
The reduction between these two problems was first observed in [14]; here, we just
have to work out the bound on k that the application of Theorem 3 yields.

Proof of Corollary 4. We will show that for all integer k,∆ ≥ 3, it holds that

(57) #BipFerroPotts

(
q = k,B =

k − 1

k − 2
,∆

)
≤AP #BipColorings(k,∆)

and that

(58) whenever k ≤ ∆/(2 ln ∆), it holds that B = k−1
k−2 >

k−2
(k−1)1−2/∆−1

= Bo.

The corollary will then follow from Theorem 3.
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To prove (57), let G = (V,E) be an input graph to the problem #BipFerro-
Potts(k,B,∆) with B = (k − 1)/(k − 2) > 1. Construct an instance G′ of #Bip-
Colorings(k,∆) by subdividing each edge of G, i.e., G′ is a graph with vertex set
V ′ = V ∪E and edge set E′ =

⋃
e=(u,v)∈E{(u, e), (e, v)}. It is clear that G′ is bipartite

and every vertex has degree at most ∆.
We claim that the partition function for the k-state ferromagnetic Potts model

on G with B = (k − 1)/(k − 2) is equal to the number of proper k-colorings on G′

(times an easily computable factor equal to (k − 2)|E|).
To see this, for a k-coloring σ′ of G′, map σ′ to a configuration σ on G given by

the restriction of σ′ to vertices in V . Let σ : V → [k] be any configuration of the
Potts model on G. The claim will follow by showing that the number of colorings of
G′ which map to σ is given by (k − 1)m(σ)(k − 2)|E|−m(σ), where m(σ) denotes the
number of monochromatic edges in G under σ. Indeed, for a monochromatic edge
e = (u, v) ∈ E under σ, there are k−1 ways to choose the color of the vertex e ∈ V ′ in
the graph G′. In contrast, if e = (u, v) ∈ E is not monochromatic under σ, there are
k − 2 ways to choose the color of the vertex e ∈ V ′ in the graph G′. This completes
the proof of (57).

We next show (58). For ∆ ≤ 16, we have k ≤ ∆
2 ln ∆ < 3, so we may assume

that ∆ ≥ 17 (otherwise, there is nothing to prove). We first reduce (58) to the case
k = ∆

2 ln ∆ . Let d := ∆−1, zo := (k−1)1/(d+1). The inequality k−1
k−2 >

k−2
(k−1)(d−1)/(d+1)−1

is equivalent to

hd(zo) > 0 where hd(z) = −z2(d+1)
o + z2d

o + zd+1
o − 1.

Fix d ≥ 16. The polynomial hd(z) has two changes of sign, so by the Descartes’ rule
of signs, it has at most two positive roots. Clearly, z = 1 is a root of hd(z) and since
h′d(1) > 0, there is one more root zd > 1. Thus, hd(zo) > 0 iff zo < zd (note that
zo > 1). Thus, to show (58), it suffices to consider the case where k = ∆/(2 ln ∆).

Now, we prove the desired inequality for k = ∆/(2 ln ∆). The inequality is equiv-
alent to

(k − 1)−2/∆ > 1− k − 2

(k − 1)2
.

Now using the bound x−2/∆ = exp
(
− 2 ln x

∆

)
≥ 1− 2 ln x

∆ for x = k − 1, we only need
to prove that

2 ln(k − 1)

∆
<

k − 2

(k − 1)2
.

Now 2(k − 1) ln(k − 1) ≤ 2k ln k = ∆(1− ln(2 ln ∆)
ln ∆ ), so the inequality will follow from

k − 1 >
ln ∆

ln(2 ln ∆)
,

which holds for k = ∆/(2 ln ∆) and all ∆ ≥ 17, as wanted. This completes the proof
of (58).

This concludes the proof of Corollary 4.

10. Torpid mixing of Swendsen–Wang. In this section, we prove Theorem 6
about torpid mixing of the Swendsen–Wang algorithm at the critical activity B = Bo.
More precisely, we will show that, with probability 1−o(1) over the choice of a random
∆-regular graph with n vertices, the mixing time of the Swendsen–Wang algorithm
is exponential in n. We will exploit Theorem 5 for B = Bo, which in combination
with Lemma 16 essentially implies that for this value of B, we have coexistence of
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the ordered and disordered phases in a random ∆-regular graph (with probability
1− o(1)).

Denote by u the disordered phase and by m1, . . . ,mq the q ordered phases of
Theorem 5. Note that the q ordered phases are identical up to a permutations of the
colors and for the purposes of this section we can treat them in a uniform manner.
Thus, denote m = {m1, . . . ,mq}. We will say that a configuration σ is close to u
(resp., m) if the color frequencies in σ are close to those prescribed by u (resp., one
of m1, . . . ,mq).

Lemma 16 implies that, with probability 1 − o(1) over the choice of the graph,
the set of configurations near u and m dominate the Gibbs distribution, in the sense
that these sets each have measure ≥ 1/poly(n) and the rest of the configurations have
exponentially smaller mass. To analyze the Swendsen–Wang algorithm we need a
more refined picture which includes the number of monochromatic edges in such con-
figurations. To this end, we define the following quantities which roughly correspond
to the expected number of monochromatic edges for configurations in these two sets
scaled by a factor of n (see the upcoming equation (64) and the remarks thereafter
for the derivations). Hence, let

(59) Em :=
∆

2

B(x2 + q − 1)

(x+ q − 1)2 + (B − 1)(x2 + q − 1)
and Eu :=

∆

2

B

q +B − 1
,

where x, defined in Lemma 27, is a solution of the normalized tree recursions.
Now we can define the set of configurations with vertex marginals close to u

and m and edge marginals close to nEu and nEm, respectively. For a configuration
σ ∈ Ω, let eG(σ) denote the number of monochromatic edges in G under the spin
configuration σ. Recall σ−1(i) is the set of vertices with spin i in σ. Let c(σ) denote
the vector (|σ−1(1)|/n, . . . , |σ−1(q)|/n). For ε > 0, let

U = U(ε) :=
{
σ ∈ Ω

∣∣ ‖c(σ)− u‖∞ ≤ ε and |eG(σ)− Eun| < εn
}
.

(60)

M = M(ε) :=
{
σ ∈ Ω

∣∣ for some mj , ‖c(σ)−mj‖∞ ≤ ε and |eG(σ)− Emn| < εn
}
,

(61)

T = T (ε) := Ω \ (U(ε) ∪M(ε)).
(62)

The following lemma is proved in section 10.1 and is the main tool to obtain our
torpid mixing results.

Lemma 31. Let B = Bo. For all sufficiently small ε > 0, there exists C > 0,
such that with probability 1− o(1) over the choice of the graph G ∼ G(n,∆), it holds
that

(63) µG(U) ≥ 1/poly(n), µG(M) ≥ 1/poly(n), µG(T ) ≤ exp(−Cn).

For the rest of this section, we fix a graph G whose Gibbs distribution satisfies
(63). By Lemma 31, this holds for asymptotically almost all ∆-regular graphs.

Now to prove that the chain is torpidly mixing we will bound its conductance
defined as ΦSW = minS;∅⊂S⊂Ω ΦSW (S), where

ΦSW (S) =

∑
σ∈S µ(σ)P (σ, S)

µ(S)µ(S)
,

where P denotes the transition matrix for Swendsen–Wang. To bound the conduc-
tance of the set M , we prove that a configuration in M is unlikely to transition to U
in one step.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2038

Lemma 32. For σ ∈M , P
(
σ, U

)
< exp(−cn) for some positive constant c > 0.

Proof. We are going to argue that, with probability 1− exp(−Ω(n)), the number
of mononochromatic edges after one transition of Swendsen–Wang is too large to be
in the set U . Note that the third step of Swendsen–Wang cannot decrease the number
of monochromatic edges, so it suffices to analyze the first two steps.

Since σ ∈ M , by definition, the number of monochromatic edges under σ is
(Em ± ε)n. The expected number of edges left after the second step of Swendsen–
Wang is thus (1 − 1/B)(Em ± ε)n. The following claim implies that for sufficiently
small ε, this is greater than (Eu ± ε)n, the number of monochromatic edges in a
configuration from U . The proof is given in section 10.1.

Claim 33. Let ∆ ≥ 3 and q ≥ 2∆/ log ∆. For B = Bo, it holds that Em/Eu >
1/(1− 1/B).

By standard Chernoff bounds, we can thus conclude that for sufficiently large n
the transition from σ to U happens with exponentially small probability.

Remark 34. We believe that the lower bound on q in Theorem 6 arises from
ignoring the effect of the third step of Swendsen–Wang.

We can now bound the conductance ΦSW of Swendsen–Wang.

ΦSW ≤ ΦSW (M) =

∑
σ∈M µ(σ)P (σ,M)

µ(M)µ(M)

≤ poly(n)
( ∑
σ∈M

µ(σ)P (σ, U) +
∑
σ∈M

µ(σ)P (σ, T )
)

by (63)

≤ poly(n)
(

exp(−Cn)µ(M) +
∑
τ∈T

µ(τ)P (τ,M)
)

by Lemma 32 and reversibility

≤ poly(n)
(

exp(−Cn) + µ(T )
)

≤ exp(−C ′n) by (63).

Proof of Theorem 6. Standard conductance results imply that the mixing time is
Ω(1/ΦSW ), which proves the theorem based on the above bounds. (See [37, p. 255]
for such a statement using the form of (normalized) conductance as used here.)

10.1. Phase coexistence for random ∆-regular graphs. In this section, we
prove Lemma 31. The lemma will mostly follow from Lemma 16. We will need though
a more refined analysis of the partition function conditioned on configurations close
to u and m.

In analogy to (60), (61), define

Û = Û(ε) :=
{
σ ∈ Ω

∣∣∣ ‖c(σ)− u‖∞ ≤ ε
}
,

M̂j = M̂j(ε) :=
{
σ ∈ Ω

∣∣∣ ‖c(σ)−mj‖∞ ≤ ε
}
.

T̂ = T̂ (ε) := Ω\
(
Û ∪ M̂1 ∪ . . . ∪ M̂q

)
,

and for a subset Σ ⊆ Ω of the configuration space, denote by ZG(Σ) the partition
function restricted to configurations in Σ, that is,

ZG(Σ) =
∑
σ∈Σ

wG(σ), so that µG(Σ) =
ZG(Σ)

ZG
.
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We first prove the following weaker version of Lemma 31.

Lemma 35. Let B = Bo. Let Ψ = maxα∈4q
Ψ1(α), where Ψ1(α) is given by

(13). For all sufficiently small ε > 0, there exists C > 0, such that with proba-

bility 1 − o(1) over the choice of the graph G ∼ G(n,∆), it holds that ZG
(
T̂
)
≤

exp(−Cn) exp(Ψn) and

exp(nΨ)

poly(n)
≤ min

{
ZG
(
Û
)
, ZG

(
M̂1

)
, . . . , ZG

(
M̂q

)}
≤ max

{
ZG
(
Û
)
, ZG

(
M̂1

)
, . . . , ZG

(
M̂q

)}
≤ poly(n) exp(nΨ).

Proof of Lemma 35. Define the region T by

T = {α ∈ 4q | ‖α− u‖∞ ≥ ε, ‖α−m1‖∞ ≥ ε, . . . , ‖α−mq‖∞ ≥ ε}.

Recall from Theorem 5 that, for B = Bo, the global maximum of Ψ1(α) occurs
exactly when α is equal to one of u,m1, . . . ,mq. It follows that

max
α∈T

Ψ1(α) < Ψ− C ′

for some constant C ′ = C ′(ε) > 0. Note that for fixed n the possible values of α ∈ T
are polynomially many. For all sufficiently large n, we thus have

EG [ZG
(
T̂
)
] ≤ poly(n) max

α∈T
EG [Zα

G ] ≤ poly(n) exp
(
(Ψ− C ′)n

)
.

Let C be such that C ′ > C > 0. By Markov’s inequality, we obtain ZG
(
T̂
)
≤

exp(−Cn) exp(Ψn) with probability 1 − o(1). This establishes the first part. For
the second part, the upper bounds follow from Markov’s inequality by the same to-
ken. The lower bounds follow from Lemma 16 and the observation that at the disor-
dered/ordered critical activity Bo the expectations of Zu

G, Z
m1

G , . . . , Z
mq

G are within a
polynomial factor of exp(nΨ). By a simple union bound we can thus ensure all the
properties stated with probability 1− o(1), as desired.

Having established Lemma 35, we are ready to start arguing about the empirical
distribution of edges, more precisely, the fraction of edges in G whose endpoints are
assigned colors i, j for configurations σ ∈ Û , M̂ . The rough idea is as follows. Fix
an arbitrary α ∈ 4q. In section 4, we established that Ψ1(α) = maxx Υ1(α,x) =
(∆ − 1)f1(α) + ∆ maxx g1(x), where the latter maximization is over x which satisfy
the constraints (9). Since g1(x) is strictly concave in the convex region it is defined,
this maximum is attained for a unique vector x, which from here on we shall denote
by xα. Essentially by the same line of arguments as in the proof of Lemma 35, all the
contribution to the first moment EG [Zα

G ] comes from those x which are close to xα.
Thus, by Markov’s inequality and the lower bounds of Lemma 35, if x is sufficiently
far away from xα, with probability 1 − o(1) over the choice of the graph G, the
empirical edge distribution of a configuration σ ∼ µG will equal x with exponentially
small probability. We are thus left to argue that for those x close to xα, the actual
contribution to Zα

G from configurations with edge empirical distribution x is close to
its expectation. But for a graph satisfying Lemma 35 this is immediately guaranteed,
since we know a lower bound on Zα

G which matches its expectation up to a polynomial
factor.

It is useful at this point to give the expressions for the optimal vector xα, when
α is a dominant phase. Note that a dominant phase α corresponds (via (20)) to
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a fixpoint (R1, . . . , Rq) of the tree recursions (6). The entries of the optimal vector
x∗ = xα are given by

(64) x∗ij =
BijRiRj∑
i,j BijRiRj

for i, j ∈ [q].

Indeed, using that (R1, . . . , Rq) specify a fixpoint of the tree recursions (6), it can be
checked that

∑
j x
∗
ij = αi for i ∈ [q], and also that x∗ is a critical point of g(x). By

the strict concavity of the function g1, it follows that x∗ is the unique optimal vector,
as claimed. Note that the expressions for Em and Eu in (59) can easily be derived
from (64) when adapted to the ferromagnetic Potts model.

We next introduce some relevant notation. We first want to capture the con-
tribution of configurations with specific edge empirical distribution. To do this, we
need the notation xG(σ) of section 4 introduced just before the expression for the first
moment (8). For x0 ∈ 4q2 , Σ ⊆ Ω, define ZG(Σ,x0) as

ZG(Σ,x0) =
∑
σ∈Σ

wG(σ)1{xG(σ) = x0}, so that ZG(Σ) =
∑

x∈4q2

ZG(Σ,x).

Thus, the definition of ZG(Σ,x0) restricts the partition function not only to configura-
tions belonging to Σ but also to those having edge empirical distribution equal to x0.
Now, we further extend this definition to capture that the edge empirical distribution
is far from a prescribed vector x0. For ε > 0, define ZG(Σ,x0, ε) as

ZG(Σ,x0, ε) =
∑
σ∈Σ

∑
x;‖x−x0‖∞≥ε

wG(σ)1{xG(σ) = x}.

We are ready to prove the following.

Lemma 36. Let Ψ = maxα∈4q
Ψ1(α), where Ψ1(α) is given by (13). For all

sufficiently small ε > 0, there exists C > 0 such that with probability 1− o(1) over the
choice of the graph G ∼ G(n,∆), it holds that

max{ZG(Û ,xu, ε), ZG(M̂1,xm1
, ε), . . . , ZG(M̂q,xmq

, ε)} ≤ exp(−Cn) exp(Ψn).

Proof. We prove that the upper bound ZG(Û ,xu, ε) ≤ exp(−Cn) exp(Ψn) holds
with probability 1−o(1) over the choice of the graph. The remaining random variables
may be treated similarly and thus the claim follows by a union bound.

Observe that

ZG
(
Û ,xu, ε

)
=

∑
α;‖α−u‖∞≤ε

ZG(Σα,xu, ε).

It follows that

(65) EG
[
ZG
(
Û ,xu, ε

)]
=

∑
α;‖α−u‖∞≤ε

EG [ZG(Σα,xu, ε)].

Note that the sum in (65) is over polynomially many vectors α satisfying ‖α− u‖∞ ≤
ε. Further, for fixed α, EG [ZG(Σα,xu, ε)] is also a sum over polynomially many x
satisfying ‖x− xu‖∞ ≥ ε. For a fixed x, the exponential order of the term in the
latter sum corresponding to x is given by the function Υ1(α,x). By approximating
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the sums with their maximum terms (and using the continuity of the function Υ1), it
is standard to conclude from here that

(66) EG
[
ZG
(
Û ,xu, ε

)]
= exp(o(n)) exp

(
n max
‖α−u‖∞≤ε

max
‖x−x∗u‖∞≥ε

Υ1(α,x)
)
.

Note that the maximum in (66) is justified by standard compactness arguments (which
we give below since we will need it in the proof).

Consider the region

T (ε) := {(α,x) | α ∈ 4q,x ∈ 4q2 , ‖α− u‖∞ ≤ ε, ‖x− xu‖∞ ≥ ε},

i.e., the region T (ε) consists of those pairs (α,x) such that α is ε-close to u, but x
is ε-far from the optimal vector xu. Let Ψ′ be the maximum of Υ1(α,x) over the
region T (ε) (this exists since T (ε) is compact and Υ1(α,x) is continuous). Recall now
that for fixed α the function Υ1(α,x) is strictly concave in x. Since the maximizers
of Ψ1(α) = maxx∈4q2 Υ1(α,x) are the vectors u,m1, . . . ,mq, it follows that the

maximizers of Υ1(α,x) are (u,xu), (m1,xm1
), . . . , (mq,xmq

). Since for all sufficiently
small ε > 0 none of these maximizers lies in the region T (ε), we have that Ψ′ < Ψ
and hence there exists C ′(ε) > 0 such that

max
‖α−u‖∞≤ε

max
‖x−xu‖∞≥ε

Υ1(α,x) < Υ1(u,xu)− C ′.

By choosing C so that 0 < C < C ′, the desired bound now follows from (65) by an
application of Markov’s inequality.

We are now ready to give the proof of Lemma 31.

Proof of Lemma 31. By a union bound, a graph G ∼ G(n,∆) satisfies with prob-

ability 1 − o(1) both Lemmas 35 and 36. We have ZG = ZG
(
Û
)

+ ZG
(
M̂1

)
+ · · · +

ZG
(
M̂q

)
+ ZG

(
T̂
)
. By Lemma 35, we thus have

exp(nΨ)

poly(n)
≤ ZG ≤ poly(n) exp(nΨ).

Now observe that the sets U , M defined in (60) and (61) satisfy

ZG(U) ≥ ZG
(
Û
)
− ZG

(
Û ,x∗u, ε

)
≥ exp(nΨ)

poly(n)
,

ZG(M) ≥ ZG
(
M̂
)
− ZG

(
M̂,x∗m, ε

)
≥ exp(nΨ)

poly(n)
,

ZG(T ) ≤ ZG
(
T̂
)
≤ exp(−Cn) exp(nΨ).

The conclusion follows.

To complete the proofs for section 10, we now give the proof of Claim 33.

Proof of Claim 33. Using (59), we have that

Em

Eu
=

(q +B − 1)(x2 + q − 1)

(x+ q − 1)2 + (B − 1)(x2 + q − 1)
= 1 +

(q − 1)(x− 1)2

(x+ q − 1)2 + (B − 1)(x2 + q − 1)
.

It follows that

Em

Eu
− 1

1− 1/B
=

(q − 1)(x− 1)2

(x+ q − 1)2 + (B − 1)(x2 + q − 1)
− 1

B − 1
.
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Using the substitutions d = ∆−1, x = yd and the second equation in (35) (for t = 1),
the r.h.s. can be rewritten as

Em

Eu
− 1

1− 1/B
=
y
(
yd − y

) (
(q − 2)yd − (q − 1)yd−1 − (q − 1)

)
(y − 1)

(
yd + q − 1

)(
yd+1 + q − 1

) .

Recall, from the proof of Lemma 27, that for B = Bo, it holds that y = yo, where
yo = (q − 1)2/(d+1). Since yo > 1, to prove the claim we only need to show that
p(yo) > 0, where p(y) := (q − 2)yd − (q − 1)yd−1 − (q − 1). Massaging, we obtain the
equivalent inequality

(67) hd((q − 1)1/(d+1)) > 0, where hd(z) := z2d − z2(d−1) − zd−1 − 1.

Fix d ≥ 2. If zd is such that hd(zd) > 0, then hd(z) > 0 for all z > zd. This is again
a consequence of the Descartes’ rule of signs: the polynomial hd(z) has exactly one
positive root, say, ρd, and hence hd(z) > 0 for z positive is equivalent to z > ρd. It
follows that to prove (67) for q ≥ 2(d + 1)/ ln(d + 1), we only need to argue for its
validity when q = qo := 2(d + 1)/ ln(d + 1). In other words, we need to show that
hd(zo) > 0, where zo := (qo − 1)1/(d+1). By direct calculations, it can be checked
that the inequality is true for d = 2, . . . , 9. We therefore assume that d ≥ 10 in what
follows.

For all w > 1 it holds that (w + 3/4)2 > w2 + w + 1, which for w = zd−1
o gives

(zd−1
o + 3/4)2 > z

2(d−1)
o + zd−1

o + 1. Thus, we only need to show that zdo > zd−1
o + 3/4,

or

(68) zd−1
o (zo − 1) > 3/4.

To handle the two factors in (68), we will use the following bounds on zo:

(69) zo ≥
(
C1

d+ 1

ln(d+ 1)

)1/(d+1)

, zo ≥ 1+C2
ln(d+ 1)

d+ 1
, where C1 :=

3

2
, C2 :=

3

4
.

The first bound follows from the inequality qo ≥ 1 + 3
2

d+1
ln(d+1) . The second bound

follows from the first bound and x1/(d+1) = exp
(

ln x
d+1

)
≥ 1 + ln x

d+1 together with

ln(C1
d+1

ln(d+1) ) ≥ C2 ln(d+ 1).

Plugging the bounds (69) into (68), it suffices to check whether

C2
ln(d+ 1)

d+ 1

(
C1

d+ 1

ln(d+ 1)

)(d−1)/(d+1)

≥ 3

4
, or

(
4C1C2

3

)d+1

≥
(
C1

d+ 1

ln(d+ 1)

)2

.

This holds for all d ≥ 10, completing the proof (for all d ≥ 2).

11. Remaining proofs.

11.1. Small subgraph conditioning method. In this section, we give the
outline for the proof of Lemma 16. The proof is a minor modification of the arguments
in [17, Appendices A and B] which were carried out for random ∆-regular bipartite
graphs. Here, we just need to account for the nonbipartite case which turns out to be
completely analogous. For completeness, we give the adaptation of the calculations
therein to account for the slightly different setting.

The main tool we are going to use is the following theorem, which is due to [42].
The notation [X]m refers to the mth order falling factorial of the variable X.
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Theorem 37. For i = 1, 2, . . ., let λi > 0 and δi > −1 be constants and assume
that for each n there are random variables Xin, i = 1, 2, . . . , and Yn, all defined on the
same probability space G = Gn such that Xin is nonnegative integer valued, Yn ≥ 0,
and E

[
Yn
]
> 0 (for n sufficiently large). Furthermore, the following hold:

(A1) Xin
d−→ Zi as n → ∞, jointly for all i, where Zi ∼ Po(λi) are independent

Poisson random variables;
(A2) for every finite sequence j1, . . . , jm of nonnegative integers,

(70)
EG
[
Yn[X1n]j1 · · · [Xmn]jm

]
EG
[
Yn
] →

m∏
i=1

(
λi(1 + δi)

)ji
as n→∞;

(A3)
∑
i λiδ

2
i <∞;

(A4) EG
[
Y 2
n

]
/
(
EG [Yn]

)2 ≤ exp
(∑

i λiδ
2
i

)
+ o(1) as n→∞.

Let r(n) be a function such that r(n)→ 0 as n→∞. It holds that Yn > r(n)EG
[
Yn
]

asymptotically almost surely.

To obtain Lemma 16, we verify the assumptions of Theorem 37 for the random
variables Zα

G . Recall that we restrict our attention to α which are Hessian dominant.
For G ∼ G(n,∆), let Xi = Xin be the number of cycles of length i in G, i = 1, 2, . . ..

The most technical part of this verification is assumption (A4), which requires
computing the precise asymptotics of the moments. This in turn reduces to certain
determinants which are not completely trivial. Nevertheless, the arguments have
been carried out in full generality in [17]. The only minor modification required in
the present case is to account for random ∆-regular graphs instead of the bipartite
random ∆-regular graphs studied in [17].

We obtain the following lemmas.

Lemma 38. Assumption (A1) holds with λi = (∆−1)i

2i .

Lemma 38 is well-known; see, for example, [27].

Lemma 39. Assumption (A2) holds with δi =
∑q−1
j=1 µ

i
j, where µ1, µ2, . . . , µq−1

are the eigenvalues different from 1 of the matrix M defined in section 8. For Hessian
dominant α, it holds that the µi are positive and strictly smaller than 1/(∆− 1).

Proof of Lemma 39. The proof is close to [17, Proof of Lemma A.6], which is in
turn close to [40, Proof of Lemma 7.4]. We just modify the approach to account for
the distribution induced by the pairing model. We make the minor notation change
from Xi to X`, i.e., for ` ≥ 1, X` denotes the number of cycles of length ` in G. We
show that assumption (A2) in Theorem 37 holds when m = 1 and j1 = 1, and the
extension to m > 1 and arbitrary indices j1, . . . , jm follow by standard arguments;
see, for example, [31, section 2] for an exposition of the argument in a very similar
setting.

Let S = {S1, . . . , Sq} be a partition of V such that |Si| = αin for all i ∈ [q]. Note
that S induces a configuration σ(S) by setting, for every vertex v ∈ V , σ(v) = i iff
v ∈ Si. Denote by YS the weight of the configuration σ(S).

Fix a specific partition S. By symmetry,

(71)
E[Zα

GX`]

E[Zα
G ]

=
E[YSX`]

E[YS ]
.
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We decompose X` as follows:
• ξ will denote a rooted and oriented `-cycle, whose vertices are colored with
{1, . . . , q} (note that the coloring is not assumed to be proper). A vertex
colored i in ξ signifies that it corresponds to a vertex in Si.

• Once we have specified ξ, we use ζ to denote the ` points that the cycle
traverses in order, such that the prescription of the vertex colors of ξ is
satisfied. (Recall from section 4 that points are elements of [∆n]; ζ specifies
the preimage of the cycle ξ in the pairing model, i.e., the matched points that
respect the colors ξ of the cycle with respect to the partition S).

• 1ξ,ζ is the indicator function whether the cycle specified by ξ, ζ is present in
the graph G generated by the pairing model.

Once the vertex colors of a cycle have been specified, note that each possible cycle
corresponds to exactly 2` different configurations ξ (the number of ways to root and
orient the cycle). For each of those ξ, the respective sets of configurations ζ are the
same. Hence, we may write

X` =
1

2`

∑
ξ

∑
ζ

1ξ,ζ .

Let p1 := Pr[1ξ,ζ = 1]. It follows that

E[YSX`] =
1

2`

∑
ξ

∑
ζ

p1 ·E[YS |1ξ,ζ = 1].

In light of (71), we need to study the ratio E[YS | 1ξ,ζ = 1]/E[YS ]. At this point, to
simplify notation, we may assume that ξ, ζ are fixed.

We have shown in section 4 that
(72)

E[YS ]

=
∑
x

∏
i

(
∆αin

∆xi1n, . . . ,∆xiqn

)[∏
i6=j(∆xijn)!

]1/2∏
i(∆xiin− 1)!!

(∆n− 1)!!

∏
i,j

B
∆xijn/2
ij ,

where the variables x = (x11, . . . , xqq) capture the number of edges between the
different color classes in S. In particular, for i 6= j, ∆xijn is the number of edges
between the sets Si and Sj , whereas ∆xiin/2 is the number of edges within the set
Si (cf. section 4 for more details).

To calculate E[YS | 1ξ,ζ = 1], we need some notation. For colors i, j ∈ {1, . . . , q},
let a′ij be the number of edges in ξ whose one endpoint has color i and the other j.
It will be convenient to denote aii := 2a′ii and aij := a′ij whenever i 6= j. Finally,
let ci denote the number of vertices in ξ colored with i. The following equalities are
immediate:

(73)
∑
j aij = 2ci,

∑
i,j aij = 2`.

We are almost set to compute E[YS | 1ξ,ζ = 1]. We denote by x the same set of
variables as in (72). This number includes the aij edges prescribed by ξ, ζ. To make
the following formulas easier to digest let n∆x′ij = n∆xij − aij . We have

E[YS | 1ξ,ζ = 1]

=
∑
x

∏
i

(
∆αin− 2ci

∆x′i1n, . . . ,∆x
′
iqn

)[∏
i 6=j(∆x

′
ijn)!

]1/2∏
i(∆x

′
iin− 1)!!

(∆n− 2`− 1)!!

∏
i,j

B
∆xijn/2
ij .
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Using that for constants c1, c2 > 0, it holds that (c1n − c2)!/(c1n)! = (1 +
o(1))(c1n)−c2 , we obtain

(
∆αin−2ci

∆x′i1n,...,∆x
′
iqn

)
(

∆αin
∆xi1n,...,∆xiqn

) ∼ ∏j

(
xij
)aij

α2ci
i

,

[∏
i6=j(∆x′ijn)!

]1/2 ∏
i(∆x

′
iin−1)!!

(∆n−2`−1)!![∏
i6=j(∆xijn)!

]1/2 ∏
i(∆xiin−1)!!

(∆n−1)!!

∼ 1∏
i,j(xij)

aij/2
.

The asymptotics of the ratio E[YS | 1ξ,ζ = 1]/E[YS ] are determined from those x∗

which maximize Υ1(α,x). Thus, we obtain

E[YS | 1ξ,ζ = 1]

E[YS ]
∼
∏
i,j

(
x∗ij
)aij/2∏

i α
2ci
i

.

For given ξ, the number of possible ζ in the pairing model is asymptotic to
∏
i

[
∆(∆−

1)αin
]ci

=
[
∆(∆− 1)n

]`∏
i α

ci
i . Since p1 = (∆n− 2`− 1)!!/(∆n− 1)!! ∼ (∆n)−`, we

have∑
ζ p1E[YS | 1ξ,ζ = 1]

E[YS ]
∼

(∆− 1)`
∏
i α

ci
i

∏
i,j

(
x∗ij
)aij/2∏

i α
2ci
i

=
(∆− 1)`

∏
i,j

(
x∗ij
)aij/2∏

i α
1
2

∑
j aij

i

= (∆− 1)`
∏
i≤j

( x∗ij√
αiαj

)a′ij
,

where in the last equality we used that aii = 2a′ii, aij = a′ij for i 6= j, a′ij = a′ji,
and x∗ij = x∗ji. Note that the r.h.s. evaluates to 0 whenever there exist i, j such
that Bij = 0 but aij 6= 0, since then we have x∗ij = 0 (cf. (64). This is in complete
accordance with the fact that the configuration induced by the partition S has zero
weight. Thus, by (71), we may write

E[Zα
GX`]

E[Zα
G ]

∼ (∆− 1)`

2`
·
∑
a′

Na′

∏
i≤j

( x∗ij√
αiαj

)a′ij
,

where a′ = {a′11, . . . , a
′
qq} and Na′ is the number of possible ξ with a′ij edges of

type {i, j}. Using (64), we have that x∗ij/
√
αiαj is equal to the (i, j)-entry of the

matrix M. Thus, the sum can be reformulated as the (multiplicative) weight of
walks in a weighted multigraph whose (weighted) adjacency matrix is given by M
(for more details on the technique see [27]). It thus follows that the sum equals

Tr(M`) = 1 +
∑q−1
j=1 µ

`
j . The fact that the µi’s are positive follows from the fact that

B is a positive definite matrix, while the fact that the µi’s are less than 1/(∆ − 1)
follows from the results of section 6.

Lemma 40. Assumption (A3) holds with

exp

∑
i≥1

λiδ
2
i

 =

q−1∏
i=1

q−1∏
j=1

(
1− (∆− 1)µiµj

)−1/2
,

where the µi’s are as in Lemma 39.
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Proof of Lemma 40. We have

∑
i≥1

λiδ
2
i =

∑
i≥1

(∆− 1)i

2i

q−1∑
j=1

q−1∑
k=1

µijµ
i
k = −1

2

∑
j,k∈[q−1]

ln
(
1− (∆− 1)µjµk

)
,

where we used that
∑
i≥1

xi

i = − ln(1− x) for |x| < 1.

Lemma 41. For a ferromagnetic model, for all Hessian dominant α it holds that

EG
[
(Zα

G)2
](

EG [Zα
G ]
)2 → q−1∏

i=1

q−1∏
j=1

(
1− (∆− 1)µiµj

)−1/2
,

where the µi’s are as in Lemma 39.

Proof. Let x∗ = arg maxx Υ1(α,x), (γ∗,y∗) = arg maxγ,y Υ2(γ,y). For α which
is Hessian dominant, Theorem 7 yields Υ2(γ∗,y∗) = 2Υ1(α,x∗).

Using methods in [17, Appendix B], we show in section 11.2 that

(74) lim
n→∞

(2πn)(q−1)/2EG [Zα
G ]

enΥ1(α,x∗)
=
( ∏
i∈[q]

αi
∏

i∈[q−1]

(
1 + µi

))−1/2

and
(75)

lim
n→∞

(2πn)q−1EG [(Zα
G)2]

enΥ2(γ∗,y∗)
=
( ∏
i∈[q]

αi
∏

i∈[q−1]

(
1+µi

))−1
q−1∏
i=1

q−1∏
j=1

(
1−(∆−1)µiµj

)−1/2
.

The statement of the lemma follows.

Proof of Lemma 16. Lemmas 38–41 verify the assumptions of Theorem 37. The
lemma thus follows by applying Theorem 37 for r(n) = 1/n.

11.2. The asymptotics of the moments. We follow closely the proof in [17,
Appendix B], where very similar asymptotics are computed in detail. We first overview
the approach in [17, Appendix B] in our setting.

The asymptotics of EG [Zα
G ] and EG [Zα

G ]2 are derived by first rewriting the sums
in (8) and (10) as integrals and approximating the latter with Gaussian integrals.
The principle behind the technique is the negative-definiteness of the Hessian at the
maximizers of the functions Υ1 and Υ2, which control the exponential order of the
terms in the sums (8) and (10), respectively. This allows us to focus on terms within
O(1/

√
n) distance around the term with the maximum contribution. A thorough

exposition of the technical details can be found in [28, section 9.4].
Carrying out the above scheme in our setting is impeded by the fact that the sums

in (8) and (10) are over variables which are linearly dependent. We will get rid of this
linear dependence in the simplest way: for each of the two sums, we pick a subset S
of the variables (with minimum cardinality) such that every variable is a (nontrivial)
linear combination of variables in S. Variables in S span a full-dimensional space,
inducing what we call a “full-dimensional representation” of the functions Υ1,Υ2

when these are viewed as functions of the variables in S. The inconvenience that this
procedure causes is that in the calculation of the Gaussian integrals, (the determinant
of) the Hessian matrices of the full-dimensional representations of Υ1,Υ2 come into
play.
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In [17, Appendix B.1.1], the above setting is abstracted as follows: given a linear
subspace Az = 0, compute (the determinant of) the Hessian matrix of the full-
dimensional representation of a function Υ(z). It is not hard to see that a full-
dimensional representation of Az = 0, assuming that A has row rank r, is obtained
by first picking a submatrix Af induced by r linearly independent rows of A and then
picking r columns of Af to obtain an r × r invertible submatrix Afs (the variables
corresponding to the columns of Afs can be written as nontrivial linear combinations
of the remaining variables; the latter yield the full-dimensional representation). We
denote by Hf the Hessian matrix of the full-dimensional representation of Υ induced
by the matrices Af ,Afs. We further denote by H the Hessian matrix of Υ(z) (where
z is now assumed to be unconstrained); note that H is diagonal. The following is
proved in [17].

For a polynomial p(s), [st]p(s) denotes the coefficient of st in p(s).

Lemma 42 (see [17, Lemma B.7]). Suppose A consists of m rows and has rank
r. Let T be a positive semidefinite diagonal matrix such that [T A] has full row rank.
If H is invertible, then

(76) Det
(
−Hf

)
=
L
(
Af ,A,T

)
Det

(
Afs

)2 Det(−H) [εm−r] Det
(
εT−AH−1Aᵀ

)
,

where L
(
Af ,A,T

)
= (−1)r Det

(
AfA

ᵀ
f

)/
[εm−r] Det

(
εT−AAᵀ

)
.

Remark 43. When A has full row rank, i.e., r = m, one can take T to be the
identity matrix. Then, the r.h.s. in (76) simplifies into

Det(−H) Det
(
−AH−1Aᵀ

)
/Det

(
Afs

)2
.

We will apply Lemma 42 in sections 11.2.1 and 11.2.2 to calculate the asymptotics
of the moments. To do this, we will need more information on the maximizers of the
functions Υ1 and Υ2 for a Hessian dominant phase α. In particular, let x∗ be the
maximizer of Υ1(α,x) (cf. (64)) and (γ∗,y∗) be the maximizer of Υ2(γ,y). Adapting
the proof of [17, Lemma 3.2], we have that γ∗ij = αiαj for all i, j ∈ [q], from where it
easily follows that y∗ikjl = x∗ijx

∗
kl.

Following [17, Appendix B.1.2], we use the following notation in sections 11.2.1
and 11.2.2. For a vector z ∈ Rn we denote by zD the n × n diagonal matrix whose
i-entry on the diagonal equals zi for i ∈ n. For vectors zj ∈ Rmj , j = 1, . . . , t, we

denote by [z1, . . . , zt]
ᵀ the R

∑
j mj vector which is the concatenation of the vectors

z1, . . . , zt. In will denote the identity matrix with dimensions n×n and 0 will denote
the all-zeros matrix whose dimensions will be inferred from context. For matrices M1

and M2, M1 ⊗M2 will denote the Kronecker product of M1,M2, while M1 ⊕M2

denotes the direct sum of M1,M2, that is, the block matrix [ M1 0
0 M2

].

11.2.1. Proof of (74). The first moment EG [Zα
G ] is a sum over x (and α is

fixed). Note that if Bij = 0, then we may restrict the sum in (8) to those x which
satisfy xij = 0 without changing the sum’s value. Further, since xij = xji and
Bij = Bji, we may write the sum in (8) in terms of those xij with i ≤ j. Let

(77) P1 =
{

(i, j) ∈ [q]2
∣∣Bij > 0, i ≤ j

}
.

Henceforth x will denote {xij}(i,j)∈P1
. The observations above imply that the sum in

(8) can be written over the possible values of the vector x. Note that for ferromagnetic
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models we have that (i, i) ∈ P1 for every i ∈ [q] (cf. the discussion after Theorem 8).
We are left to account for the linear dependencies induced by the q constraints ai =∑
j xij . In matrix form, we can write those as

(78) A1x = α,

where A1 is a {0, 1}-matrix with dimension q × |P1|. For a ferromagnetic model, as
we shall display shortly, we have that the rank of A1 is q (this holds more generally
for matrices B which are irreducible and aperiodic; see, for example, footnote 7). To
get a full-dimensional representation of the space (78), we will eliminate q variables
from the vector x. This corresponds to picking q columns of A1 which induce a q× q
invertible submatrix of A1. We will denote this submatrix by A1,s. For ferromagnetic
models, we can choose the columns corresponding to the variables xii for i ∈ [q], in
which case A1,s is simply the identity matrix.7

Adapting the proof of [17, Lemma B.3] yields the following asymptotics for the
first moment EG [Zα

G ]. The details of the proof can be found in Appendix B.

Lemma 44. For a ferromagnetic model,8 it holds that

(79) lim
n→∞

(2πn)(q−1)/2EG [Zα
G ]

enΥ1(α,x∗)
=
(

2q−1
∏

(i,j)∈P1

x∗ij

)−1/2

Det(−Hf
1,x)−1/2,

where Hf
1,x is the Hessian of the full-dimensional representation of g1(x) evaluated at

x = x∗.

To expand the determinant in (79), we apply Lemma 42 and in particular Re-
mark 43. This yields

(80)
Det

(
−Hf

1,x

)
=

1

Det(A1,s)2
Det(−H1,x) Det

(
−A1H

−1
1,xAᵀ

1

)
= Det(−H1,x) Det

(
−A1H

−1
1,xAᵀ

1

)
,

where H1,x is the |P1| × |P1| diagonal matrix corresponding to the Hessian matrix
of g1(x) (when x is unconstrained), and in the second equality in (80) we used that
Det(A1,s) = 1 (by our choice of A1,s).

Since H1,x is diagonal, we obtain that

Det(−H1,x)−1 = 2q
∏

(i,j)∈P1

x∗ij ,

7In general, the q× q invertible submatrices A1,s can be characterized as follows. First, view A1

as the (unsigned) incidence matrix of a graph H with vertex set [q] and edge set P1, where vertex i
corresponds to the ith row of A1 and an edge labeled (i, j) corresponds to the column labeled (i, j)
in A1 (note that H has a self-loop on vertex i iff Bii > 0). Then A1,s specifies a subgraph H′ of
H with exactly q edges. It can be shown that A1,s is invertible if H′ is spanning (i.e., every vertex
in H′ has nonzero degree) and all of the connected components of H′ are unicyclic and nonbipartite
(i.e., every connected component of H′ has a unique cycle of odd length, where self-loops count as
cycles of length 1).

8We briefly comment on how the choice of the full-dimensional representation (i.e., the choice
of A1,s) has been used in the derivation of (79). Relative to footnote 7, if the invertible submatrix
A1,s corresponds to a subgraph with exactly c components which contain a nontrivial odd cycle
(i.e., an odd cycle of length ≥ 3), there is a correction factor 2−c in the r.h.s. of (80). The factor
comes from (mod 2) constraints imposed by considering the sum of constraints in (78) corresponding
to vertices in each such unicyclic component (in the derivation below, this factor cancels with the

factor |Det(A1,s)| coming from Det(−Hf
1,x)−1/2; it can be shown that |Det(A1,s)| = 2c). Note that

for our choice of A1,s, c equals zero, since the subgraph induced by the columns of A1,s consists of
q components, each of which is a single vertex with a self-loop.
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so (74) will follow from

(81) Det
(
−A1(H1,x)−1Aᵀ

1

)
= 2

∏
i∈[q]

αi
∏

i∈[q−1]

(
1 + µi

)
.

To show (81), it can be checked that

(82) −A1H
−1
1,xAᵀ = αD + Sx,

where αD is the q × q diagonal matrix whose ith diagonal entry is αi and Sx is the
q× q symmetric matrix whose (i, j) entry (when i ≤ j) is x∗ij whenever (i, j) ∈ P1 and
0 otherwise.

Observe that (αD)−1/2Sx(αD)−1/2 = M, where M is the matrix in Lemma 39.
From this, we obtain

Det(−A1H
−1
1,xAᵀ

1) =
( ∏
i∈[q]

αi

)
Det

(
Iq + M

)
.

Since the spectrum of M is {1, µ1, . . . , µq}, it follows that the spectrum of the matrix
Iq + M is {2, 1 + µ1, . . . , 1 + µq−1}. This yields (81), thus completing the proof of
(74).

11.2.2. Proof of (75). For the second moment, EG
[
(Zα

G)2
]

is a sum over γ,y
while α is fixed. Analogously to (77), let

(83) P2 =
{

(i, k, j, l) ∈ [q]4
∣∣BijBkl > 0, i ≤ j, k ≤ l

}
.

Henceforth, y will denote {yikjl}(i,k,j,l)∈P2
. The constraints in (11) can now be written

as

(84) A2

[
γ, y

]ᵀ
=
[
α, α, 0q2

]ᵀ
, where A2 =

[ A2,γ 0
−Iq2 A2,y

]
,

and A2,γ ,A2,y are {0, 1}-matrices with dimensions 2q×q2 and q2×|P2|, respectively.
It is easy to see that A2,y has full row rank ry = q2, while A2,γ has rank rγ = 2q− 1,
so that the rank of A2 is r2 = ry+rγ = q2 +2q−1. Thus, to specify a full-dimensional
representation of (84), we need to specify an r2× r2 invertible submatrix A2,s of A2.
It can be checked that any such submatrix A2,s of A2 must have the form

A2,s =
[ As

2,γ 0
−Iq2 As

2,y

]
,

where As
2,γ ,A

s
2,y are rγ ×rγ and ry×ry invertible submatrices of As

2,γ ,A
s
2,y, respec-

tively. Thus, we only need to specify the matrices As
2,γ ,A

s
2,y. We will choose As

2,γ

to be an arbitrary invertible submatrix of A2,γ ; since A2,γ is totally unimodular (it
corresponds to the incidence matrix of the complete bipartite graph with q vertices
on each side), we have Det(As

2,γ)2 = 1. For ferromagnetic models, we can choose
As

2,y to be the identity matrix using the columns corresponding to variables yikik
with i, k ∈ [q], so Det(As

2,y)2 = 1. It follows that Det(A2,s)
2 = 1. For future use

(with the scope of applying Lemma 42), let A2,f be the submatrix of A2 induced by
the rows corresponding to rows of A2,s.
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We have the following analogue of Lemma 44. The proof is given in Appendix B.

Lemma 45. For a ferromagnetic model, it holds that

lim
n→∞

(2πn)q−1EG [(Zα
G)2]

enΥ2(γ,y∗)
=
(

2q
2−1

∏
(i,k,j,l)∈P2

y∗ikjl

)−1/2

∆−(q−1)2/2Det(−Hf
2 )−1/2,

(85)

where Hf
2 is the Hessian of the full-dimensional representation of Υ2(γ,y)/∆ evalu-

ated at (γ,y) = (γ∗,y∗).

Denote by H2 the diagonal matrix corresponding to the Hessian matrix of
Υ2(γ,y)/∆ (when γ,y are unconstrained). Note that we may decompose H2 as

[
H2,γ 0
0 H2,y

], where H2,γ is the q2 × q2 diagonal matrix corresponding to the Hessian

matrix of (∆− 1)f2(γ)/∆ and H2,y is the |P2| × |P2| diagonal matrix corresponding
to the Hessian matrix of g2(y) (see (14) for the specification of the functions f2 and
g2).

We next apply Lemma 42 with the matrix (recall that αD is the q × q diagonal
matrix whose ith diagonal entry is αi and 0q2 is the q2 × q2 all-zeros matrix),

(86) T2 = αD ⊕αD ⊕ 0q2 ,

to obtain the following equality:

Det
(
−Hf

2

)
=
L(A2,A2,f ,T2)

Det(A2,s)2
Det(−H2) [ε] Det

(
εT2 −A2H

−1
2 Aᵀ

2

)
=

1

2
Det(−H2) [ε] Det

(
εT2 −A2H

−1
2 Aᵀ

2

)
,

where in the latter equality we used that Det(A2,s)
2 = 1 (which was proved earlier)

and L(A2,A2,f ,T2) = 1/2 (follows by [17, Proof of Lemma B.8]). We calculate

Det(−H2)−1 = Det(−H2,γ)−1 Det(−H2,y)−1

=
[
(−1)q

2
( ∆

∆− 1

)q2 ∏
i,k∈[q]

γ∗ik

][
2q

2 ∏
(i,k,j,l)∈P2

y∗ikjl

]
,

so that (75) will follow from

(87)
[ε]Det

(
εT2 −A2(H2)−1Aᵀ

2

)∏
i∈[q]

α2
i

∏
i,k∈[q]

γ∗ik

= (−1)q
2 4∆2q−1

(∆− 1)q2

∏
i∈[q−1]

(
1 + µi

)2 ∏
i,j∈[q−1]

(
1− (∆− 1)µiµj

)
.

We first write out the block structure of εT2 −A2(H2)−1Aᵀ
2 . First, we have the

following analogue of (82):

−A2,yH−1
2,yAᵀ

2,y = γD + Sy, A2,γγ
DAᵀ

2,γ =
[ αD Sγ

Sγ αD

]
,(88)
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where Sγ is the q × q matrix whose (i, j) entry is γ∗ij and Sy is the q2 × q2 matrix
whose ((i, k), (j, l)) entry is y∗ikjl. From

εT2 −A2(H2)−1Aᵀ
2

= εT2 +
[ A2,γ 0
−Iq2 A2,y

][ − ∆
∆−1γ

D 0

0 −H−1
2,y

][ Aᵀ
2,γ −Iq2

0 Aᵀ
2,y

]
=

∆

∆− 1

[ ε∆−1
∆ (αD ⊕αD)−A2,γγ

DAᵀ
2,γ A2,yγ

D

γDAᵀ
2,y −γD − ∆−1

∆ A2,yH−1
2,yAᵀ

2,y

]
we obtain that

(89)
[ε]Det

(
εT2 −A2(H2)−1Aᵀ

2

)∏
i∈[q]

α2
i

∏
i,k∈[q]

γ∗ik
= [ε]Det

(
H′2
)
,

where

H′2 =
∆

∆− 1

[ ε∆−1
∆ I2q −VVᵀ V

Vᵀ −∆−1
∆ W

]
,

and the matrices W,V are given by (recall that M is the matrix in Lemma 39 whose
eigenvalues are 1, µ1, . . . , µq−1)

W =
1

∆− 1
Iq2 −M⊗M, V = (αD ⊕αD)−1/2A2,γ (γD)1/2.

In light of (89), it suffices to compute Det(H′2). To do this, we proceed by taking
the Schur complement of the matrix W. It is easy to see that W is invertible, since
its spectrum is given by

t− 1, t− µ1, t− µ1, . . . , t− µq−1, t− µq−1,

t− µ2
1, t− µ1µ2, . . . , t− µ1µq−1, t− µ2µ1, . . . , t− µ2

q−1,

where t := 1/(∆− 1). We also have

(90) Det(W) = − (∆− 2)

(∆− 1)q2

∏
i∈[q−1]

(
1− (∆− 1)µi

)2 ∏
i,j∈[q−1]

(
1− (∆− 1)µiµj

)
.

Considering the Schur complement of the matrix W, we obtain

(91)
Det(H′2) = (−1)q

2
( ∆

∆− 1

)2q

Det
(
W
)

Det
(
ε

∆− 1

∆
I2q + Z

)
with Z =

∆

∆− 1
VW−1Vᵀ −VVᵀ.

To compute Det
(
ε∆−1

∆ I2q + Z
)
, we need to obtain a simpler form for Z. The

following lemma, which is proved at the end of this section, will allow for such a
simplication.

Lemma 46. It holds that VW =
(

1
∆−1I2q −M′)V, where M′ := M⊕M.
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It is standard to express the eigenvalues of 1
∆−1I2q−M′ in terms of the eigenvalues

of M and hence obtain that the former matrix is invertible (since the eigenvalues of
M other than 1 are less in absolute value than 1/(∆− 1)). Thus, Lemma 46 gives

Z =
[
− I2q +

∆

∆− 1

( 1

∆− 1
I2q −M′

)−1]
VVᵀ

=
(
I2q + M′)( 1

∆− 1
I2q −M′)−1

VVᵀ.(92)

By (91), Z is trivially symmetric. Using (92), we obtain the eigenvalues of Z.

Lemma 47. The spectrum of Z is given by

0, 2f(1), f(µ1), f(µ1), f(µ2), f(µ2), . . . , f(µq−1), f(µq−1),

where f(x) = (1 + x)( 1
∆−1 − x)−1.

Proof of Lemma 47. Let u1 = [
√
α,
√
α]ᵀ, u2 = [

√
α,−
√
α]ᵀ. Note that u1,u2

are linearly independent eigenvectors of M′ corresponding to the eigenvalue 1.

Using (88), we have that VVᵀ =
[ Iq S′γ
S′γ Iq

]
, where S′γ is the q×q matrix whose (i, j)

entry is
√
αiαj . It follows that u1 and u2 are eigenvectors of VVᵀ with eigenvalues 2

and 0, respectively, and hence u1 and u2 are eigenvectors of Z with eigenvalues 2f(1)
and 0, respectively.

Let u be an eigenvector of M′ corresponding to an eigenvalue µ 6= 1. Note that u
is perpendicular to both u1 and u2. It follows that VVᵀu = u, so that Zu = f(µ)u.
Thus, u is also an eigenvector of Z with eigenvalue f(µ).

To simplify the expressions, set r = (∆ − 1)/∆. The matrix εrI2q shifts the
eigenvalues of Z by εr. Thus, Lemma 47 yields

Det
(
εrI2q + Z

)
= εr

(
εr + 2f(1)

) ∏
i∈[q−1]

(
εr + f(µi)

)2
.

We have f(1), f(µi) 6= 0 for every i ∈ [q − 1], so that

[ε]Det
(
εrI2q + Z

)
= 2rf(1)

∏
i∈[q−1]

(
f(µi)

)2
(93)

= −4(∆− 1)2q

∆(∆− 2)

∏
i∈[q−1]

(
1 + µi

1− (∆− 1)µi

)2

.

Plugging (90) and (93) into (91), we obtain

[ε]Det(H′2) = (−1)q
2 4∆2q−1

(∆− 1)q2

∏
i,j∈[q−1]

(
1− (∆− 1)µiµj

) ∏
i∈[q−1]

(
1 + µi

)2
.

Using this and (89), we obtain (87) as wanted. We conclude by giving the deferred
proof of Lemma 46.

Proof of Lemma 46. For notational convenience, let N := M ⊗M. The lemma
clearly reduces to proving V N = M′V. Let D := V N, E := M′V.

The matrices D,E clearly have the same dimensions, since V has dimensions
2q × q2, N has dimensions q2 × q2, and M′ has dimensions 2q × 2q. It remains to
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check that the entries of D,E are equal. First, we give explicit expressions for the
entries of V,N. We have

Vt,(i,k) =


√

γ∗ik
αi

1{i = t}, 1 ≤ t ≤ q,√
γ∗ik
αk

1{k = t− q}, q + 1 ≤ t ≤ 2q,
N(i,k),(j,l) =

x∗ijx
∗
kl√

γ∗ikγ
∗
jl

.

We next consider the
(
i, (j, l)

)
entries of the matrices D,E. Assume first that i ≤ q.

We have

Di,(j,l) =
∑
i′,k

Vi,(i′,k)N(i′,k),(j,l) =
∑
i′,k

√
γ∗i′k
αi′

1{i′ = i}
x∗i′jx

∗
kl√

γ∗i′kγ
∗
jl

=
x∗ij√
αi
√
γ∗jl

∑
k

x∗kl =
αlx
∗
ij√

αi
√
γ∗jl

,

Ei,(j,l) =
∑
j′

M ′i,j′Vj′,(j,l) =
∑
j′

Mi,j′

√
γ∗jl
αj

1{j = j′} = Mi,j

√
γ∗jl
αj

=
x∗ij
√
γ∗jl

αj
√
αi

=
αlx
∗
ij√

αi
√
γ∗jl

.

An analogous calculation for q < i ≤ 2q yields that Di,(j,l) = Ei,(j,l) for every
i, j, l.

11.3. Bethe prediction for general models on random regular graphs.
In this section, we show how to extend Theorem 8 for general models on random
regular graphs as discussed in section 3.1. A more general result has been derived
in [13, Theorem 1.16] for sequences of graphs converging locally to (random) trees,
under the assumption of uniqueness of the Gibbs measure on the underlying tree. For
the special case of random ∆-regular graphs, we show how to extend Theorem 8 when
there is a unique semitranslation invariant Gibbs measure. Our proof has a different
perspective and yields a slightly simpler condition for random ∆-regular graphs.

Semitranslation invariant Gibbs measures on T∆ are Gibbs measures that are
invariant under any parity-preserving automorphisms of T∆ (cf. [6]). They can be
specified by a pair of probability vectors (α,β) for the even and odd, respectively,
vertices. Note that if there is a unique semitranslation invariant measure, then this
measure is also translation invariant. Hence, it corresponds to a fixpoint of the tree
recursions (6).

Theorem 48. Let B be a regular matrix which specifies a model such that for
all ∆-regular graphs ZG > 0. If there is a unique semitranslation invariant Gibbs
measure on T∆ and the corresponding fixpoint is Jacobian attractive, then

lim
n→∞

1

n
EG [logZG] = lim

n→∞

1

n
log EG [ZG],

where G is the uniform distribution on ∆-regular graphs with n vertices.

The first assumption in the theorem is mainly to avoid pathological cases where
logZG ≡ −∞ in which case the quantities are not well-defined. It is satisfied by many
classes of models, e.g., permissive models [13] such as the hard-core and antiferromag-
netic Potts model, or even nonpermissive such as q-colorings when q ≥ ∆ + 1.
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The proof of Theorem 48 is analogous to that of Theorem 8, once we establish
the analogue of Theorem 7 for general models. As we illustrated in Remark 13, this
is hopeless to achieve in general and we must thus use the uniqueness assumption
that Theorem 8 requires. Note that if there is a unique semitranslation invariant
measure (which is the assumption in Theorem 8), then this measure is also translation
invariant.

Proof of Theorem 48. Let α∗ be a dominant phase. By semitranslational unique-
ness we have that α∗ is unique. We next describe how to obtain the analogue of
Theorem 7 under the assumptions of Theorem 48. Let p = ∆/(∆ − 1). We show
that whenever there is a unique semitranslation Gibbs measure on T∆, it holds that
exp(2Ψ1(α∗)/∆) = ‖B‖p→∆.

From (16) and (21), we obtain

(94) exp(2Ψ1(α∗)/∆) = max
α

exp(2Ψ1(α)/∆) = max
R

RᵀBR

‖R‖2p
≤ max

R,C

RᵀBC

‖R‖p‖C‖p
.

Note that the last inequality is trivial; we just enlarged the maximization region we
consider. It is proved in [17] that the maximum of the r.h.s. is achieved at a semi-
translation invariant fixpoint. If there is a unique semitranslation invariant Gibbs
measure on T∆, this must be translation invariant and hence the maximum in the
r.h.s. of (94) must occur at R = C. We thus obtain that (94) is satisfied at equality.
The r.h.s. in (94) is equal to ‖B‖p→∆ [17, section 3.1], proving the desired claim.

By the same token, one has the bound

exp(2Ψ2(α∗)/∆) = max
α

exp(2Ψ2(α)/∆) ≤ ‖B⊗B‖p→∆,

and since ‖B ⊗ B‖p→∆ = ‖B‖2p→∆ [2, Proposition 10.3], we obtain that Ψ2(α∗) =
2Ψ1(α∗), as wanted.

Since the dominant phase α∗ corresponds to a Jacobian attractive fixpoint (by
assumption), it is also Hessian dominant (see Remark 15). With minor modifications
(see footnotes 7 and 8), the results of section 11.1 can be adapted to obtain a lower
bound on Zα

G as in Lemma 16. Thus the proof of Theorem 8 in section 7.1 extends
to the present setting as well.

Appendix A. Nonreconstruction for the ordered phases on the tree.
In this appendix, we give in detail the proof of the doubly exponential upper bound in

(56). This appendix is organized as follows. In Appendix A.1, we review broadcasting
processes on trees, the nonreconstruction property, and a concentration result from
[46]. In Appendix A.2, we review relevant connections between broadcasting processes
and Gibbs measures defined by fixpoints of the tree recursions (6), which will allow
us to apply the result of [46]. Finally, in Appendix A.3, we apply these results to the
ferromagnetic Potts model and obtain the bound in (56).

Let us fix some notation that will be used throughout this section. We will denote
by T = (V,E) the infinite (∆− 1)-ary tree. The root of T will be denoted by ρ. Also,
for an integer ` ≥ 0, T` will denote the subtree of T consisting of the first ` levels of T
and W` will denote the set of the leaves of T`. Further, for a configuration σ : V → [q],
we denote by σW`

the restriction of σ on W`.

A.1. Nonreconstruction in broadcasting processes on trees. Let q ≥ 2
be an integer and M = (Mij)i,j∈[q] be a q × q stochastic matrix (i.e., the entries
are nonnegative and the entries in each row have sum equal to 1). We will further



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2055

assume that M is irreducible and aperiodic, so that there exists a unique q-dimensional
probability vector π∗ = (π∗i )i∈[q] so that π∗M = π∗. Note that the entries of π∗ are
all positive. We will refer to π∗ as the stationary distribution of M. We will also
assume that M is reversible with respect to π∗, i.e., π∗iMij = π∗jMji for all i, j ∈ [q]
(every such matrix is similar to a symmetric matrix and thus has real eigenvalues).

Let π = (πi)i∈[q] be a q-dimensional probability vector with positive entries (note
that it may hold that π 6= π∗). The broadcasting process M on the tree T = (V,E)
with root ρ is a probability distribution ν on the set of assignments σ : V → [q] such
that

(95) ν(σ) = πσ(ρ)

∏
(u,v)∈E

Mσ(u),σ(v).

To generate σ with distribution ν, first pick randomly the spin of the root from the
distribution π and then broadcast the spin down the tree, where each edge of the tree
acts as a noisy channel. In particular, for an edge (u, v) of the tree where u is the
parent of v, conditioned on the spin σ(u), the spin σ(v) is picked randomly from the
distribution (Mσ(u),1, . . . ,Mσ(u),q).

We next define the nonreconstruction property, which roughly captures whether,
as we go deeper into the tree, the information about the spin of the root vanishes.
(For distributions µ1, µ2 defined on the same space Ω, we denote by dTV (µ1, µ2) the
total variation distance between µ1, µ2.)

Definition 49 (nonreconstruction). A broadcasting process M has the non-
reconstruction property on the tree T if

(96) lim
`→∞

max
i,j∈[q]

dTV
(
ν(σW`

= · | σρ = i), ν(σW`
= · | σρ = j)

)
= 0.

Nonreconstruction is often closely connected to the second largest eigenvalue of
M. We will use the following concentration result of [46], which can be interpreted
as quantifying the rate of convergence to 0, when the second largest eigenvalue of M
is small with respect to the branching factor of the tree.

Theorem 50 (see [46, Theorem 2.3]; see also [34, 35]). Consider a broadcasting
process M on the infinite (∆ − 1)-ary tree with no hard constraints (i.e., all entries
of M are positive), whose spin at the root is chosen according to some distribution π
with positive entries. Let λ be the second largest eigenvalue of M in absolute value.
Then, if M has nonreconstruction and (∆ − 1)λ2 < 1, there exist constants C > 0
and `0 ≥ 1 such that the following holds.

Let B` :=
{
η : W` → [q]

∣∣∣ ∥∥ν(σρ = · | σW`
= η) − π

∥∥
∞ ≥ exp(−C`)

}
. Then, for

all ` ≥ `0,
ν(σW`

∈ B`) ≤ exp(− exp(C`)).

We remark here that the restriction in Theorem 50 that M has no hard constraints
is not needed and, in fact, in [46], the analogous statement is proved for general
models M whose state space satisfies a general connectivity condition. Since we will
only apply the result of [46] to the ferromagnetic Potts model (which has no hard
constraints), such connectivity issues are not present in our setting and thus are out
of our scope. In particular, in the language/notation of [46], all colors c, c′ will be
trivially compatible in our setting and thus the measure µc(·) in [46, Theorem 2.3],
which conditions the broadcasting process in the space of configurations where the
“parent of the root” has color c, is identical to the unconditioned broadcasting process
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(denoted by ν in our setting). Further, [46, Theorem 2.3] is stated for the case where
π = π∗, i.e., when the distribution of the spin of the root ρ is chosen according to the
stationary distribution of M. We next display how to derive from this the slightly
more general version stated in Theorem 50.

In particular, suppose that Theorem 50 is true for some distribution π. Our goal
is to show that it also holds for some other distribution π′ (we assume that both
π and π′ have positive entries) for some constants C ′, `′0 > 0. We will denote by ν
the broadcasting process when the initial distribution is π and by ν′ when the initial
distribution is π′. We will also use B` and B′` to denote the set of “bad” configurations
on W` for the two processes ν, ν′, respectively (see Theorem 50). Let η /∈ B` and, for
i ∈ [q], set zi(η) := ν(σρ = i | σW`

= η)/ν(σρ = i). Denote also by z′i(η) the respective
quantity for the measure ν′. Since both processes have the same broadcasting matrix,
observe that for any colors i, j ∈ [q] it holds that

zi(η)

zj(η)
=
ν(σW`

= η | σρ = i)

ν(σW`
= η | σρ = j)

=
ν′(σW`

= η | σρ = i)

ν′(σW`
= η | σρ = j)

=
z′i(η)

z′j(η)
.

Since η /∈ B`, the ratio zi(η)/zj(η) is bounded by 1±O(exp(−C`)) and thus the same
is true for z′i(η)/z′j(η). This gives that η /∈ B′` (for any constant 0 < C ′ < C and
sufficiently large `′0), i.e., B′` ⊆ B`. To obtain that ν′(σW`

∈ B′`) ≤ exp(− exp(C ′`))
for all sufficiently large `, observe that for any η : W` → [q] and i ∈ [q] it holds that
ν(σW`

= η | σρ = i) = ν′(σW`
= η | σρ = i), so that

ν′(σW`
= η)

ν(σW`
= η)

=

∑
i∈[q] π

′
i ν
′(σW`

= η | σρ = i)∑
i∈[q] πiν(σW`

= η | σρ = i)
≤ max

i∈[q]

π′i
πi
.

Thus the desired bound on ν′(σW`
∈ B′`) follows from the bound on ν(σW`

∈ B`).

A.2. Broadcasting processes and fixpoints of the tree recursions. In
light of Theorem 50, our strategy for proving the bound in (56) will be to show that the
measure νi (corresponding to the ith ordered phase in the Potts model) corresponds to
a broadcasting process on the (∆−1)-ary tree (and then simply verify the assumptions
of the theorem). The purpose of this section is to make this correspondence explicit.
In fact, we will work out the relevant connections for general spin models.

Let B be the interaction matrix of a q-spin system. As in section 1.2, we assume
that B is symmetric, irreducible, and aperiodic. For an integer ∆ ≥ 3, recall that a
fixpoint of the tree recursions is a vector R = (R1, . . . , Rq) with positive entries such
that

(6) Ri ∝
(∑

j

BijRj

)∆−1

∀i ∈ [q].

For the purpose of this section, we assume that the normalization in (6) is such that∑
iRi = 1, i.e., R is a q-dimensional probability vector.

We next define the broadcasting process corresponding to the fixpoint R by first
specifying an appropriate broadcasting matrix. In particular, let M be the q × q
matrix whose (i, j)-entry is given by

(97) Mij =
BijRj∑
j′ Bij′Rj′

for i, j ∈ [q].

We remark here that the normalization of the Ri’s in (6) is not important for defining
the matrix M (the entries remain unchanged if we scale the Ri’s); we normalize
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R to be a probability vector so that we can use it as the initial distribution π of
the spin of the root in the broadcasting process. In particular, in the notation of
Appendix A.1, we will set π = R. This completes the specification of the broadcasting
process (cf. (95)). Note that M is stochastic, irreducible, and aperiodic. Further,
its stationary distribution π∗ is given by the probability vector whose entries satisfy
π∗i ∝ Ri

∑
j BijRj for all i ∈ [q]. Finally, we have that M is reversible with respect

to π∗.
In the rest of this section, we state several results that eventually will allow

us to apply Theorem 50. First, we connect the spectral properties of M with the
attractiveness of the fixpoint R of the tree recursions (see section 3.2 for the relevant
definitions).

Lemma 51. Let R be a Jacobian attractive fixpoint of the tree recursions and
let M be the broadcasting matrix corresponding to R. Let λ be the second largest
eigenvalue of M in absolute value. Then (∆− 1)λ < 1.

Proof. Recall from section 6 (see also the beginning of section 8) that R is a
Jacobian attractive fixpoint of the tree recursions if every eigenvalue x 6= 1 of the
matrix

M̃ =

{
BijRiRj√
αiαj

}q
i,j=1

with αi = Ri
∑
j

BijRj for i ∈ [q]

satisfies (∆ − 1)|x| < 1. The result will thus follow by showing that the eigenvalues

of M are identical to those of M̃.
We will show that M and M̃ are similar matrices, thus showing the result. Let

A be the diagonal matrix whose ith diagonal entry is given by
√
αi. Note that

A is invertible (since the Ri’s are positive). By a direct calculation, it also holds

that AMA−1 = M̃, thus proving that M and M̃ are similar. This concludes the
proof.

We now focus on connecting the Gibbs distribution of the spin model with in-
teraction matrix B and the broadcasting process M. As before, let T be the infinite
(∆ − 1)-ary tree with root ρ and denote by T` the subtree of T consisting of the
first ` levels of T and by W` the set of leaves of T`. We will denote by µ` the Gibbs
distribution on T` corresponding to the spin system with interaction matrix B. We
will use σ to denote configurations on T` and by σW`

the restriction of σ to the leaves
W`.

To connect µ` to the broadcasting process M on T , we will need just a few more
definitions. Let QW`

(·) be the following product distribution on configurations on the
leaves W`. For a configuration η : W` → [q],

(98) QW`
(η) :=

∏
i∈[q]

(Ri)
|η−1(i)∩W`|.

Finally, consider the following distribution ν̂`, which is also defined on configurations
on the leaves W`, given by

(99) ν̂`(η) ∝ µ`(σW`
= η)QW`

(η) ∀η : W` → [q].

It is instructive at this point to spell out the interplay of these definitions with the
bound in (56). Namely, the product distribution QW`

(η) is the generalization of the
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product distribution QiW (η) (defined just after (41)) and ν̂`(·) is the generalization of
the distribution νi(·) (defined in (54)).

We are now ready to state the desired connection.

Lemma 52. Let B,R,M be as above. Let ν denote the broadcasting measure M
on T (defined in (95)) and, for integer ` ≥ 0, let µ` be the Gibbs distribution on
T` corresponding to the spin system with interaction matrix B, and let ν̂`(·) be the
distribution in (99) corresponding to the fixpoint R of the tree recursions.

Then, for all ` ≥ 0, for all η : W` → [q] and i ∈ [q], it holds that

ν̂`(η) = ν(σW`
= η) and µ`(σρ = i | σW`

= η) = ν(σρ = i | σW`
= η).

Proof. Let d := ∆ − 1. The proof is by induction on `. For ` = 0, the lemma is
trivial. Let us assume that the lemma holds for `, we will prove it for `+1. For a vertex
v ∈W` denote by v1, . . . , vd the children of v in T (note that v1, . . . , vd ∈W`+1).

We prove first that ν̂`+1(η) = ν(σW`+1
= η) for all η : W`+1 → [q]. By definition

of the broadcasting process, conditioned on the configuration τ on W`, the spins of
the vertices in W`+1 are independent. We thus have that, for all η : W`+1 → [q],

ν(σW`+1
= η) =

∑
τ :W`→[q]

ν(σW`
= τ)

∏
v∈W`

d∏
j=1

Mτv,ηvj
.

Using the induction hypothesis we have that ν(σW`
= τ) = ν̂`(τ) ∝ µ`(σW`

= τ)Q`(τ)
for all τ : W` → [q] and, substituting the value of the product measure QW`

(τ), we
obtain

(100) ν(σW`+1
= η) ∝

∑
τ :W`→[q]

µ`(σW`
= τ)

∏
v∈W`

Rτv

d∏
j=1

Mτv,ηvj
∀η : W`+1 → [q].

We also have that µ`+1(σW`+1
= η) ∝

∑
τ :W`→[q] µ`(σW`

= τ)
∏
v∈W`

∏d
j=1Bτv,ηvj

for all η : W`+1 → [q], so substituting the value of the product measure QW`+1
(η) we

obtain

(101) ν̂`+1(η) ∝
∑

τ :W`→[q]

µ`(σW`
= τ)

∏
v∈W`

d∏
j=1

RηvjBτv,ηvj ∀η : W`+1 → [q].

To complete the induction step, it thus remains to show that the r.h.s. in (100) and
(101) are proportional by a factor that does not depend on η. This will follow from

(102) RiMi,j1 · · ·Mi,jd ∝ (Rj1Bi,j1) · · · (RjdBi,jd) ∀i, j1, . . . , jd ∈ [q].

(Set i = τv, j1 = ηv1
, . . . , jd = ηvd and multiply over v ∈W`.) To see (102), note that

by (97), we have that, for every i, j ∈ [q],

(97) Mij =
BijRj∑
j′ Bij′Rj′

,

so, to prove (102), it suffices to show that the quantities Ri(∑
j′∈[q] Bij′Rj′

)d do not

depend on i ∈ [q]. This is a consequence of the fact that R is a fixpoint of the tree
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recursions, i.e., R1, . . . , Rq satisfy (6). This completes the induction step for the first
equality in the lemma.

We next show the induction step for the second equality in the lemma. Fix
η : W`+1 → [q]. Denote by ρ1, . . . , ρd the children of the root ρ. For k ∈ [d], denote
by W`+1,k the set of vertices in W`+1 which are in the subtree of T rooted at ρk and
by ηk the restriction of η on W`+1,k. By the induction hypothesis, we have, for every
k ∈ [d] and i ∈ [q],

Xk(i) := µ`(σρk = i | σW`+1,k
= ηk) = ν(σρ = i | σW`

= ηk).

Note that ν(σW`+1,k
= ηk | σρk = i) = ν(σW`

= ηk | σρ = i) from where we obtain
that

ν(σρk = i | σW`+1,k
= ηk)

ν(σρk = i)
∝ ν(σρ = i | σW`

= ηk)

ν(σρ = i)
=
Xk(i)

Ri
∀i ∈ [q].

(Note that the normalizing factor depends on ηk.)
Using that T`+1 is a tree, we then calculate that

(103) µ`+1(σρ = i | σW`+1
= η) ∝

∏
k∈[d]

(∑
j∈[q]

BijXk(j)

)
for i ∈ [q]

and (see [46, Lemma 3.1] for a thorough derivation)

(104) ν(σρ = i | σW`+1
= η) ∝ Ri

∏
k∈[d]

(∑
j∈[q]

Mij
Xk(j)

Rj

)
for i ∈ [q].

By an argument completely analogous to the one we used for (100) and (101) (i.e.,
using (97) and the fact that R is a fixpoint of the tree recursions (6)), we obtain that
the r.h.s. in (103) and (104) are proportional by a factor that does not depend on i,
thus completing the induction step for the second equality in the lemma.

This concludes the proof of Lemma 52.

A.3. Application to the ferromagnetic Potts model — proof of (56).
We are now able to apply the results of Appendices A.1 and A.2 to the ferromagnetic
Potts model and prove the bound (56) for the ordered phases on the tree.

Recall that the interaction matrix B of the q-state ferromagnetic Potts model has
diagonal entries equal to B > 1 and off-diagonal entries equal to 1. An ordered phase
corresponds to a fixpoint R = (R1, . . . , Rq) of the tree recursions. Thus, the Ri’s
satisfy

(105) Ri ∝
(
BiiRi +

∑
j 6=i

Rj

)∆−1

∀i ∈ [q].

Recall that there are q ordered phases which are symmetric, each corresponding to
a color i ∈ [q]. Without loss of generality, we will focus on the ordered phase cor-
responding to the color i = 1. As we showed in section 8, the solution of (105)
corresponding to the ordered phase i = 1 is given by the vector R which satisfies
(105), R1 > R2 = · · · = Rq, and R1/Rq is maximum (see Remark 19). Such a solu-
tion exists in the nonuniqueness region, i.e., when B > Bu. The broadcasting matrix
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M corresponding to the ordered phase i = 1 is given by (97):
(106)

M11 =
BR1

BR1 + (q − 1)Rq
, M1j =

Rq
BR1 + (q − 1)Rq

for j 6= 1,

Mii =
BRq

R1 + (q − 2 +B)Rq
for i 6= 1, Mij =

Rq
R1 + (q − 2 +B)Rq

for i 6= 1, i 6= j.

We need the following lemma, which can be inferred from [35, Proof of Theorem 1.4].
For completeness, we give the proof.

Lemma 53. Let ∆ ≥ 3 be an integer and B > Bu. Then, the broadcasting process
M defined by (106) is nonreconstructible on the (∆− 1)-ary tree.

Proof. Let i, j ∈ [q] be two arbitrary colors with i 6= j and consider two copies
X,Y of the broadcasting process on the (∆ − 1)-ary tree where the spins of the
root ρ are conditioned to be i and j, respectively. To show that the total variation
distance between the distributions ν(σW`

= · | σρ = i) and ν(σW`
= · | σρ = j)

goes to 0 as ` → ∞, it suffices to couple X,Y so that the expected number of
disagreements, i.e., vertices in W` whose spins are different, goes to 0 as ` → ∞. In
turn, it suffices to couple one step of the broadcasting process so that the expected
number of disagreements is bounded by some constant κ < 1/(∆−1), since this yields
that the expected number of disagreements at level ` decays exponentially with `, at
least as fast as ((∆− 1)κ)`.

In particular, let (u, v) be an arbitrary edge in the tree, with u being the parent
of v. By the coupling lemma, conditioned on the spin of u in X and Y , we can couple
the spins of v in X and Y so that the probability that they are different is bounded
by κ, where

κ := max
i,j∈[q]

dTV
(
ν(σv = · | σu = i), ν(σv = · | σu = j)

)
= max

i,j

1

2

∑
k∈[q]

|Mik −Mjk|.

In the following, we justify that κ < 1/(∆ − 1). We will see that, in the case of
the ferromagnetic Potts model, κ is related to the eigenvalues of the Jacobian matrix
of the tree recursions (evaluated at the fixpoint), which we have already studied in
section 8. First, we find a simpler expression for κ. Consider colors i, j 6= 1. Then

1

2

∑
k∈[q]

|Mik −Mjk| = Mii −Mij =
(B − 1)Rq

R1 + (q − 2 +B)Rq
= λ1,

where λ1 is as in (39). Consider now the case that i = 1 and j 6= 1. Using that B > 1
and R1 > Rq, we have M11 > Mj1 and M1k < Mjk for k 6= 1. It follows that

1

2

∑
k∈[q]

|M1k −Mjk| = M11 −Mj1 =
BR1

BR1 + (q − 1)Rq
− Rq
R1 + (q − 2 +B)Rq

= λ2,

where λ2 is as in (39). In the proof of Lemma 26, we showed that λ1, λ2 < 1/(∆− 1)
for all B > Bu, which shows that κ < 1/(∆ − 1), thus completing the proof of the
lemma.

We conclude this appendix by giving the proof of (56).

Proof of (56). Recall that we only need to consider the case where J consists
of a single (∆ − 1)-ary tree of height ` =

⌊
ψ log∆−1 n

⌋
. Using the second equality
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in Lemma 52, we have that the set of “bad” configurations Bi defined in (52) is a
subset of the set B` defined in Theorem 50 (for all 0 < θ < Cψ

3 ln(∆−1) , it holds that

n−3θ > exp(−C`)). Further, using Lemmas 51 and 53, the assumptions of Theorem 50
are all satisfied for the broadcasting process M defined by (106). As we observed just
after (99), ν̂`(·) is identical to the distribution νi(·) (defined in (54)). Thus, the
conclusion of Theorem 50 and the first equality in Lemma 52 yield

(56) νi(σW ∈ Bi) ≤ exp(− exp(C`)),

as wanted.

Appendix B. Moment asymptotics—Proofs of Lemmas 44 and 45. In
this appendix, we give the proofs of Lemmas 44 and 45, which express the asymptotics
of the moments in terms of certain determinants. The proofs of these lemmas are
similar and closely follow [17, Lemma B.3].

Proof of Lemma 44. We have already seen that the ferromagnetism of the model
implies a full-dimensional representation of x which consists of the variables xij with
(i, j) ∈ P ∗1 , where P ∗1 = P1\

{
(i, i) | i ∈ [q]

}
. For (i, j) /∈ P ∗1 , we will still use

xij as shorthand for the appropriate linear combination of the variables inside the
full-dimensional representation.

Recall that

(8) EG [Zα
G ] =

(
n

α1n, . . . , αqn

)∑
x

∏
i

(
∆αin

∆xi1n, . . . ,∆xiqn

)

×
[∏

i 6=j(∆xijn)!
]1/2∏

i(∆xiin− 1)!!

(∆n− 1)!!

∏
i,j

B
∆xijn/2
ij

 .

Note that the range of x in the summation is over those vectors x such that, for
each i ∈ [q], ∆xiin = 2eiin is an even integer, which yields the constraint that∑
j 6=i ∆xijn ≡ ∆αin(mod 2). Since ∆n is even and

∑
i αi = 1, only q − 1 of these

constraints are linearly independent (mod 2).
Since α is a dominant phase, we have αi > 0 for all i ∈ [q] (from the last part

of Lemma 11). Also, for the maximizer x∗ of g1(x), it holds that x∗ij > 0 for all
(i, j) ∈ P1 (see (64)). Pick δ sufficiently small such that

‖x− x∗‖2 ≤ δ implies xij > 0 ∀(i, j) ∈ P1.

Since g1(x) has the unique global maximum x∗, standard compactness arguments
imply that there exists ε(δ) > 0 such that ‖x− x∗‖2 ≥ δ implies g(x∗) − g(x) ≥ ε.
It follows that the contribution of terms with ‖x− x∗‖2 ≥ δ to EG [Zα

G ] is exponen-
tially small and may be ignored. Hence we may restrict our attention to x satisfying
‖x− x∗‖2 < δ.

We now approximate the terms in (8) with ‖x− x∗‖2 < δ using Stirling’s ap-
proximation. The only difference with the asymptotics in section 4 is that now the
relative error of the approximation will be asymptotically O

(
n−1

)
. In particular, we

will use the following asymptotics for factorials (which are a refinement of (12)). For
any constant c > 0, it holds that

(107)
(cn)! =

(
1 +O

(
n−1

))√
2πcn exp(cn lnn+ cn ln c− cn),

(cn− 1)!! =
(

1 +O
(
n−1

))√
2 exp

(cn
2

lnn+
cn

2
ln c− cn

2

)
.
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Using these asymptotics to expand the terms in (8) (together with
∑
j xij = αi and∑

i αi = 1), we obtain

(108)
(2πn)(q−1)/2EG [Zα

G ]

enΥ1(α,x∗)
=
(

1 +O
(
n−1

))
2(q−1)/2

×
∑
x

(√
2π∆n

)q( ∏
(i,j)∈P1

1√
2π∆nxij

)
en∆

(
g1(x)−g1(x∗)

)
.

In the l.h.s., the factor (2πn)(q−1)/2 comes from the expansion of
(

n
α1n,...,αqn

)
; in the

r.h.s., the factor
(√

2π∆n
)q

comes from the expansion of (∆αin)! for i ∈ [q], the

factor 1/
√

2π∆nxij comes from the expansion of (∆xijn)! for (i, j) ∈ P1, and the

factor 2(q−1)/2 comes from the expansion of (∆n− 1)!! and (∆xiin− 1)!! for i ∈ [q].
We are now ready to compute

L := lim
n→∞

(2πn)(q−1)/2EG [Zα
G ]

enΥ1(α,x∗)
.

Since x∗ is a critical point of g1(x), for all sufficiently small δ > 0, we have the
expansion

g1(x)− g1(x∗) =
1

2
(x− x∗)ᵀH(x− x∗) +O(δ3),

where H = Hf
1,x is the Hessian of the full-dimensional representation of g1(x) eval-

uated at x = x∗ (the matrix H has dimension (|P1| − q) × (|P1| − q)). Note that g1

is a strictly concave function, so H is negative definite. Using standard techniques of
rewriting sums as integrals and the dominated convergence theorem (see [28, section
9.4]), we obtain

(109) lim
n→∞

∑
x

(√
2π∆n

)q( ∏
(i,j)∈P1

1√
2π∆nxij

)
en∆

(
g1(x)−g1(x∗)

)

=

(√
∆
)|P1|−q

2q−1
(∏

(i,j)∈P1
x∗ij
)1/2( 1

(
√

2π)|P1|−q

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(∆

2
xᵀ Hx

)
dx

)
.

Note that in the r.h.s. of (109), the factor 1/2q−1 comes from the q − 1 constraints
(mod 2) restricting the range of x (discussed just after the expression (8) for EG [Zα

G ]
in the beginning of the proof).

Plugging into (109) the value of the Gaussian integral and substituting back into
(108) yields that

L =
(

2q−1
∏

(i,j)∈P1

x∗ij

)−1/2(√
∆
)|P1|−q

Det(−∆H)−1/2

=
(

2q−1
∏

(i,j)∈P1

x∗ij

)−1/2

Det(−H)−1/2,

as wanted. This concludes the proof of Lemma 44.

Proof of Lemma 45. We proceed analogously to the proof of Lemma 44. In par-
ticular, we will assume a full-dimensional representation of (γ,y) (see the beginning
of section 11.2.2 for details on the choice of the representation). Note that γ,y have
(q − 1)2 and |P2| − q2 variables, respectively.
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Recall that

(10) EG [(Zα
G)2] =

∑
γ

(
n

γ11n, . . . , γqqn

)∑
y

∏
i,k

(
∆γikn

∆yik11n, . . . ,∆yikqqn

)

×
[∏

(i,k)6=(j,l)(∆yikjln)!
]1/2∏

i,k(∆yikikn− 1)!!

(∆n− 1)!!

∏
i,j,k,l

(
BijBkl

)∆yikjln/2

 .

We have that γ∗ik > 0 for all i, k ∈ [q] and y∗ikjl > 0 for (i, k, j, l) ∈ P2 (see the
paragraph following Remark 43). Pick δ sufficiently small such that

‖(γ,y)− (γ∗,y∗)‖2 ≤ δ implies γik > 0 for i, k ∈ [q] & yikjl > 0 for (i, k, j, l) ∈ P2.

Using that Υ2(γ,y) is maximized (uniquely) at (γ,y) = (γ∗,y∗), the same line of
arguments as in the proof of Lemma 44 yields

EG [(Zα
G)2]

enΥ2(γ∗,y∗)
=
(

1 +O
(
n−1

))∑
γ,y

(
√

2πn)2(q2−1)/2∆q2/2

( ∏
(i,k,j,l)∈P2

1√
2π∆yikjln

)
en
(

Υ2(γ,y)−Υ2(γ∗,y∗)
) .

In the r.h.s., the factor
√

2πn comes from the expansion of n!, the factor 2(q2−1)/2

comes from the expansion of (∆n − 1)!! and (∆yikikn − 1)!! for i, k ∈ [q], the factor

∆q2/2 from the expansion of (∆γikn)! for i, k ∈ [q], and the factor 1/
√

2π∆yikjln from
the expansion of (∆yikjln)! for (i, k, j, l) ∈ P2.

We now compute

L = lim
n→∞

(2πn)(q−1)EG [(Zα
G)2]

enΥ2(γ∗,y∗)
.

Since γ∗,y∗ is a critical point of Υ2(γ,y), for all sufficiently small δ > 0, we have the
expansion

Υ2(γ,y)−Υ2(γ∗,y∗) =
∆

2

(
[γ,y]− [γ∗,y∗]

)ᵀ
H
(
[γ,y]− [γ∗,y∗]

)
+O(δ3),

where H = Hf
2 is the Hessian matrix of Υ2 evaluated at (γ∗,y∗) scaled by 1/∆. Now,

we may proceed analogously to the proof of Lemma 44 and obtain

L =
(

2q
2−1

∏
(i,k,j,l)∈P2

y∗ikjl

)−1/2

(
√

∆)|P2|−q2

( 1√
2π

)|P2|−2q+1
∫ ∞
−∞
· · ·
∫ ∞
−∞

exp
(∆

2
[γ,y]ᵀH[γ,y]

)
dydγ,

=
(

2q
2−1

∏
(i,k,j,l)∈P2

y∗ikjl

)−1/2

∆−(q−1)2/2 Det(−H)−1/2,

where in the last equality we substituted the value of the Gaussian integral.
This concludes the proof of Lemma 45.
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