
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

CONVERGENCE OF MCMC AND LOOPY BP IN THE TREE
UNIQUENESS REGION FOR THE HARD-CORE MODEL∗

CHARILAOS EFTHYMIOU†, THOMAS P. HAYES‡ , DANIEL ŠTEFANKOVIČ§ , ERIC

VIGODA¶, AND YITONG YIN‖

Abstract. We study the hard-core (gas) model defined on independent sets of an input graph
where the independent sets are weighted by a parameter (aka fugacity) λ > 0. For constant Δ, the
previous work of Weitz [Proceedings of STOC, 2006, pp. 140–149] established an FPTAS for the
partition function for graphs of maximum degree Δ when λ < λc(Δ). Sly [Proceedings of FOCS,
2010, pp. 287–296] showed that there is no FPRAS, unless NP=RP, when λ > λc(Δ). The threshold
λc(Δ) is the critical point for the statistical physics phase transition for uniqueness/nonuniqueness
on the infinite Δ-regular tree. The running time of Weitz’s algorithm is exponential in logΔ. Here
we present an FPRAS for the partition function whose running time is O∗(n2). We analyze the
simple single-site Markov chain known as the Glauber dynamics for sampling from the associated
Gibbs distribution. We prove there exists a constant Δ0 such that for all graphs with maximum
degree Δ ≥ Δ0 and girth ≥ 7 (i.e., no cycles of length ≤ 6), the mixing time of the Glauber
dynamics is O(n logn) when λ < λc(Δ). Our work complements that of Weitz, which applies for
small constant Δ, whereas our work applies for all Δ at least a sufficiently large constant Δ0. (This
includes Δ depending on n = |V |.) Our proof utilizes loopy belief propagation (BP) which is a widely
used algorithm for inference in graphical models. A novel aspect of our work is using the principal
eigenvector for the BP operator to design a distance function which contracts in expectation for pairs
of states that behave like the BP fixed point. We also prove that the Glauber dynamics behaves
locally like loopy BP. As a byproduct we obtain that the Glauber dynamics, after a short burn-in
period, converges close to the BP fixed point, and this implies that the fixed point of loopy BP is a
close approximation to the Gibbs distribution. Using these connections we establish that loopy BP
quickly converges to the Gibbs distribution when the girth ≥ 6 and λ < λc(Δ).

Key words. Gibbs sampling, hard-core model, Markov chain Monte Carlo, rapid mixing, loopy
belief propagation

1. Introduction.

1.1. Background. The hard-core gas model is a natural combinatorial prob-
lem that has played an important role in the design of new approximate counting
algorithms and for understanding computational connections to statistical physics

http://www.siam.org/journals/sicomp/48-2/M112714.html
mailto:efthymiou@gmail.com
mailto:hayes@cs.unm.edu
mailto:stefanko@cs.rochester.edu
mailto:stefanko@cs.rochester.edu
mailto:ericvigoda@gmail.com
mailto:ericvigoda@gmail.com
mailto:yinyt@nju.edu.cn
mailto:yinyt@nju.edu.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

582

phase transitions. For a graph G = (V,E) and a fugacity λ > 0, the hard-core
model is defined on the set Ω of independent sets of G, where σ ∈ Ω has weight
w(σ) = λ|σ|. The equilibrium state of the system is described by the Gibbs distribu-
tion μ in which an independent set σ has probability μ(σ) = w(σ)/Z. The partition
function Z =

∑
σ∈Ω w(σ).

We study the closely related problems of efficiently approximating the partition
function and approximate sampling from the Gibbs distribution. These problems are
important for Bayesian inference in graphical models where the Gibbs distribution
corresponds to the posterior or likelihood distributions. Common approaches used in
practice are Markov chain Monte Carlo (MCMC) algorithms, e.g., see [4, 25, 40], and
message passing algorithms, such as loopy belief propagation (BP), e.g., see [27], and
one of the aims of this paper is to prove fast convergence of these algorithms.

Exact computation of the partition function is #P-complete [38], even for re-
stricted input classes [9], and hence the focus is on designing an efficient approxima-
tion scheme, either a deterministic FPTAS or randomized FPRAS. The existence of
an FPRAS for the partition function is polynomial-time interreducible to approximate
sampling from the Gibbs distribution.

A beautiful connection has been established: there is a computational phase tran-
sition on graphs of maximum degreeΔ that coincides with the statistical physics phase
transition on Δ-regular trees. The critical point for both of these phase transitions
is λc(Δ) := (Δ − 1)Δ−1/(Δ − 2)Δ. In statistical physics, λc(Δ) is the critical point
for the uniqueness/nonuniqueness phase transition on the infinite Δ-regular tree TΔ
[18]. (Roughly speaking, this is the phase transition for the decay versus persistence
of the influence of the leaves on the root.) For some basic intuition about the value
of this critical point, note its asymptotics λc(Δ) ∼ e/(Δ− 2) and the following basic
property: λc(Δ) > 1 for Δ ≤ 5 and λc(Δ) < 1 for Δ ≥ 6.

Weitz [42] showed, for all constant Δ, an FPTAS for the partition function for all
graphs of maximum degree Δ when λ < λc(Δ). To properly contrast the performance
of our algorithm with Weitz’s algorithm let us state his result more precisely: for all
δ > 0, there exists constant C = C(δ), for all Δ, all G = (V,E) with maximum degree
Δ, all λ < (1− δ)λc(Δ), all ε > 0, there is a deterministic algorithm to approximate
Z within a factor (1± ε) with running time O((n/ε)C logΔ). An important limitation
of Weitz’s result is the exponential dependence on logΔ in the running time. Hence
it is polynomial-time only for constant Δ, and even in this case the running time is
unsatisfying.

On the other side, Sly [34] (extended in [6, 7, 35, 8]) has established that, un-
less NP = RP , for all Δ ≥ 3, there exists γ > 0, for all λ > λc(Δ), there is no
polynomial-time algorithm for triangle-free Δ-regular graphs to approximate the par-
tition function within a factor 2γn.

Weitz’s algorithm was extremely influential: many works have built upon his
algorithmic approach to establish efficient algorithms for a variety of problems (e.g.,
[29, 32, 19, 20, 33, 39, 21, 31, 22]). One of its key conceptual contributions was showing
how decay of correlations properties on aΔ-regular tree are connected to the existence
of an efficient algorithm for graphs of maximum degree Δ. We believe our paper
enhances this insight by connecting these same decay of correlations properties on a
Δ-regular tree to the analysis of widely used MCMC and message passing algorithms.

1.2. Main results. As mentioned briefly earlier on, there are two widely used
approaches for the associated approximate counting/sampling problems, namely,
MCMC and message passing approaches. A popular MCMC algorithm is the simple
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single-site update Markov chain known as the Glauber dynamics. The Glauber dy-
namics is a Markov chain (Xt) on Ω whose transitions Xt → Xt+1 are defined by the
following process:

1. Choose v uniformly at random from V .
2. If N(v) ∩Xt = ∅, then let

Xt+1 =

{
Xt ∪ {v} with probability λ/(1 + λ),

Xt \ {v} with probability 1/(1 + λ).

3. If N(v) ∩Xt 
= ∅, then let Xt+1 = Xt.
The mixing time Tmix is the number of steps to guarantee that the chain is within

a specified (total) variation distance of the stationary distribution. In other words,
for ε > 0,

Tmix(ε) = min{t : ∀X0, dTV(Xt, μ) ≤ ε},
where dTV() is the variation distance. We use Tmix = Tmix(1/4) to refer to the mixing
time for ε = 1/4.

It is natural to conjecture that the Glauber dynamics has mixing time O(n log n)
for all λ < λc(Δ). Indeed, Weitz’s work implies rapid mixing for λ < λc(Δ) for
amenable graphs. On the other hand Mossel, Weitz, and Wormald in [26] show slow
mixing when λ > λc(Δ) on random regular bipartite graphs. The previously best
known results for MCMC algorithms are far from reaching the critical point. It
was known that the mixing time of the Glauber dynamics (and other simple, local
Markov chains) is O(n log n) when λ < 2/(Δ − 2) for any graph with maximum
degree Δ [5, 23, 40]. In addition, [13] analyzed Δ-regular graphs with Δ = Ω(log n)
and presented a polynomial-time simulated annealing algorithm when λ < λc(Δ).

Here we prove O(n logn) mixing time up to the critical point when the maximum
degree is at least a sufficiently large constant Δ0, and there are no cycles of length
≤ 6 (i.e., girth ≥ 7).

Theorem 1. For all δ > 0, there exists Δ0 = Δ0(δ) and C = C(δ), and for all
graphs G = (V,E) of maximum degree Δ ≥ Δ0 and girth ≥ 7, all λ < (1 − δ)λc(Δ),
all ε > 0, the mixing time of the Glauber dynamics satisfies

Tmix(ε) ≤ Cn log(n/ε).

Note that Δ and λ can be a function of n = |V |. The above sampling result yields
(via [36, 15]) an FPRAS for estimating the partition function Z with running time
O∗(n2), where O∗() hides multiplicative logn factors. The algorithm of Weitz [42] is
polynomial-time for small constant Δ; in contrast our algorithm is polynomial-time
for all Δ > Δ0 for a sufficiently large constant Δ0.

A family of graphs of particular interest are randomΔ-regular graphs and random
Δ-regular bipartite graphs. These graphs do not satisfy the girth requirements of
Theorem 1 but they have few short cycles. Hence, as one would expect the above
result extends to these graphs.

Theorem 2. For all δ > 0, there exists Δ0 = Δ0(δ) and C = C(δ), and for all
Δ ≥ Δ0, all λ < (1−δ)λc(Δ), all ε > 0 and with probability 1−o(1) over the choice of
an n-vertex graph G chosen uniformly at random from the set of all Δ-regular graphs,
the mixing time of the Glauber dynamics on G satisfies

Tmix(ε) ≤ Cn log(n/ε).
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The same holds for G chosen uniformly at random from the set of all Δ-regular
bipartite graphs.

Theorem 2 complements the work in [26], which shows slow mixing for random
Δ-regular bipartite graphs when λ > λc(Δ).

Theorem 2 is essentially a corollary of Theorem 1 and its proof amounts to relaxing
the girth restriction to having a limited number of short cycles in the neighborhood
of a vertex.

To prove Theorem 1 we have to analyze the well-known BP algorithm. BP,
introduced by Pearl [28], is a simple recursive scheme designed on trees to correctly
compute the marginal distribution for each vertex to be occupied/unoccupied. In
particular, consider a rooted tree T = (V,E), where for v ∈ V its parent is denoted
as p and its children are N(v). Let

q(v) = Prμ [v is occupied | p is unoccupied]

denote the probability in the Gibbs distribution that v is occupied conditional on its
parent p being unoccupied. It is convenient to work with ratios of the marginals, and
hence let Rv→p(v) = q(v)/(1 − q(v)) denote the ratio of the occupied to unoccupied
marginal probabilities. Because T is a tree it is not difficult to show that this ratio
satisfies the following recurrence:

Rv→p(v) = λ
∏

w∈N(v)\{p(v)}

1

1 +Rw→v
.

This recurrence explains the terminology of BP thatRw→v is a “message” from w to its
parent v. Given the messages to v from all of its children then v can send its message
to its parent. Finally the root r (with a parent p always fixed to be unoccupied and
thus removed) can compute the marginal probability that it is occupied by q(r) =
Rr→p/(1 +Rr→p).

The above formulation defines (the sum-product version of) BP a simple, natural
algorithm which works efficiently and correctly for trees. For general graphs loopy
BP implements the above approach, even though there are now cycles and so the
algorithm no longer is guaranteed to work correctly. For a graph G = (V,E), for
v ∈ V let N(v) denote the set of all neighbors of v. For each p ∈ N(v) and time t ≥ 0
we define a message

Rtv→p = λ
∏

w∈N(v)\{p}

1

1 +Rt−1
w→v

.

The corresponding estimate of the marginal can be computed from the messages by

(1) qt(v, p) =
Rtv→p

1 +Rtv→p

.

Loopy BP is a popular algorithm for estimating marginal probabilities in general
graphical models (e.g., see [27]), but there are few results on when loopy BP converges
to the Gibbs distribution (e.g., Weiss [41] analysed graphs with one cycle, and [37, 14,
16] presented various sufficient conditions; see also [2, 30] for analysis of BP variants).

We show that the Glauber dynamics behaves locally like loopy BP. Furthermore,
we show that loopy BP converges to a unique fixed point for λ < λc(Δ). Combining
together these two facts allows us to characterize the local behavior of the Glauber
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dynamics in terms of the fixed point of loopy BP. This is a key element in our proof
of Theorem 1.

The following result is a byproduct of the analysis of Theorem 1; we feel it is
of independent interest. We show that loopy BP converges quickly to the Gibbs
distribution. More specifically, we prove that, on any graph with girth ≥ 6 and
maximum degree Δ ≥ Δ0, where Δ0 is a sufficiently large constant, loopy BP quickly
converges to the (marginals of) Gibbs distribution μ. More precisely, O(1) iterations
of loopy BP suffices; note each iteration of BP takes O(n +m) time where n = |V |
and m = |E|.

Theorem 3. For all δ, ε > 0, there exists Δ0 = Δ0(δ, ε) and C = C(δ, ε), and for
all graphs G = (V,E) of maximum degree Δ ≥ Δ0 and girth ≥ 6, all λ < (1−δ)λc(Δ),
the following holds: for t ≥ C, for all v ∈ V , p ∈ N(v),∣∣∣∣ qt(v, p)

μ(v is occupied | p is unoccupied)
− 1

∣∣∣∣ ≤ ε,

where μ(·) is the Gibbs distribution.

1.3. Contributions. Our main conceptual contribution is formally connecting
the behavior of BP and the Glauber dynamics. We will analyze the Glauber dynamics
using path coupling [1]. In path coupling we need to analyze a pair of neighboring
configurations; in our setting this is a pair of independent sets Xt, Yt which differ at
exactly one vertex v with Xt(v), Yt(v) being unoccupied and occupied, respectively.
The key is to construct a one-step coupling (Xt, Yt) → (Xt+1, Yt+1) and introduce a
distance function D : Ω × Ω → R≥0 which “contracts,” meaning that the following
path coupling condition holds for some γ > 0:

E [D(Xt+1, Yt+1) | Xt, Yt] ≤ (1− γ)D(Xt, Yt).

We use a distance function of the form D(Xt, Yt) =
∑

v∈Xt⊕Yt
Φ(v) for an appropriate

weighting Φ : V → R≥1. That is, the distance D(Xt, Yt) is a sum over disagreeing
vertices and each disagreement v contributes weight Φ(v).

We use a simple maximal one-step coupling and hence in our setting the path
coupling condition simplifies to

(2) (1− γ)Φ(v) ≥
∑

z∈N(v)

λ

1 + λ
1 {z is unblocked in Xt} Φ(z),

where unblocked means that N(z) ∩ Xt = ∅, i.e., all neighbors of z are unoccupied,
and we have assumed there are no triangles so as to ignore the possibility that Xt

and Yt differ on the neighborhood of z.
The distance function D must satisfy a few basic conditions such as being a

path metric, and if X 
= Y , then D(X,Y ) ≥ 1 (so that by Markov’s inequality
Pr [Xt 
= Yt] ≤ E [D(Xt, Yt)]). A standard choice for the distance function is the
Hamming distance. In our setting the Hamming distance does not suffice and our
primary challenge is determining a suitable distance function.

We cannot construct a suitable distance function which satisfies the path coupling
condition for arbitrary neighboring pairs Xt, Yt. To this end, we utilize the loopy BP
recurrences corresponding to the probability that a vertex is unblocked. A key insight
is that we can show the existence of a suitable Φ for the distance function D when the
local neighborhood of the disagreement v behaves like the BP fixed point: roughly,
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in (2) the number of unblocked vertices in N(v) is equal to what we expect to have if
each neighbor is occupied with probability specified by the BP fixed point.

We feel our construction of this distance function D is our most interesting con-
tribution. Note that the relevant qualitative information for the neighbors of v is
whether or not they are unblocked (rather than simply unoccupied). Hence consider
the (unrooted) BP recurrences corresponding to the probability that a vertex is un-
blocked. This corresponds to the following function F : [0, 1]V → [0, 1]V , which is
defined as follows, for any ω ∈ [0, 1]V and z ∈ V :

(3) F (ω)(z) =
∏

y∈N(z)

1

1 + λω(y)
.

Also, for some integer i ≥ 0, let F i(ω) : [0, 1]V → [0, 1]V be the i-iterate of F . This
recurrence is closely related to the standard BP operator R() and hence under the
hypotheses of our main results, we have that F () has a unique fixed point ω∗, and for
any ω, all z ∈ V , limi→∞ F i(z) = ω∗(z).

To construct the distance function D we start with the Jacobian of this BP
operator F (). Since F () converges to a fixed point, and, in fact, it contracts at
every level w.r.t. an appropriately defined potential function, we then know that the
Jacobian of the BP operator F () evaluated at its fixed point ω∗ has spectral radius
< 1. What motivates the use of BP is the observation that with a suitable similarity
transformation of the Jacobian we obtain a matrix which encodes the following path
coupling condition when the pair of states is close to the BP fixed points, namely,

(4) Φ(v) >
∑

z∈N(v)

λω∗(z)
1 + λω∗(z)

Φ(z).

This captures the main idea in the construction of a suitable Φ. However to apply
path coupling additional requirements are needed for Φ. For example, to measure the
rate of contraction we need to bound the gap of the principal eigenvalue from 1,
and to apply Markov’s inequality we need that D(X,Y ) ≥ 1 when X 
= Y . Hence
additional technical work is required to explicitly derive a Φ that behaves similar to
the principal eigenvector. For a comparison between (2) and (4), it is useful to recall
that Δ is assumed to be large, i.e., Δ > Δ0, while for such Δ the fugacity λ behaves
as λ = O(1/Δ).

There are previous works [11, 12] which utilize the spectral radius of the adjacency
matrix of the input graph G to design a suitable distance function for path coupling.
In contrast, we use insights from the analysis of the BP operator to derive a suitable
distance function. We believe this is a richer connection that can potentially lead to
stronger results since it directly relates to convergence properties on the tree. Our
approach has the potential to apply for a more general class of spin systems; we
comment on this in more detail in the conclusions.

The above argument only implies that we have contraction in the path coupling
condition for pairs of configurations which are BP fixed points, i.e., the number of
unblocked neighbors of the disagreeing vertex v is ≈ ∑

z∈N(v) ω
∗(z). A priori we don’t

even know if the BP fixed points on the tree correspond to the Gibbs distribution on
the input graph. We prove that the Glauber dynamics (approximately) satisfies a
recurrence that is close to the BP recurrence; this builds upon ideas of Hayes [10]
for colorings. This argument requires that there are no cycles of length ≤ 6 for the
Glauber dynamics (and no cycles of length ≤ 5 for the direct analysis of the Gibbs
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distribution). The girth requirements are used to prove (rough) independence of
the probability that neighbors of a vertex v are unblocked, and hence concentration
results can be utilized; this is explained in further detail in section 4.1. Some local
sparsity condition is necessary since if there are many short cycles then the Gibbs
distribution no longer behaves similarly to a tree and hence loopy BP may be a poor
estimator.

As a consequence of the above relation between BP and the Glauber dynamics,
we establish that from an arbitrary initial configuration X0, after a short burn-in
period of T = O(n logΔ) steps of the Glauber dynamics the configuration XT is a
close approximation to the BP fixed point. In particular, for any vertex v, the number
of unblocked neighbors of v in XT is ≈ ∑

z∈N(v) ω
∗(z) with high probability. As is

standard for concentration results, our proof of this result necessitates that Δ is at
least a sufficiently large constant. Finally we adapt ideas of [4] to utilize these burn-
in properties and establish rapid mixing of the Glauber dynamics. This essentially
outlines the proof of Theorem 1.

Choose the initial configurationX0 of the Glauber dynamics to be from the Gibbs
distribution of the hard-core model. Then, XT for T = O(n logΔ) is not only related
to the BP fixed points as we described in the previous paragraph, but it is also
distributed as the Gibbs distribution. This observation makes it apparent that there
should be a relation between the fixed point of loopy BP and the Gibbs distribution
of the hard-core model. Theorem 3 provides a more systematic treatment of this
observation. Essentially, it proves that for every vertex u, ω∗(u) is very close to the
Gibbs marginal of u being unblocked. Theorem 3 instead of dealing with equilibrium
configurations of the Glauber dynamics it considers samples from the hard-core model.
That is, it establishes a relation between samples of the Gibbs distribution of the hard-
core model and loopy BP which is similar to that of the Glauber dynamics. The use
of samples from the Gibbs distribution instead of the Glauber dynamics allows us to
improve the girth dependence to ≥ 6.

We prove Theorem 3 by means of the BP equations in (3), which are unrooted
recurrences for being unblocked. We chose this specific system of equations because of
its similarity to the recurrences that arise in the analysis for local uniformity, and its
applicability for the path coupling analysis. Note that there are two key differences
between the recurrences in (3) and (1). First, (3) captures unblocked whereas (1)
captures unoccupied. The second difference is the significant one: the equations in (3)
consider an unrooted version of BP while those in (1) consider a rooted version. There
is a simple transformation between the two rooted versions: the rooted analog of the
unblocked recurrences defined in (3) and the rooted, unoccupied recurrences defined
in (1). In particular the corresponding fixed points for unblocked and unoccupied
differ by a factor of λ. However, considering the unrooted version of unblocked is
different than its rooted version. For λ < λc(Δ), the difference in the fixed points is
O(1/Δ). Since our proof requires Δ > Δ0 for a sufficiently large constant Δ0 in order
for concentration bounds, the error we introduce by considering the unrooted version
is of a smaller order than the error ε we have in Theorem 3. Therefore, we can utilize
the simpler system (namely, unrooted) with no additional loss in the quality of results
we prove.

At this point it is worth pointing out why the lower bound Δ > Δ0 is inevitable
with our approach. We prove concentration results on the number of neighbors that
are unblocked; this is an integer-valued function and hence we cannot obtain bounds
closer than a factor (1± 1/Δ). Therefore, as we require closer concentration bounds
in order to get closer to the threshold we need that Δ grows.
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1.4. Outline of paper. In the following section we state results about the con-
vergence of the BP recurrences. Section 2 contains the proofs of all the results about
the convergence of BP. We only postpone until section 7 the proofs of Propositions 7
and 8, which are a bit lengthy.

We present in section 3 our theorem showing the existence of a suitable distance
function to use for path coupling; this is Theorem 9. The proof of Theorem 9 appears
in section 3 and builds on the results of section 2.

Section 4 discusses local uniformity results for both the Glauber dynamics and
the Gibbs distribution (these are Theorems 11 and 10); these uniformity results are
necessary ingredients in the proofs of Theorems 1 and 3, respectively. The proof of
Theorem 10 appears inside section 4, but the proof of Theorem 11 is more technical
and lengthy and appears in sections 9 and 10.

Section 5 proves our main result, Theorem 1. For the proof we use the distance
function we presented in section 3 and the uniformity result from section 4. In sec-
tion 5.1 we provide a proof sketch of Theorem 1. In sections 5.3 and 5.4 we give some
preliminary results and in section 5.2 we give the full proof of Theorem 1.

The extension of our rapid mixing result to random regular graphs (and regular,
bipartite graphs) as stated in Theorem 2 is proved in section 6.

Theorem 3 about the efficiency of loopy BP is proved in section 8. (Some of the
key technical results in the proof of Theorem 3 are already proved in sections 4 and
7.)

Sections 9 and 10 are the most technical parts of our paper; these sections prove
the local uniformity property for the Glauber dynamics. In particular, section 9
provides some basic results and concepts we use in section 10 to prove uniformity.

Finally, section 11 provides some concluding remarks.

2. BP convergence. Here we state several useful results about the convergence
of BP to a unique fixed point, and stepwise contraction of BP to the fixed point.

Our first lemma says that the recurrence for F () defined in (3) has a unique fixed
point.

Lemma 4. For all δ > 0, there exists Δ0 = Δ0(δ), and for all G = (V,E) of
maximum degree Δ ≥ Δ0, all λ < (1 − δ)λc(Δ), the function F has a unique fixed
point ω∗. Moreover, for any initial value ω0 ∈ [0, 1]V , denoting by ωi = F i(ω) the
vector after the ith iterate of F , it holds that

‖ωi − ω∗‖∞ ≤ 3(1− δ/6)i.

A critical result for our approach is that the recurrences F () have stepwise con-
traction to the fixed point ω∗. To obtain contraction we use the following potential
function Ψ . Let the function Ψ : [0, 1] → R≥0 be as follows:

Ψ(x) =
(√

λ
)−1

arcsinh
(√

λ · x
)
.(5)

The following fact (which is formally verified in section 2.1) is frequently used in our
analysis. For the λ and Δ assumed by Lemma 4, for any x1, x2 ∈ [(1 + λ)−Δ, 1],

(6)
1

3
|x1 − x2| ≤ |Ψ(x1)− Ψ(x2)| ≤ 3|x1 − x2|.

Our main motivation for introducing Ψ is as a normalizing potential function that we
use to define the following distance metric, D, on functions ω ∈ [0, 1]V :

D(ω1, ω2) = max
z∈V

|Ψ(ω1(z))− Ψ(ω2(z))| .
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We will also need a variant, Dv,R, of this metric whose value only depends on the
restriction of the function to a ball of radius � around vertex v. For any v ∈ V , integer
� ≥ 0, let B�(v) be the set of vertices within distance ≤ � of v. Moreover, for functions
ω1, ω2 ∈ [0, 1]V , we define

Dv,�(ω1, ω2) = max
z∈B(v,�)

|Ψ(ω1(z))− Ψ(ω2(z))| .(7)

We can now state the following convergence result for the recurrences, which estab-
lishes stepwise contraction.

Lemma 5. For all δ > 0, there exists Δ0 = Δ0(δ), and for all G = (V,E) of
maximum degree Δ ≥ Δ0, all λ < (1 − δ)λc(Δ), for any ω ∈ [0, 1]V , v ∈ V , and
� ≥ 1, we have

Dv,�−1(F (ω), ω
∗) ≤ (1− δ/6)Dv,�(ω, ω

∗),

where ω∗ is the fixed point of F .

We also consider a recurrence which corresponds to the rooted belief propagation.
For an undirected graph G = (V,E), let Ē be the set of all orientations of edges in
E. The function H : [0, 1]Ē → [0, 1]Ē is defined as follows: For any ω ∈ [0, 1]Ē and
(v, p) ∈ Ē,

H(ω)(v, p) =
∏

u∈N(v)\{p}

1

1 + λω(u, v)
.(8)

For this system we have similar convergence result as Lemma 4.

Corollary 6. For G = (V,E) and λ assumed by Lemma 4, the function H
defined in (8) has a unique fixed point ω∗. Moreover, for any initial value ω0 ∈ [0, 1]Ē,
denoting by ωi = Hi(ω) the vector after the ith iterate of H, it holds that

‖ωi − ω∗‖∞ ≤ 3(1− δ/6)i.

2.1. Proofs of Lemmas 4 and 5 and Corollary 6. We first verify the fact
stated in (6). By the mean value theorem, for any x1, x2 ∈ [(1+λ)−Δ, 1], there exists
a mean value ξ ∈ [(1 + λ)−Δ, 1] such that

|Ψ(x1)− Ψ(x2)| = Ψ ′(ξ)|x1 − x2| = 1

2
√
ξ(1 + λξ)

|x1 − x2|.

Using a coarse estimation such that λc(Δ) < 3/(Δ − 2), it is easy to verify that for
all sufficiently large Δ, we have (1 + λ)−Δ > (1 + 3/(Δ − 2))−Δ > 1/36 and hence
ξ ∈ [1/36, 1], and also λ < λc(Δ) < 1/4. Therefore, 1

2
√
ξ(1+λξ)

≥ 1
2
√
1+λ

> 1
3 and

1

2
√
ξ(1+λξ)

< 1
2
√
ξ
< 3. This proves (6).

Next, we state two propositions which are needed for proving Lemmas 4 and 5.
The proofs of these propositions use ideas from [29, 20, 32] and are postponed to
section 7.

Let fλ,d(x) = (1+ λx)−d be the symmetric version of the BP recurrence (3). Let
x̂ = x̂(λ, d) be the unique fixed point of fλ,d(x), satisfying x̂(λ, d) = (1+ λx̂(λ, d))−d.
We define

α(λ, d) =

√
d · λx̂(λ, d)
1 + λx̂(λ, d)

.(9)
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Proposition 7. For all δ > 0, there exists Δ0 = Δ0(δ), and for all Δ ≥ Δ0, all

λ < (1− δ)λc(Δ), where λc(Δ) = (Δ−1)Δ−1

(Δ−2)Δ , it holds that α(λ,Δ) ≤ 1− δ/6.

Recall the function F () as defined in (3). The following proposition was proved
implicitly in [20].

Proposition 8 (see [20]). Let G = (V,E) be a graph with maximum degree at
most Δ. Assume that α(λ,Δ) ≤ 1. For any ω ∈ [0, 1]V , and v ∈ V ,√

λF (ω)(v)

1 + λF (ω)(v)

∑
u∈N(v)

√
λω(u)

1 + λω(u)
≤ α(λ,Δ),

where α(λ,Δ) is defined in (9).

By Proposition 7, for the regime of λ given in Lemmas 4 and 5, it holds that
α(λ,Δ) < 1− δ/6, where Δ is the maximum degree of the graph G = (V,E).

We then show that for any ω1, ω2 ∈ [0, 1]V and v ∈ V ,

|Ψ(ω1(v)) − Ψ(ω2(v))| ≤ 1,(10)

and

|Ψ(F (ω1)(v)) − Ψ(F (ω2)(v))| ≤ (1 − δ/6) max
u∈N(v)

|Ψ(ω1(v)) − Ψ(ω2(v))|.(11)

We first prove (10). It is easy to see that Ψ(x) is monotonically increasing for
x ∈ [0, 1], and thus |Ψ(ω1(v))−Ψ(ω2(v))| ≤ Ψ(1)−Ψ(0) = arcsinh(

√
λ)/

√
λ. Observe

that arcsinh(x) ≤ x for any x ≥ 0 and hence arcsinh(
√
λ)/

√
λ ≤ 1. Then (10) follows.

We then prove (11). Note that the derivative of the potential function Ψ is Ψ ′(x) =
dΨ(x)
d x = 1

2
√
x(1+λx)

. Due to the mean value theorem, there exists an ω̃ ∈ [0, 1]N(v)

such that

|Ψ(F (ω1)(v)) − Ψ(F (ω2)(v))|

=
∑

u∈N(v)

∣∣∣∣∂F (ω)(v)∂ω(u)

∣∣∣∣
ω=ω̃

Ψ ′(F (ω̃)(v))
Ψ ′(ω̃(u))

∣∣∣∣ |Ψ(ω1(u))− Ψ(ω2(u))|

=

√
λF (ω̃)(v)

1 + λF (ω̃)(v)

∑
u∈N(v)

√
λω̃(u)

1 + λω̃(u)
|Ψ(ω1(u))− Ψ(ω2(u))|

≤
⎛
⎝
√

λF (ω̃)(v)

1 + λF (ω̃)(v)

∑
u∈N(v)

√
λω̃(u)

1 + λω̃(u)

⎞
⎠ · max

u∈N(v)
|Ψ(ω1(u))− Ψ(ω2(u))|.

Then (11) is implied by Propositions 7 and 8.
Now we are ready to prove Lemma 4. Consider the dynamical system defined by

ω(i) = F (ω(i−1)) with arbitrary two initial values ω
(0)
1 , ω

(0)
2 ∈ [0, 1]V . The derivative

of the potential function satisfies that Ψ ′(x) ≥ 1
2
√
1+λ

for any x ∈ [0, 1]. Due to the

mean value theorem, for any v ∈ V , there exists a mean value ξ ∈ [0, 1] such that∣∣∣ω(i)
1 (v)− ω

(i)
2 (v)

∣∣∣ = 1

Ψ ′(ξ)

∣∣∣Ψ (ω(i)
1 (v)

)
− Ψ

(
ω
(i)
2 (v)

)∣∣∣
≤ 2

√
1 + λ

∣∣∣Ψ (ω(i)
1 (v)

)
− Ψ

(
ω
(i)
2 (v)

)∣∣∣ .
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Combined with (10) and (11), we have∥∥∥ω(i)
1 − ω

(i)
2

∥∥∥
∞

≤ 2
√
1 + λ

∥∥∥Ψ (ω(i)
1

)
− Ψ

(
ω
(i)
2

)∥∥∥
∞

≤ 2(1− δ/6)i
√
1 + λmax

z∈V

∣∣∣Ψ (ω(0)
1 (z)

)
− Ψ

(
ω
(0)
2 (z)

)∣∣∣
≤ 2(1− δ/6)i

√
1 + λ,

which is at most 3(1 − δ/6)i for λ < λc(Δ) for all sufficiently large Δ. Lemma 4 is
proved.

Lemma 5 is then a consequence of this. According to the definition of Dv,R in (7),

Dv,R−1(F (ω), ω
∗)

= max
u∈B(v,R−1)

|Ψ(F (ω)(u))− Ψ(ω∗(u))|

= max
u∈B(v,R−1)

|Ψ(F (ω)(u))− Ψ(F (ω∗)(u))| (ω∗ is fixed point)

≤ max
u∈B(v,R−1)

(1− δ/6) max
z∈N(u)

|Ψ(ω(z))− Ψ(ω∗(z))| (due to (11))

= (1− δ/6) max
u∈B(v,R)

|Ψ(ω(u))− Ψ(ω∗(u))|

= (1− δ/6) ·Dv,R(ω, ω
∗),

which proves Lemma 5.
Finally, with the approach used above, analyzing the convergence of H which is

defined in (8) is the same as analyzing F on a graph G with maximum degree Δ− 1.
Recall that α(λ,Δ) is increasing in Δ. The same proof gives us Corollary 6.

3. Path coupling distance function. We now prove that there exists a suit-
able distance function Φ for which the path coupling condition holds for configurations
that correspond to the fixed points of F ().

Theorem 9. For all δ > 0, there exists Δ0 = Δ0(δ), and for all G = (V,E) of
maximum degree Δ ≥ Δ0, all λ < (1 − δ)λc(Δ), there exists Φ : V → R≥0 such that
for every v ∈ V ,

(12) 1 ≤ Φ(v) ≤ 12

and

(13) (1− δ/6)Φ(v) ≥
∑

u∈N(v)

λω∗(u)
1 + λω∗(u)

Φ(u),

where ω∗ is the fixed point of F defined in (3).

The theorem is proved by considering the Jacobian J of the BP operator F :

J(v, u) =

∣∣∣∣∂F (ω)(v)∂ω(u)

∣∣∣∣ =

{
λF (ω)(v)
1+λω(u) if u ∈ Nv,

0 otherwise.

Let J∗ denote the Jacobian at the fixed point ω = ω∗, formally:

J∗ = J |ω=ω∗ .(14)
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Let D be the diagonal matrix with D(v, v) = ω∗(v) and define

Ĵ = D−1J∗D.(15)

The path coupling condition (13) is in fact

(16) ĴΦ ≤ (1− δ/6)Φ.

The fact that ω∗ is a Jacobian attractive fixed point implies the existence of a
nonnegative Φ with ĴΦ < Φ. Thus, the theorem would follow immediately if the
spectral radius of Ĵ is ρ(Ĵ) ≤ 1 − δ/6 and Ĵ has a principal eigenvector with each
entry from the bounded range [1, 12]. However, explicitly calculating this principal
eigenvector can be challenging on general graphs.

The convergence of BP which is established in Lemmas 4 and 5, w.r.t. the potential
function Ψ , guides us to an explicit construction of Φ to satisfy ĴΦ < Φ as follows.

Proof of Theorem 9. Due to Propositions 7 and 8, for any ω ∈ [0, 1]V , and v ∈ V ,
we have √

λF (ω)(v)

1 + λF (ω)(v)

∑
u∈N(v)

√
λω(u)

1 + λω(u)
≤ 1− δ/6.

In particular, this inequality holds for the fixed point ω∗, where F (ω∗)(v) = ω∗(v).
Therefore, √

λω∗(v)
1 + λω∗(v)

∑
u∈N(v)

√
λω∗(u)

1 + λω∗(u)
≤ 1− δ/6.

Note that the derivative of the potential function Ψ is given by Ψ ′(x) = 1

2
√
x(1+λx)

.

Therefore, the above inequality in fact gives us

∑
u∈N(v)

J∗(v, u)
Ψ ′(ω∗(v))
Ψ ′(ω∗(u))

=

√
λω∗(v)

1 + λω∗(v)

∑
u∈N(v)

√
λω∗(u)

1 + λω∗(u)
≤ 1− δ/6,

which is equivalent to the following:

∑
u∈N(v)

Ĵ(v, u)

ω∗(u)Ψ ′(ω∗(u))
≤ 1− δ/6

ω∗(v)Ψ ′(ω∗(v))
,

where in above J∗ and Ĵ are as defined in (14) and (15).
Then, (16) is trivially satisfied by choosing Φ such that Φ(v) = 1

2ω∗(v)Ψ ′(ω∗(v)) =√
1+λω∗(v)
ω∗(v) . In turn we get the path coupling condition (13).

Next, we show that this Φ satisfies that 1 ≤ Φ(v) ≤ 12. Since ω∗ ∈ [0, 1]V , we

have Φ(v) =
√

1+λω∗(v)
ω∗(v) ≥ 1. Meanwhile, it holds that ω∗(v) =

∏
u∈Nv

1
1+λω∗(u) ≥

(1 + λ)−Δ. By our assumption, λ ≤ (1 − δ)λc(Δ) ≤ 4
Δ−2 for all Δ ≥ 3. Therefore,

ω∗(v) ≥ (1 + 4
Δ−2 )

−Δ ≥ 5−3 and Φ(v) =
√

1+λω∗(v)
ω∗(v) ≤ √

53 + 4 ≤ 12.
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4. Local uniformity. We will prove that the Glauber dynamics, after a suffi-
cient burn-in, behaves with high probability locally similar to the BP fixed points. In
this section we will formally state some of these “local uniformity” results.

For an independent set σ, for v ∈ V , and p ∈ N(v) let

(17) Uv,p(σ) = 1 {σ ∩ (N(v) \ {p}) = ∅}
be the indicator of whether the children of v leave v unblocked.

We now state our main local uniformity results. We first establish that the Gibbs
distribution behaves as in the BP fixed point, when the girth ≥ 6. We will prove that
for any vertex v, the number of unblocked neighbors of v is ≈ ∑

z∈N(v) ω
∗(z) with

high probability. Hence, for v ∈ V let

SX(v) =
∑

z∈N(v)

Uz,v(X),

denote the number of unblocked neighbors of v in configuration X .

Theorem 10 (Gibbs distribution uniformity). For all δ, ε > 0, there exists
Δ0 = Δ0(δ, ε) and C = C(δ, ε), and for all graphs G = (V,E) of maximum degree
Δ ≥ Δ0 and girth ≥ 6, all λ < (1− δ)λc(Δ), for all v ∈ V , it holds that

PrX∼μ

⎡
⎣
∣∣∣∣∣∣SX(v) −

∑
z∈N(v)

ω∗(z)

∣∣∣∣∣∣ ≤ εΔ

⎤
⎦ ≥ 1− exp (−Δ/C10) ,

where ω∗ is the fixed point from Lemma 4.

Theorem 10 will be the key ingredient in the proof of Theorem 3. Before proving
it let us give a brief discussion about its analogue for Glauber dynamics.

For our rapid mixing result (Theorem 2) we need an analogous local uniformity
result for the Glauber dynamics. This will require the slightly higher girth require-
ment ≥ 7 since the grandchildren of a vertex v no longer have a certain conditional
independence and we need the additional girth requirement to derive an approxi-
mate version of the conditional independence. (This is discussed in more detail in
section 9.2.)

The path coupling proof weights the vertices according to Φ. Hence, in place of
S we need the following weighted version W. For v ∈ V and Φ : V → R≥0 as defined
in Theorem 9 let

(18) Wσ(v) =
∑

z∈N(v)

Uz,v(σ) Φ(z).

We then prove that the Glauber dynamics, after sufficient burn-in, also behaves as in
the BP fixed point with a slightly higher girth requirement ≥ 7. (For path coupling
we only need an upper bound on the number of unblocked neighbors, and hence we
state and prove this simpler form.)

Theorem 11 (Glauber dynamics uniformity). For all δ, ε > 0, let Δ0 = Δ0(δ, ε),
C = C(δ, ε), and for all graphs G = (V,E) of maximum degree Δ ≥ Δ0 and girth
≥ 7, all λ < (1− δ)λc(Δ), let (Xt) be the Glauber dynamics on the hard-core model.
For all v ∈ V , it holds that

(19) Pr

⎡
⎣(∀t ∈ I) WXt(v) <

∑
z∈N(v)

ω∗(z)Φ(z) + εΔ

⎤
⎦ ≥ 1− exp (−Δ/C) ,

where the time interval I = [Cn logΔ,n exp(Δ/C)].
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The above theorem shows that for arbitrary initial state X0 after O(n logΔ) steps
it achieves the local uniformity property whp (with high probability). Our proof of
Theorem 1 will, in fact, use a slight variant of the above theorem, but the relevant
notions haven’t been presented yet so we defer the formal statement to Theorem 18
in section 5.3. Theorem 18 considers X0 which is “nice” in an appropriate sense
and proves that then only O(n) steps are required to achieve the local uniformity
property whp. Theorem 11 will then follow as a corollary of Theorem 18 (together
with Lemma 21, which also appears in section 5.3).

4.1. Proof of Theorem 10. Here we present the proof of Theorem 10 of the
local uniformity results for the Gibbs distribution.

Consider a graph G = (V,E). For a vertex v and an independent set σ, consider
the following quantity:

(20) R(σ, v) =
∏

z∈N(v)

(
1− λ

1 + λ
Uz,v(σ)

)
,

where Uz.v(σ) is defined in (17). (It is the indicator that the children of z leave it
unblocked.) The important aspect of this quantity R is the following interpretation.
Let Y be distributed as in the Gibbs measure w.r.t. G. For triangle-free G we have

R(σ, v) = Pr [v is unblocked | v /∈ Y, Y (S2(v)) = σ(S2(v))],

where S2(v) are those vertices distance 2 from v and by “v /∈ Y ” we mean that v
is not occupied under Y . Since G is triangle free, conditional on the configuration
at v and S2(v) then the neighbors of v are independent in the Gibbs distribution.
Substituting σ with Y in the above relation we have that

(21) R(Y, v) =
∏

z∈N(v)

Pr [z /∈ Y | v /∈ Y, Y (S2(v))].

In special cases of graphs, e.g., for Δ-regular trees. we can express the probability
terms on the right-hand side (r.h.s.) of (21) in terms of R-quantities. That is, we
can extend (21) to the following system of recursive equations: With probability
1− exp(−Ω(Δ1/3)) we have

(22) R(Y, v) =
∏

z∈N(v)

(
1− λ

1 + λ
R(Y, z)

)
+O

(
Δ−1/3

)
.

The above is not trivial to derive; in what follows we provide the technical details. For
our purpose it turns out that R(X, ·) expressed as in (22) is an approximate version of
F () defined in (3). The error term O(Δ−1/3) in (22) is negligible. For understanding
R(X, ·) qualitatively, this error term can be completely ignored.

To get some intuition of what is going to follow, consider the (BP system of)
equations in (22). We show that a relation similar to (22) holds for the graph G.
That is, we prove a loopy version of the equation. (See Lemma 12 for further details.)
Furthermore, for proving the theorem we will show the following interesting result
regarding the quantity SY (v) for every v ∈ V . With probability ≥ 1− exp(−Ω(Δ)),
it holds that

(23)

∣∣∣∣∣∣SY (v) −
∑

z∈N(v)

R(Y, z)

∣∣∣∣∣∣ ≤ εΔ.
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That is, we can approximate SY (v) by using quantities that arise from the loopy BP
equations.

Still, getting a handle on R(Y, z) in (23) is a nontrivial task. We will argue that
the loopy version of (22) we establish between R(Y, v) and R(Y, z) for z ∈ N(v) is an
approximate version of F () and then we can apply Lemma 5 to deduce convergence
(close) to the fixed point ω∗.

Lemma 12. For all γ, δ > 0, there exists Δ0, C > 0, and for all graphs G = (V,E)
of maximum degree Δ ≥ Δ0 and girth ≥ 6 all λ < (1 − δ)λc(Δ) for all v ∈ V the
following is true:

Let X be distributed as in μ. Then with probability ≥ 1 − exp(−Δ/C) it holds
that ∣∣∣∣∣∣R(X, v)−

∏
z∈N(v)

(
1− λ

1 + λ
R(X, z)

)∣∣∣∣∣∣ < γ.(24)

Proof. Consider X distributed as in μ. Given some vertex v ∈ V , let F be the
σ-algebra generated by the configuration of v and the vertices at distance ≥ 3 from
v.

Note that λc(Δ) ∼ e/Δ. So, for λ < λc(Δ) we have λ = O(1/Δ). Note, also, that
SX(v) is a function of the configuration at S2(v). Conditional on F , for any z, z′ ∈
N(v) the configurations at N(z)\{v} and N(z′)\{v} are independent of each other.
That is, conditional on F , the quantity SX(v) is a sum of |N(v)| many independent
random variables in {0, 1}. Then, applying Azuma’s inequality (the Lipschitz constant
is 1) we get that

(25) Pr [|E [SX(v) | F ]− SX(v)| ≤ βΔ] ≥ 1− 2 exp
(−β2Δ/2

)
for any β > 0.

For x ∈ R≥0, let f(x) = exp(− λ
1+λx). Since λ ≤ e/Δ for Δ ≥ Δ0, then for

|γ| ≤ (3e)−1 it holds that f(x+ γΔ) ≤ 10γ. Using these observations and (25) we get
the following: for 0 < β < (3e)−1 it holds that

(26) Pr [|f(SX(v)) − f(E [SX(v) | F ])| ≤ 10β] ≥ 1− 2 exp
(−β2Δ/2

)
.

Recalling the definition of R(X, v), we have that

R(X, v) =
∏

z∈N(v)

(
1− λ

1 + λ
Uz,v(X)

)

= exp

⎛
⎝− λ

1 + λ

∑
z∈N(v)

Uz,v(X) +O (1/Δ)

⎞
⎠

= f(SX(v)) +O (1/Δ) ,(27)

where for the second equality we use the fact that λ = O(1/Δ) and that for |x| < 1 we
have 1 + x = exp(x +O(x2)); the last equality follows by noting that f(SX(v)) ≤ 1.

We are now going to show that for every z ∈ N(v) it holds that

(28) |E [Uz,v(X) | F ]−R(X, z)| ≤ 2λ.

Before showing that (28) is indeed correct, let us show how we use it to get the lemma.
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We have that

f(E [SX(v) | F ]) = exp

⎛
⎝− λ

1 + λ

∑
z∈N(v)

E [Uz,v(Xt) | F ]

⎞
⎠

= exp

⎛
⎝− λ

1 + λ

∑
z∈N(v)

R(X, z)

⎞
⎠+O(1/Δ)

=
∏

z∈N(v)

(
1− λ

1 + λ
R(X, z)

)
+O(1/Δ),(29)

where in the first derivation we use linearity of expectation, in the second derivation
we use (28) and the fact that λ = O(1/Δ), and in the third derivation we use the fact
that ex = 1+ x+O(x2) and the fact that λ = (1/Δ). The lemma follows by plugging
(29) and (27) into (26) and taking sufficiently large Δ.

It remains to show (28). We first get an appropriate upper bound for
E [Uz,v(X) | F ]. Using the fact that Uz,w(X) ≤ 1 and Pr [z ∈ X|F ] ≤ λ we have
that

E [Uz,v(X) | F ] = E [Uz,v(X) | F , z ∈ X ] ·Pr [z ∈ X |F ]

+E [Uz,v(X) | F , z /∈ X] ·Pr [z /∈ X |F ]

≤ Pr [z ∈ X|F ] + E [Uz,v(X) | F , z /∈ X]

≤ λ+ E [Uz,v(X) | F , z /∈ X]

= λ+
∏

u∈N(z)\{v}

(
1− λ

1 + λ
Uu,z(X)

)
(30)

≤ 2λ+
∏

u∈N(z)

(
1− λ

1 + λ
Uu,z(X)

)

= 2λ+R(X, z),(31)

where (30) uses the fact that given F the values of Uu,z(X) for u ∈ N(z) \ {v} are
fully determined. Similarly, we get the lower bound:

E [Uz,v(X) | F ]

= E [Uz,v(X) | F , z ∈ X ] ·Pr [z ∈ X|F ]

+ E [Uz,v(X) | F , z /∈ X ] ·Pr [z /∈ X|F ]

≥
(
1− λ

1 + λ

)
E [Uz,v(X) | F , z /∈ X] (as Pr [z /∈ X|F ] ≥ 1− λ

1+λ )

≥ (1− 2λ)E [Uz,v(X) | F , z /∈ X] (as λ
1+λ < 2λ)

≥ (1− 2λ)
∏

u∈N(z)\{w}

(
1− λ

1 + λ
Uu,z(X)

)

≥ (1− 2λ)
∏

u∈N(z)

(
1− λ

1 + λ
Uu,z(X)

)

= (1− 2λ)R(X, z)

≥ R(X, z)− 2λ,(32)

where in the last inequality we use the fact that R(X, z) ≤ 1.
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From (31) and (32) we have proved (28), which completes the proof of the
lemma.

We will argue that (24) is an approximate version of F (·) and then we can apply
Lemma 5 to deduce that R(X, ·) is an approximate version of the fixed point ω∗. In
particular we have the following result.

Lemma 13. For every δ, θ > 0, there exists Δ0 = Δ0(δ, θ) and C > 0 all λ <
(1− δ)λc(Δ), and for G of maximum degree Δ and girth ≥ 6, the following is true:

Let X be distributed as the Gibbs distribution. For any z ∈ V , it holds that

Pr [|R(X, z)− ω∗(z)| ≤ θ] ≥ 1− exp(−Δ/C),

where ω∗ is defined in Lemma 4.

Proof. Let R = � 50
δ log θ−1 + 100

δ �. For every integer i ≤ R, we define

βi := max |Ψ(R(X, x))− Ψ(ω∗(x))| ,

where Ψ is defined in (5). The maximum is taken over all vertices x ∈ Bi(w).
An elementary observation is that βi ≤ 3 for every i ≤ R. To see why this

holds, note that for any z ∈ V and any independent sets σ, it holds that e−e ≤
R(σ, z), ω∗(z) ≤ 1. Then we get βi ≤ 3 from (6).

We start by using the fact that βR ≤ 3. Then we show that with sufficiently large
probability, if βi+1 ≥ θ/5, then βi ≤ (1 − γ)βi+1, where 0 < γ < 1. Then the lemma
follows by taking large R.

For any i ≤ R, Lemma 12 and a simple union bound over the vertices in Bi(w)
imply that there exists a constant C0 = C0(θ, δ) > 0 such that with probability at
least 1− exp(−Δ/C0) the following is true: For every vertex x ∈ Bi(w) it holds that

∣∣∣∣∣∣R(X, x)− exp

⎛
⎝− λ

1 + λ

∑
z∈N(x)

R(X, z)

⎞
⎠
∣∣∣∣∣∣ <

θδ

40
.(33)

Fix some i ≤ R, z ∈ Bi(w). From the definition of the quantity βi+1 we get the
following: For any x ∈ Bi+1(w) consider the quantity ω̃(x) = R(X, x). We have that

Dv,i+1(ω̃, ω
∗) ≤ βi+1.(34)

We will show that if (33) holds for R(X, z), where z ∈ Bi(w), and βi+1 ≥ θ/5, then
we have that

|Ψ (R(X, z))− Ψ (ω∗(z))| ≤ (1− δ/24)βi+1.

For proving the above inequality, first note that if R(X, z) satisfies (33), then (6)
implies that

∣∣∣∣∣∣Ψ (R(X, z))− Ψ

⎛
⎝exp

⎛
⎝− λ

1 + λ

∑
r∈N(z)

R(X, r)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣ ≤ δθ

12
.(35)
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Furthermore, we have that

|Ψ (R(X, z))− Ψ (ω∗(z))|

≤ δθ

12
+

∣∣∣∣∣Ψ
(
exp

(
− λ

1 + λ

∑
r∈Nz

R(X, r)

))
− Ψ (ω∗(z))

∣∣∣∣∣ (from (35))

≤ δθ

12
+

∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)⎞⎠− Ψ (ω∗(z))

∣∣∣∣∣∣+

+

∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)⎞⎠− Ψ

⎛
⎝exp

⎛
⎝− λ

1 + λ

∑
r∈N(z)

R(X, r)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣ ,(36)

where both inequalities follow from the triangle inequality.
From our assumption about λ and the fact that R(X, r) ∈ [e−e, 1] for r ∈ N(z),

we have that∣∣∣∣∣∣
∏

r∈N(z)

(
1− λR(X, r)

1 + λ

)
− exp

⎛
⎝−λ

∑
r∈N(z)

R(X, r)

1 + λ

⎞
⎠
∣∣∣∣∣∣ ≤

10

Δ
.

The above inequality and (6) imply that∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)⎞⎠− Ψ

⎛
⎝exp

⎛
⎝− λ

1 + λ

∑
r∈N(z)

R(X, r)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣ ≤

30

Δ
.

Plugging the inequality above into (36) we get that

|Ψ (R(X, z))− Ψ (ω∗(z))|

≤ δθ

12
+

30

Δ
+

∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)⎞⎠− Ψ (ω∗(z))

∣∣∣∣∣∣
≤ δθ

12
+

30

Δ
+

∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1

1 + λR(X, r)

)⎞⎠− Ψ (ω∗(z))

∣∣∣∣∣∣
+ 3

∣∣∣∣∣∣
∏

r∈N(z)

(
1

1 + λR(X, r)

)
−

∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)∣∣∣∣∣∣(37)

≤ δθ/12 + 60/Δ+Dv,i(F (ω̃), ω
∗),(38)

where we derive (37) by applying the triangle inequality and (6); (38) follows by noting

that for any r ∈ N(z) we have ( 1
1+λR(X,r) )− (1− λR(X,r)

1+λ ) ≤ (e/Δ)2, |N(z)| ≤ Δ, and

Δ is sufficiently large. Finally, in (38) we let ω̃ ∈ [0, 1]V be such that ω̃(r) = R(X, r)
for r ∈ V and F is defined in (3).

Since ω̃ satisfies (34), Lemma 5 implies that

(39) Dv,i(F (ω̃), ω
∗) ≤ (1− δ/6)βi+1.

Plugging (39) into (38) we get that

(40) |Ψ (R(Xs, z))− Ψ (ω∗(z))| ≤ δθ/12 + 60/Δ+ (1 − δ/6)βi+1 ≤ (1 − δ/24)βi+1,
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where the last inequality holds if we have βi+1 ≥ θ/5 and Δ is sufficiently large. Note
that (40) holds provided that R(X, z) satisfies (33). The lemma follows by taking
sufficiently large R = R(θ).

Proof of Theorem 10. Let F be the σ-algebra generated by the configuration of
v and the vertices at distance greater than 2 from x, i.e., V \ B2(v). Conditioning
on F , Sv is a sum of |N(v)| many 0-1 independent random variables. From Azuma’s
inequality, for any fixed γ > 0, we have that

(41) Pr [|Sv − E [Sv | F ]| > γΔ] ≤ 2 exp
(−γ2Δ/2) .

Working as in the proof of Lemma 12 (i.e., for (31), (32)) we get the following: For
each z ∈ N(v) it holds that

|E [Uz,v(X) | F ]−R(X, z)| ≤ 10eeλ.

Note that, given F the quantity R(X, z) is uniquely specified.
From the above we get that

(42) E [Sv | F ] =
∑

z∈N(v)

E [Uz,v(X) | F ] =
∑

z∈N(v)

R(X, z) + ζ,

where |ζ| ≤ e5e. Furthermore, from Lemma 13 we have that for every w ∈ V and
every θ > 0, there exists C0 > 0 such that

(43) Pr [|R(X,w)− ω∗(w)| ≤ θ] ≥ 1− exp (−Δ/C0) .

From (43), (42), and a simple union bound we get the following: for every γ′ > 0,
there exists C1 > 0 such that

(44) Pr

⎡
⎣
∣∣∣∣∣∣E [Sv | F ]−

∑
z∈N(v)

ω∗(z)

∣∣∣∣∣∣ ≤ γ′Δ

⎤
⎦ ≥ 1− exp (−Δ/C1) .

The theorem follows by combining (41) and (44).

5. Rapid mixing proof. We begin with some basic notation. Consider a graph
G = (V,E). For some integer r ≥ 0 and v ∈ V , let Br(v) be the set of vertices
which are within distance r from v; we usually refer to Br(v) as the “ball” of radius
r, centered at v. Let Sr(v) the set of vertices at distance exactly r from v; we usually
refer to Sr(v) as the “sphere” of radius r, centered at v. Finally, let N(v) denote the
set of vertices which are adjacent to v.

5.1. Outline of the proof. Theorem 11 tells us that after a burn-in period the
Glauber dynamics locally behaves like the BP fixed points ω∗ with high probability
(whp). (In this discussion, we use the term whp to refer to events that occur with
probability ≥ 1 − exp(−Ω(Δ)).) Meanwhile Theorem 9 says that there is an appro-
priate distance function D for which path coupling has contraction for pairs of states
that behave as in ω∗. A snag in simply combining this pair of results and deduc-
ing rapid mixing is that when Δ is constant then there is still a constant fraction
of the graph that does not behave like ω∗ even in the stationary distribution, and
the disagreements in our coupling proof may be biased toward this set. We follow
the approach in [4] to overcome the obstacles that arise and complete the proof of
Theorem 1.
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The high level description of the proof of Theorem 1 is simple. The notions of
local uniformity and the distance function D, even though they are in the core of
the rapid mixing analysis, do not appear in this level of description. We will discuss
them a bit later in the exposition. At this stage we need to introduce the notion of a
“heavy” vertex.

Definition 14. Let G = (V,E) be a graph of maximum degree Δ and let σ be an
independent set of G. For some ρ > 0, we say that σ is ρ-heavy for the vertex v ∈ V
if |B2(v) ∩ σ| ≥ ρΔ or |B1(v) ∩ σ| ≥ ρΔ/ logΔ.

Heavy vertices are undesirable in that for a vertex v which is heavy, in order for
its local neighborhood to attain the uniformity properties we need to first update
most of its neighbors (or most of its grandchildren). This requires Ω(n logΔ) steps
in which time disagreements spread far. In contrast for vertices v that are not heavy,
and for which all vertices within some distance r from v are not heavy as described
in the upcoming definition, we will prove that in O(n) steps the local neighborhood
of v attains the uniformity properties.

For our analysis we do not only care about some vertex v being heavy or not; we
need to take into account for the heavy neighbors of v within some radius r around
it, as well. More specifically, we introduce the following notions.

Definition 15. Let G = (V,E) be a graph of maximum degree Δ. Let σ, τ be
independent sets of G. Consider integer r > 0 and v ∈ V . If there is a vertex
w ∈ Br(v) such that w is ρ-heavy, then σ is called (ρ, r)-bad at v. Otherwise, we say
that σ is (ρ, r)-nice at v.

Similarly, for σ, τ such that σ(v) 
= τ(v), we say that v is a (ρ, r)-bad disagreement
if there exists a vertex w ∈ Br(v) such that either σ or τ is ρ-heavy at w. Otherwise,
we say that v is a (ρ, r)-nice disagreement.

For the range of λ we consider here, a very useful observation about the Glauber
dynamics (Xt) is that the bad vertices in the configuration Xt are very rare as long as
t = Ω(n logΔ). In particular, in Lemma 21, we show that for the Glauber dynamics
with fugacity λ < λc, after a burn-in period of length Ω(n logΔ), a vertex v becomes
(50, Δ9/10)-nice and remains nice for a period of length neΩ(Δ) whp.

We prove Theorem 1 by employing path coupling. As it turns out, for the path
coupling we need to focus on whether the disagreements we are dealing are bad or not.
In our coupling analysis, bad disagreements have an increased tendency to create new
ones. We need to use the fact that starting from a bad disagreement, after Ω(n logΔ)
steps this disagreement is unlikely to remain bad.

Putting the above into a firmer basis, the coupling considers the pair of Markov
chains (Xt) and (Yt). We introduce a distance metric for the configurations of the
chains. That is, we introduce a weighted Hamming distance β on the space of inde-
pendent sets of the underlying graph G. For Xt, Yt, we have that β(Xt, Yt) equals the
sum of the Hamming distance between Xt, Yt plus S times the number of (200, r)-bad
disagreements of radius r = 2Δ3/5, where S = Δ3C′/ε+1/2 for appropriate C′ > 0 and
ε > 0.

At this point we need to remark that the distance β should not be confused with
the metric D we introduced in section 1.3. The metric D is not used directly for the
path coupling analysis but it is used later to derive some more technical results, i.e.,
in Lemma 17.

Rapid mixing follows by using path coupling to show contraction w.r.t. the metric
β. We show contraction in a T -step coupling between (Xt) and (Yt), where T =
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(C′/ε)n(logΔ). In particular, given XiT and YiT , for some integer i ≥ 0, we show
that there is a T -step coupling such that the expected distance of X(i+1)T , Y(i+1)T is
much smaller than β(XiT , YiT ), i.e.,

(45) E
[
β
(
X(i+1)T , Y(i+1)T

) | XiT , YiT
] ≤ 2√

Δ
β (XiT , YiT ) .

Sketching the proof of (45) we have the following: Consider XiT , YiT with � disagree-
ments out of which h are (200, 2Δ3/5)-bad. Then we have that

β
(
X(i+1)T , Y(i+1)T

)
= �′ + S · h′,

where �′ is the number of disagreements betweenX(i+1)T , Y(i+1)T and h′ is the number

of the disagreements which are (200, 2Δ3/5)-bad. Then, (45) follows by bounding
appropriately E [�′] and E [h′].

We apply path coupling to (XiT , YiT ). Consider the interpolating sequence Z0, . . . ,
Z�, such that Z0 = XiT , Z� = YiT and, for 0 ≤ j < �, the pair Zj, Zj+1 differ on the
assignment of a single vertex, say, vertex wj . We couple Zj and Zj+1 and let Z ′

j, Z
′
j+1

be the pair of configurations we get after T steps.
There is a straightforward argument that if vertex wj is a (200, 2Δ3/5)-nice dis-

agreement for XiT and YiT , then we can have the interpolating sequence such that
wj is a (200, 2Δ3/5)-nice disagreement for Zj and Zj+1.

First, we get an upper bound on the expected number of disagreements in the
pair Z ′

j, Z
′
j+1. Note that some of these disagreements are nice and some are

(200, 2Δ3/5)-bad. We are going to bound the expectation of these two kinds of
disagreement, separately. Once we get the expected number of disagreements (for
both kinds) for each pair Z ′

j , Z
′
j+1, a standard argument from path coupling gives

E [h′],E [�′].
As far as E [h′] is concerned we use the following lemma.

Lemma 16. For δ > 0, 0 < ε < 1 and C > 10 let Δ ≥ Δ0. Consider a graph
G = (V,E) of maximum degree Δ and let λ ≤ (1 − δ)λc(Δ). Let (Xt), (Yt) be the
Glauber dynamics on the hard-core model with fugacity λ and underlying graphs G.
Assume that the two chains are maximally coupled. Then, the following is true:

Assume X0, Y0 to be such that X0 ⊕ Y0 = {v∗} and T = C′n/ε. Then it holds
that

1. E [|XT logΔ ⊕ YT logΔ|] ≤ Δ3C′/ε,
2. let ST logΔ denote the set of disagreements of (XT logΔ, YT logΔ) that are

(200, r)-bad for radius 2Δ3/5. Then E [|ST logΔ|] ≤ exp(−√
Δ).

For the bounds in Lemma 16 we do not need to use any uniformity arguments.
Mainly we use worst-case assumptions regarding the generation of disagreements.
Lemma 16 follows as a corollary from Lemma 23 which we present and prove in
section 5.4.

From Lemma 16.2 we have that there is a coupling such that the expected number
of disagreements between Z ′

j, Z
′
j+1 which are (200, 2Δ3/5)-bad is ≤ exp(−√

Δ). Path
coupling then implies that

E [h′] ≤ � exp(−
√
Δ).

Furthermore, since the number of (200, 2Δ3/5)-bad disagreements between XiT , YiT
is assumed to be h, there are at most h pairs Zj , Zj+1 such that the disagreement is
(200, 2Δ3/5)-bad. Lemma 16.1 implies that there is a coupling such that the expected
number of disagreements generated by such a pair is ≤ Δ3C′/ε.
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For each of the rest of the pairs Zj , Zj+1, i.e., those pairs whose disagreement is
(200, 2Δ3/5)-nice we use the following result.

Lemma 17. Let C′ > 10, ε > 0 and Δ0 = Δ0(ε). For any graph G = (V,E) on
n vertices, of maximum degree Δ > Δ0, girth g ≥ 7, and for λ ≤ (1 − δ)λc(Δ) the
following is true.

Let (Xt), (Yt) be the Glauber dynamics on the hard-core model with fugacity λ and
underlying graphs G. Let X0, Y0 be independent sets which disagree on a single vertex
v∗ that is (400, R)-nice for radius R = 2Δ3/5. For T = (C′/ε)n logΔ, we have that

E [|XT ⊕ YT |] ≤ 1/
√
Δ.

For each of the pairs Zj , Zj+1 whose disagreement is (200, 2Δ3/5)-nice, Lemma 17
implies that we have contraction. That is, the expected number of disagreements is
1/

√
Δ. Putting together the bounds for the nice and bad pairs we have that

E [�′] ≤ (�− h)/
√
Δ+ hΔ3C′/ε.

We require that the maximum degree Δ is large enough so that the quantity S, in
the definition of the metric β, satisfies S ≤ exp(

√
Δ)/

√
Δ. With this requirement for

Δ and the above bounds for E [�′] and E [h′], it is a matter of elementary calculations
to verify that (45) indeed holds.

To summarize all above, we have the following: for the bad disagreements we
should expect a “bad behavior” in terms of the new disagreements they create. That
is, if wj is bad, then the expected number of disagreements after a T -step coupling

of Zj, Zj+1 is at most Δ3C′/ε, as specified from Lemma 16. On the other hand, the
bad disagreements tend to be rare after a T -step coupling, i.e., regardless of whether
wj is heavy or not, the expected number of new heavy disagreements that are created

is at most exp(−√
Δ); this also follows from Lemma 16. That is, even though the

heavy disagreements create a lot of disagreements, they tend to be rare after a while
and their expected contribution is minuscule. The main load for proving rapid mixing
comes from the nice disagreements. For them, we use Lemma 17, which essentially
uses the uniformity result in Theorem 18.

Contraction using uniformity. We use the notion of local uniformity to prove
Lemma 17. In the remainder of this section, we sketch the basic results we prove to
derive the lemma.

We use the following, more technical version of the uniformity result contained in
Theorem 11.

Theorem 18. For all δ, ε > 0, let Δ0 = Δ0(δ, ε), C = C(δ, ε). For graph G =
(V,E) of maximum degree Δ ≥ Δ0 and girth ≥ 7, all λ < (1 − δ)λc(Δ), let (Xt) be
the continuous (or discrete) time Glauber dynamics on the hard-core model. If X0 is
(400, R)-nice at v ∈ V for radius R = R(δ, ε) > 1, it holds that

(46) Pr

⎡
⎣(∀t ∈ I) WXt(v) <

∑
z∈N(v)

ω∗(z)Φ(z) + εΔ

⎤
⎦ ≥ 1− exp (−Δ/C) ,

where the time interval I = [Cn, n exp(Δ/C)].

Note that the only difference between Theorem 11 and the one above is that the
later assumes that X0 is (400, R)-nice at v for radius R = R(δ, ε) > 1 and only O(n)
steps are required to attain the local uniformity properties. In contrast, Theorem 11
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does not make any assumption about X0, and hence O(n logΔ) steps are required.
The requirement for O(n logΔ) steps to get uniformity comes from the fact that the
vertex v for which we want to establish uniformity, at X0, is heavy. Then, O(n logΔ)
steps allow all for the neighbors of v to be updated at least once, whp.

The proof of Theorem 18 is quite technical and goes beyond the discussion of this
section. For this reason, the presentation of the proof is deferred to section 10.

We also need to use the following Theorem 19, which shows that for (Xt) and (Yt)
such that X0 and Y0 specify only a single, nice disagreement, there is an O(n)-step
coupling where the expected Hamming distance decreases.

Theorem 19. Let C′ > 10, δ, ε > 0, let Δ0 = Δ0(ε, δ), and let λ < (1− δ)λc(Δ).
For any graph G = (V,E) on n vertices and maximum degree Δ > Δ0 and girth g ≥ 7
the following holds:

Let (Xt), (Yt) be the Glauber dynamics on the hard-core model with fugacity λ and
underlying graphs G. Suppose that X0, Y0 differ only at v∗, while v∗ is (400, R)-nice
for R, where Δ3/5 ≤ R ≤ 2Δ3/5. For Tm = C′n/ε we have that

1. E [|XTm ⊕ YTm |] ≤ 1/3,
2. let Z denote the event that there exists a (200, R′)-bad disagreement for R′ =
R− 2

√
Δ at time Tm. Then it holds that

Pr [Z] ≤ 2 exp(−2
√
Δ).

The main argument for proving Theorem 19 is as follows: We let the two chains
run for some Θ(n) steps, such that v∗ and B√

Δ(v
∗) get uniformity. For this argument

we combine Theorem 18 and a simple union bound over the vertices in B√
Δ(v

∗). Note
that the period we wait for B√

Δ(v
∗) to get uniformity is only a small fraction of Tm,

the period we consider for the coupling.
During this initial period there is not much control on the number of disagree-

ments that are created between the coupled chains. That is, we have to make worst
case assumptions on how the new disagreements are generated. As it turns out there
is an ever increasing number of new disagreements as we allow the two chains to
evolve.

Despite this lack of control on the new disagreements, a key observation in our
argument is that whp they are confined within the ball B√

Δ(v
∗). Furthermore, whp

the vertices in this ball get uniformity. Then we have contraction in the path coupling
condition (by applying Theorem 9), and hence after O(n) further steps the expected
Hamming distance is small (by Theorem 19).

Note that Lemma 17 considers time intervalΘ(n logΔ) as opposed to Theorem 19,
which considers intervals of length O(n). We get Lemma 17 by splitting the Θ(n logΔ)
interval into epochs of length Θ(n), where for each epoch we apply Theorem 19.
Then, the technical challenge in proving Lemma 17 amounts to arguing that certain,
relatively rare, undesirable events, like the generation of bad disagreements, do not
have much influence on the creation of new disagreements.

5.2. Proof of Theorem 1. For the purposes of path coupling for every pair of
independent sets X,Y we consider shortest paths between X and Y along neighboring
independent sets. That is, X = Z0 ∼ Z1 ∼ · · · ∼ Z� = Y . This sequence Z1, . . . , Z�
we call interpolated independent sets for X and Y and for any i = 0, . . . , �−1 it holds
that |Zi ⊕ Zi+1| = 1.

Since the distance between neighboring configurations depends only on the vertex
on which they disagree, we can move from X to Y by first removing the vertices in
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X \ Y and then adding the vertices in Y \X . A key aspect of the above definitions
is that the niceness is inherited by interpolated independent sets.

Observation 20. If X,Y are independent sets, neither of which is ρ-heavy at ver-
tex v, then no interpolated independent set is ρ-heavy at v. Likewise, if v is (ρ, r)-nice,
then in every interpolated independent sets v is (ρ, r)-nice.

The above follows from the fact that if independent sets σ, τ are such that σ ⊆ τ ,
then a vertex v that is not ρ-heavy in τ is not ρ-heavy σ, as well.

Proof of Theorem 1. The proof of the theorem is very similar to the proof of [4,
Theorem 1].

As we saw in the proof sketch, we define a weighted Hamming distance β on
the space of independent sets. For Xt, Yt, we have that β(Xt, Yt) equals the sum
of the Hamming distance between Xt, Yt plus S times the number of (200, r)-bad
disagreements of radius r = 2Δ3/5, where S = Δ3C′/ε+1/2 for sufficiently large C′ > 0.
The theorem will follow by using path coupling and showing contraction w.r.t. the
metric β.

For showing Theorem 1 we need to apply path coupling to an arbitrary pair of
initial configurations. This implies that we need to deal with pairs whose disagreement
is heavy. We introduce the metric β, mainly, to deal with the cases that the coupling
of a pair of configurations starts from a heavy disagreement.

We require that the maximum degreeΔ is large enough so that the above quantity
S satisfies S ≤ exp(

√
Δ)/

√
Δ.

In the following claim we show that we have contraction w.r.t. to the metric β.
In particular, given XiT and YiT , for some integer i ≥ 0, there is a T -step coupling
such that the expected distance of X(i+1)T , Y(i+1)T is much smaller than β(XiT , YiT ),
where T = C′n(logΔ)/ε.

In particular we are going to show (45), which we restate here. For any i ≥ 0, we
have that

(45) E
[
β
(
X(i+1)T , Y(i+1)T

) | XiT , YiT
] ≤ 2√

Δ
β (XiT , YiT ) .

Before showing that (45) is true, let us show how it implies Theorem 1.
Using induction and (45) we obtain the following for T = C′n(logΔ)/ε:

(47) E [β (XiT , YiT )] ≤
(

2√
Δ

)i
× βmax,

where βmax is the maximum possible distance between two configurations, i.e., βmax =

(S +1)n. Choosing i∗ = C1 log(n/δ)
C′ logΔ , where C1 is sufficiently larger than C′, from (47)

and Markov’s inequality we get that

Pr [Xi∗T 
= Yi∗T ] ≤ E [β (Xi∗T , Yi∗T )] ≤ δ.

The above inequality implies that Tmix(δ) ≤ i∗T = (C1/ε) log(n/δ), which implies the
theorem.

It remains to show (45). For this, we follow the steps we described in section 5.1.
Consider XiT , YiT with � disagreements out of which h are (200, 2Δ3/5)-bad. Then
we have that

β
(
X(i+1)T , Y(i+1)T

)
= �′ + S · h′,

where �′ is the number of disagreements betweenX(i+1)T , Y(i+1)T and h′ is the number

of these disagreements which are (200, 2Δ3/5)-bad.
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Equation (45) follows by bounding appropriately E [�′] and E [h′]. For this, we
apply path coupling to (XiT , YiT ). Consider the interpolating sequence Z0, . . . , Z�,
such that Z0 = XiT , Z� = YiT , and, for 0 ≤ j < �, the pair Zj , Zj+1 differ on the
assignment of a single vertex, say, vertex wj . We couple Zj and Zj+1 and let Z ′

j, Z
′
j+1

be the pair of configurations we get after T steps. First, we get an upper bound on the
expected number of disagreements as well as the expected number of (200, 2Δ3/5)-bad
disagreements in the pair Z ′

j , Z
′
j+1. Then, path coupling implies the desired bounds

for E [h′],E [�′].
As far as E [h′] is concerned, from Lemma 16.2 we have that there is a cou-

pling such that the expected number of disagreements between Z ′
j , Z

′
j+1 which are

(200, 2Δ3/5)-bad is ≤ exp(−√
Δ) and hence E [h′] ≤ � exp(−√

Δ).
Since the number of (200, 2Δ3/5)-bad disagreements between XiT , YiT is assumed

to be h, there are at most h pairs Zj, Zj+1 such that the disagreement is
(200, 2Δ3/5)-bad. Lemma 16.1 implies that there is a coupling such that the expected
number of disagreements generated by the pair is ≤ Δ3C′/ε. For each of the rest of the
pairs Zj , Zj+1 (namely, those pairs whose disagreement is (200, 2Δ3/5)-nice), Lemma

17 implies that the expected number of disagreements is 1/
√
Δ. Putting together the

bounds for the nice and bad pairs we have that E [�′] ≤ (� − h)/
√
Δ+ hΔ3C′/ε.

With the previous bounds for E [�′] and E [h′], it is a matter of elementary calcu-
lations to verify that (45) indeed holds for C′ > 0 sufficiently large.

This concludes the proof of Theorem 1.

5.3. Burn-in. The following results that we provide in this section are standard
and we use them not only for proving rapid mixing of Glauber dynamics but in other
places, i.e., for our uniformity results. For this reason we consider both continuous
and discrete time Glauber dynamics. In the continuous time Glauber dynamics, the
spin of each vertex is updated according to an independent Poisson clock with rate
1/n.

The following lemma states that (Xt) requires O(n logΔ) to burn-in, regardless
of X0.

Lemma 21. For δ > 0 let Δ ≥ Δ0(δ) and Cb = Cb(δ). Consider a graph G =
(V,E) of maximum degree Δ. Also, let λ ≤ (1 − δ)λc(Δ).

Let (Xt) be the continuous (or discrete) time Glauber dynamics on the hard-
core model with fugacity λ and underlying graph G. Consider v ∈ V and let Ct
be the event that Xt is (50, r)-nice at v for radius r = Δ9/10. Then, for I =
[10n logΔ,n exp(Δ/Cb)] it holds that

Pr

[⋂
t∈I

Ct
]
≥ 1− exp (−Δ/Cb) .

Proof. For now, consider the continuous time version of (Xt). Recall that for Xt,
the vertex u is not ρ-heavy if both of the following conditions hold:

1. |Xt ∩B2(u)| ≤ ρΔ.
2. |Xt ∩N(u)| ≤ ρΔ/ logΔ.

First we consider a fixed time t ∈ I. Let c = t/n. Note that c = c(Δ) ≥ 10 logΔ. We
are going to show that there exists C′ > 0 such that

(48) Pr [Ct] ≥ 1− exp (−Δ/C′) .

Fix some vertex u ∈ Br(v). Let N0 be the set of vertices in B2(u) ∩ X0 which are
not updated during the time period (0, t]. That is, for z ∈ N0 it holds that X0(z) =
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Xt(z). Each vertex z ∈ B2(u) ∩X0 belongs to N0 with probability exp(−t/n) = e−c,
independently of the other vertices. Since |B2(u)∩X0| ≤ Δ2, it is elementary that the
distribution of |N0| is dominated by B(Δ2, e−c), i.e., the binomial with parameters
Δ2 and e−c.

Using Chernoff’s bounds we get the following: for c > 10 logΔ it holds that

(49) Pr [N0 > Δ/10] ≤ exp (−Δ/10) .

Additionally, let N1 ⊆ B2(u) contain every vertex u which is updated at least once
during the period (0, t]. Each vertex z ∈ N1, which is last updated prior to t at time
s ≤ t, becomes occupied during the update at time s with probability at most λ

1+λ ,

regardless of Xs(N(z)). Then, it is direct that |Xt∩N1| is dominated by B(N1,
λ

1+λ ).

Noting that |N1| ≤ |B2(u)| ≤ Δ2 and λ
1+λ < 2e/Δ, for Δ > Δ0 Chernoff’s bound

implies that

(50) Pr [|N1 ∩Xt| ≥ 15eΔ] ≤ exp (−15eΔ) .

From (49), (50), and a simple union bound, we get that

(51) Pr [|Xt ∩B2(u)| > 42Δ] ≤ exp (−Δ/20) .

Using exactly the same arguments, we also get that

(52) Pr [|Xt ∩N(u)| > 42Δ/ logΔ] ≤ exp (−Δ/20) .

Note that X0 could be such that |N(u) ∩ X0| = αΔ for some fixed α > 0. So as
to get |Xt ∩N(u)| ≤ 42Δ/ logΔ with large probability, we have to ensure that with
large probability all the vertices in N(v) are updated at least once. For this reason
the burn-in requires at least 10n logΔ steps.

From (51) and (52) we get the following: For any ρ > 50 it holds that

(53) Pr [Xt(u) is not ρ-heavy] ≤ exp (−Δ/25) .

Then (48) follows by taking a union bound over all the at most Δr vertices in Br(v).
In particular, for r = Δ9/10 and sufficiently large Δ, there exists C > 0 such that

Pr [Ct] ≤ Δr exp (−Δ/25) ≤ exp (−Δ/30) .

The above implies that (48) is indeed true but only for a specific time step t ∈ I.
Now we use a covering argument to deduce the above for the whole interval I.

For sufficiently small γ > 0, independent of Δ, consider a partition of the time

interval I into subintervals each of length γ2

Δ n, (where the last part can be shorter).
We let T (j) be the jth part in the partition.

Each z ∈ B2(w) is updated at least once during the time period T (j) with prob-

ability less than 2 γ
2

Δ , independently of the other vertices. Note that |B2(w)| ≤
Δ2. Clearly, the number of vertices in B2(v) which are updated during T (j) is
dominated by B(Δ2, 2γ2/Δ). Chernoff bounds imply that with probability at least
1 − exp(−20Δγ2), the number of vertices in B2(w) which are updated during the
interval T (j) is at most 20γ2Δ. Furthermore, changing any 20Δγ2 variables in B2(w)
can only make the independent set heavier by at most 20Δγ2.
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Similarly, we get that with probability at least 1 − exp(−γΔ), the number of
vertices in N(v) which are updated during the interval T (j) is at most γΔ/ logΔ.
The change of at most γΔ/ logΔ neighbors of v does not change the weight of its
neighborhood by more than γΔ/ logΔ.

From the above arguments we get that the following: We can choose sufficiently
large Cb > 0 such that for j ∈ {1, 2, . . . , �Δ/(γ2) exp(Δ/Cb)�} it holds that

Pr
[∩t∈T (j)Ct

] ≥ 1− exp (−100Δ/Cb) .

The result for continuous time follows by taking a union bound over all the �Δ/(γ2) exp
(Δ/Cb)� many subintervals of I.

For the discrete time case the arguments are very similar. The only extra ingre-
dient we need is that, now, the updates of the vertices are negatively associated. The
concentration inequalities above still hold since Chernoff’s bounds hold for negatively
associated random variables, e.g, see [3, Proposition 7]. The lemma follows.

The following lemma states that if (Xt) start from a not so heavy state it only
requires O(n) steps to burn in.

Lemma 22. For δ > 0, let Δ ≥ Δ0(δ) and Cb = Cb(δ). Consider a graph G =
(V,E) of maximum degree Δ. Also, let λ ≤ (1 − δ)λc(Δ).

Let (Xt) be the continuous (or discrete) time Glauber dynamics on the hard-core
model with fugacity λ and underlying graph G. Consider v ∈ V and let Ct be the event
that Xt is (50, R)-nice at v for radius R ≤ Δ9/10. Assume that X0 is (400, R)-nice at
v. Then, for I = [Cbn, n exp(Δ/(Cb logΔ))] we have that

Pr [∩t∈ICt] ≥ 1− exp (−Δ/(Cb logΔ)) .

The proof of Lemma 22 is almost identical to the proof of Lemma 21, and for this
reason we omit it.

In light of Lemma 21, Theorem 11 follows as a corollary from Theorem 18.

5.4. Expected Hamming distance for worst-case pair. The following lemma
considers a worst case pair of neighboring independent sets. It states some upper
bounds on the Hamming distance after Cn and Cn logΔ steps of the coupling.

Lemma 23. For δ > 0, 0 < ε < 1, and C > 10 let Δ ≥ Δ0. Consider a graph
G = (V,E) of maximum degree Δ and let λ ≤ (1 − δ)λc(Δ). Let (Xt), (Yt) be the
Glauber dynamics on the hard-core model with fugacity λ and underlying graphs G.
Assume that the two chains are maximally coupled. Then, the following is true:

Assume X0, Y0 to be such that X0⊕Y0 = {v∗} and T = Cn/ε. Then it holds that
1. E [|XT ⊕ YT |] ≤ exp(3C/ε).
2. E [|XT logΔ ⊕ YT logΔ|] ≤ Δ3C/ε.
3. Let ET be the event that at some time t ≤ T , |Xt ⊕ Yt| > Δ2/3. Then

E [|XT ⊕ YT | · 1{ET }] < exp(−
√
Δ).

4. Let ST logΔ denote the set of disagreements of (XT logΔ, YT logΔ) that are

(200, r)-bad for radius 2Δ3/5. Then E [|ST logΔ|] ≤ exp(−√
Δ).
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Note that Lemmas 23.2 and 23.4 correspond to Lemma 16. That is, Lemma 16
is contained in the statement of Lemma 23. We prove each of the four statements of
Lemma 23 in turn.

Proof of Lemmas 23.1 and 23.2. The treatments for both cases are very similar.
Note that each vertex can only become disagreeing at time step t if it is updated at
time t and it is next to a vertex which is also disagreeing. Furthermore, for such
vertex the probability to become disagreeing is at most e/Δ. Using the observations
and noting that each disagreeing vertex has at most Δ nondisagreeing neighbors we
get the following: The expected number of disagreements at each time step increases
by a factor which is at most (1 +Δ e

nΔ) ≤ exp(3/n).
By using induction, it is straightforward that for any t ≥ 0 it holds that

(54) E [Xt ⊕ Yt] ≤ exp (3t/n) .

Then, Statement 1 follows by plugging into (54) the time t = Cn/ε. Statement 2
follows by plugging into (54) the time t = T logΔ.

Proof of Lemma 23.3. Recall that for any Xt, Yt, we have that Dt = {w : Xt 
=
Yt}, while letting

D≤t =
⋃
t′≤tDt′ .

Also, let H≤t = |D≤t|. We prove that for any integer 1 ≤ � ≤ n, for T = Cn/ε, it
holds that

(55) Pr [H≤T ≥ �] ≤ exp
(
−(�− 1)e−6C/ε

)
.

For 1 ≤ i ≤ �, let ti be the time at which the ith disagreement is generated (possibly
counting the same vertex set multiple times). Denote t0 = 0. Let ηi := ti − ti−1

be the waiting time for the formation of the ith disagreement. Since we assumed
that X0 ⊕ Y0 = {v∗}, we have that η1 = 0. For i ≥ 1, conditioned on the evolution
at all times in [0, ti], the distribution of ηi+1 stochastically dominates a geometric
distribution with success probability ρi and range {1, 2, . . .}, where

ρi =
e ·min{iΔ, n− i}

nΔ
.

This is because at all times prior to ti+1 we have Ht ≤ i, while the sets H≤t increases
with probability at most ρi at each time step, regardless of the history. The quantity
min{iΔ, n − i} in the numerator in the expression for ρi is an upper bound on the
number of vertices that are nondisagreeing neighbors of the disagreeing vertices. The
quantity e/(nΔ) is an upper bound for the probability of a neighbor of a disagreement
to be chosen and become a disagreement itself.

Hence, η1+· · ·+η� stochastically dominates the sum of independent geometrically
distributed random variables with success probability ρ1, . . . , ρ�−1. For any real x ≥ 0
it holds that

Pr [ηi+1 ≥ x] ≥ (1 − ρi)

x�−1 ≥ exp

[
− ρi
1− ρi

x

]
≥ e2ρix.

In the above series of inequalities we used that 1− x > exp(− x
1−x) for 0 < x < 1 and

ρi < 1/3.
The above inequality implies that η1 + · · ·+ η� dominates the sum of exponential

random variables with parameters 2ρ1, 2ρ2, . . . , 2ρ�−1. Since ρi ≤ iρ, where ρ = e
n ,
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we have that η1 + · · · + η� stochastically dominates the sum of exponential random
variables ζ1, ζ2, . . . , ζ�−1 with parameters 2ρ, 4ρ, . . . , 2(�− 1)ρ, respectively.

Consider the problem of collecting � − 1 coupons, assuming that each coupon is
generated by a Poisson process with rate 2ρ. The time interval between collecting the
ith coupon and the i+1’st coupon is exponentially distributed with rate 2(�−1− i)ρ.
Hence the time to collect all �− 1 coupons has the same distribution as ζ1+ ζ2+ · · ·+
ζ�−1. But the event that the total delay is less than T is nothing but the intersection
of the (independent) events that all coupons are generated in the time interval [0, T ].
The probability of this event is

(1− exp−2Tρ)�−1 ≤ exp (−(�− 1) exp (−2Ce/ε)) .

The above completes the proof of (55). Then we proceed as follows:

E [|XT ⊕ YT | · 1{ET}] ≤ E [H≤T1{ET}] ≤
n∑

�=Δ2/3

� ·Pr [H≤T = �]

≤ Δ2/3 ·Pr
[
H≤T ≥ Δ2/3

]
+

n∑
�=Δ2/3+1

Pr [H≤T ≥ �]

< Δ2/3
n∑

�=Δ2/3

Pr [H≤T ≥ �]

< Δ2/3
n∑

�=Δ2/3

exp (−(�− 1) exp (−6C/ε)) (from (55))

≤ 2Δ2/3 exp(−Δ2/3e−6C/ε).(56)

Note that the above quantity is at most exp(−√
Δ) for large Δ. This completes the

proof.

Proof of Lemma 23.4. For this proof we use Lemma 21. We consider the contri-
bution to the expectation E [|ST logΔ|] from the vertices inside the ball BR(v

∗) and

the vertices outside the ball, i.e., V \BR(v∗), where R =
√
Δ.

First consider the vertices in BR(v
∗). Lemma 21 implies that some vertex w ∈

BR(v
∗) at time T ′ = T logΔ ≤ exp(Δ/C) is (50, 2Δ3/5)-nice with probability at least

1− exp(−Δ/C). This observation implies that

(57) E [|ST logΔ ∩BR(v∗)|] ≤ exp(−Δ/C)|BR(v∗)| ≤ exp
(
−4

√
Δ
)
.

To bound the number of disagreements outside BR(v
∗), we observe that each such

disagreement comes from a path of disagreements which starts from v∗. Such a path
of disagreements is of length at least R. This observation implies that E[|ST logΔ ∩
B̄R(v

∗)|] is upper bounded by the expected number of disagreements that start from
v∗ and have length at least R.

Note that there are at most Δ� many paths of disagreement of length � that start
from v∗. Furthermore, for a fixed path of length � to become path of disagreement
up to time T logΔ, there should be � updates which turn its vertices into disagreeing.
Each vertex is chosen to be updated with probability 1/n, while it becomes disagreeing
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with probability at most e/Δ. Hence we have the following:

E
[|ST logΔ ∩ B̄R(v∗)|

] ≤ ∑
�≥R

Δ�

(
T logΔ

�

)( e

nΔ

)�

≤
∑
�≥R

(
e2T logΔ

�n

)�
(since

(
n
s

) ≤ (ne/s)s)

≤
∑
�≥R

(
e2C logΔ

�ε

)�

≤ (1/20)
√
Δ ≤ exp

(
−2

√
Δ
)
.(58)

Summing the bound of E [|ST logΔ ∩BR(v∗)|] and E
[|ST logΔ ∩ B̄R(v∗)|

]
from (57)

and (58), respectively, gives the desired bound for E [|ST logΔ|].
5.5. Proof of Theorem 19. Fix v and R as specified in the statement of the

theorem. Recall that forXt, Yt we letDt = {w : Xt⊕Yt} and denoteH(Xt, Yt) = |Dt|.
That is, H(Xt, Yt) is the Hamming distance between Xt, Yt. We let the accumulative
difference be

D≤t =
⋃
t′≤tDt.

Also, let H≤t = |D≤t|. Recall that we define the distance between the two chains
Xt, Yt as follows:

D(Xt, Yt) =
∑

u∈Xt⊕Yt

Φ(u),

where Φ : V → [1, 12] is defined in Theorem 9. The metric D(Xt, Yt) generalizes the
Hamming metric in the following sense: the disagreement in each vertex v instead of
contributing one it contributes Φ(v). Since Φ(u) ≥ 1, for every u ∈ V , for any two
Xt, Yt we always have

(59) D(Xt, Yt) ≥ H(Xt, Yt).

For proving the theorem we use the following result which relates the uniformity
property with convergence w.r.t. the metric D we define above.

Lemma 24. For δ > 0, let sufficiently small ε = ε(δ) and Δ ≥ Δ0. Consider a
graph G = (V,E) of maximum degree Δ and let λ ≤ (1− δ)λc(Δ). Also, let (Xt), (Yt)
be the Glauber dynamics on the hard-core model with fugacity λ and underlying graphs
G.

For some time t, assume that Xt ⊕ Yt = {v∗} for some v∗ ∈ V such that

WXt(v
∗) ≤

∑
z∈N(v∗)

ω∗(z) · Φ(z) + εΔ;(60)

WXt(v) is defined in (18). Then, coupling the chains maximally we have that

E [D(Xt+1, Yt+1)−D(Xt, Yt) | Xt, Yt] < −c/n
for appropriate c = c(ε, δ) > 0.

Proof. Let Φmax = maxz∈V Φ(z), where Φ : V (G) → R≥0, as in Theorem 9. Each

vertex v ∈ V is called a “low degree vertex” if deg(v) ≤ Δ̂ = Δ
2e·Φmax

.
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For a low degree vertex v∗ it turns out that assumption (60) is not particularly
useful. This follows from the observation that the quantity εΔ may be greater than
the actual degree of the vertex v∗. Then, the information we get from (60) about the
number of unblocked neighbors of v∗ becomes trivial. However, the assumption that
the degree of v∗ is small, by itself, is sufficient to yield the desirable result.

It holds that

E [D(Xt+1, Yt+1)−D(Xt, Yt)] ≤ −Φ(v
∗)

n
+

1

n

∑
z∈N(v∗)

λ

1 + λ
Φ(z).

We get the inequality above by working as follows: The distance between the two
chains changes when we updated either v∗ or some vertex z ∈ N(v∗).

With probability 1/n the the update involves the vertex v∗. Since there is no
disagreement at the neighborhood of v∗ we can coupleXt and Yt such thatXt+1(v

∗) =
Yt+1(v

∗) with probability 1. That is, the distance between the chain decreases by
Φ(v∗).

We make the (worst case) assumption that all the vertices in N(v∗) are unblocked
and unoccupied. We have a new disagreement between the two chains, i.e., an increase
in the distance, only if some vertex z ∈ N(v∗) is chosen to be updated and one of the
chains sets z occupied. Since Xt(v

∗) 
= Yt(v
∗) one of the chains cannot set z occupied.

Each z ∈ N(v∗) is chosen with probability 1/n and it is set occupied by one the two
chains with probability λ

1+λ . Then, the distance between the chains increases by Φ(z).
Then we get the following:

E [D(Xt+1, Yt+1)−D(Xt, Yt)] ≤ −Φ(v
∗)

n
+

1

n

∑
z∈N(v∗)

λ

1 + λ
Φ(z)

≤ − 1

n

(
Φ(v∗)− Φmax · (1− δ)λc(Δ) · Δ̂

)
≤ − 1

n
(Φ(v∗)− 1/2) ≤ −1/(2n),(61)

where the last inequality follows from the fact that 1 ≤ Φ(u) ≤ 12 for every u ∈ V ,
Δ̂ = Δ

2e·Φmax
, and λ ≤ e/Δ. For the case where v is a high degree vertex we have the

following:

E [D(Xt+1, Yt+1)−D(Xt, Yt)] ≤ −Φ(v
∗)

n
+

1

n

∑
z∈N(v∗)

λ

1 + λ
ω∗(z)Φ(z) +

1

n

λ

1 + λ
εΔ.

We get the inequality above by working as follows. As before, the interesting cases are
those where the update involves the vertex v∗ or N(v∗). As we argued above when
the vertex v∗ is updated the distance between the two chains decreases by Φ(v∗).

As far as the neighbors of v∗ are concerned we observe the following: If some z ∈
N(v∗) is blocked, then with probability 1 is set unoccupied in both chains. This means
that Xt+1(z) = Yt+1(z), i.e., the distance between the two chains remains unchanged.
If the update involves an unblocked vertex z ∈ N(v∗), then with probability λ

1+λ the
vertex z becomes occupied at only one of the two chains and the distance between the
chains increases by Φ(z). The assumption (60) implies that the expected contribution
from the unblocked neighbors of v∗ is

1

n

λ

1 + λ
WXt(v

∗) ≤ 1

n

∑
z∈N(v∗)

λ

1 + λ
ω∗(z)Φ(z) +

1

n

λ

1 + λ
εΔ.
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Then we get that

E [D(Xt+1, Yt+1)−D(Xt, Yt) | Xt, Yt]

≤ −Φ(v
∗)
n

+
1

n

∑
z∈N(v∗)

λ

1 + λ
ω∗(z)Φ(z) +

1

n

λ

1 + λ
εΔ

≤ − 1

n

⎛
⎝Φ(v∗)− ∑

z∈N(v∗)

λ

1 + λ
ω∗(z)Φ(z)− eε

⎞
⎠

≤ − 1

n

⎛
⎝Φ(v∗)− ∑

z∈N(v∗)

λ

1 + ω∗(z)λ
ω∗(z)Φ(z)− eε− λ2

⎞
⎠(62)

≤ − 1

n

(
δΦ(v∗)/6− eε− λ2

)
(by (13))

≤ −c/n,(63)

where (62) follows since ω∗(z) ∈ [0, 1] and 1 ≤ Φ(z) ≤ 12. The last inequality follows
by using that λ < e/Δ and by taking sufficiently small ε > 0 and large Δ.

The lemma follows from (61) and (63).

We start by proving statement 1 of Theorem 19.

Proof of Theorem 19.1. In this proof we use the uniformity result stated in The-
orem 18. Let

Tb = max{Cbn,Can},

where the quantities Cb, Ca are from Lemma 22 and Theorem 18, respectively.
Since Tm ≤ n exp(Δ/C), we can apply Theorem 18 to conclude that the desired

local uniformity properties holds with high probability for all t ∈ I := [Tb, Tm].
For t ≥ Tb we define the following bad events:
• E(t) denotes the event that at some time s < t, it holds that Hs > Δ2/3,

where Hs = |Xs ⊕ Ys|.
• B1(t) denotes the event that D≤t 
⊆ B√

Δ(v
∗).

• B2(t) denotes the event that there exists a time Tb ≤ τ ≤ t, z ∈ B√
Δ(v

∗)
such that

WXt(z) > Θ(z, ε) =
∑

u∈N(z)

ω∗(u)Φ(u) + εΔ,

where ω∗ ∈ [0, 1]V is defined in Lemma 4 and Φ : V → [1, 12] is defined in
Theorem 9.

Also, we let the event

B(t) = B1(t) ∪ B2(t),

while we let the “good” event

G(t) = Ē(t) ∩ B̄(t).

We follow the convention that we drop the time t for all of the above events when we
are referring to the event at time Tm.
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We bound the Hamming distance by conditioning on the above event in the
following manner:

E [HTm ] = E [HTm1{E}] + E
[
HTm1{Ē}1{B}]+ E

[
HTm1{Ē}1{B̄}]

≤ E [HTm1{E}] +Δ2/3Pr [B] + E [HTm1{G}]
≤ exp(−

√
Δ) +Δ2/3Pr [B] + E [HTm1{G}],(64)

where in the last inequality we used Lemma 23.3. For the second term in the (64) we
prove the following:

(65) Pr [B] ≤ exp
(
−
√
Δ
)
.

Finally, for the third term in the (64) we prove the following:

(66) E [HTm1{G}] ≤ 1/9.

Part 1 of the theorem follows by plugging into (64) the bounds in (65) and (66).

Proof of (65). We can bound the probability of the event B1 by a standard paths
of disagreement argument. We are looking at the probability of a path of disagreement
of length � =

√
Δ, within Tm = C′n/ε steps, and hence

Pr [B1] ≤ Δ�

(
Tm
�

)( e

nΔ

)�
≤ (

e2C′/ε
)�

(since
(
N
i

) ≤ (Ne/i)i)

≤ exp
(
−2

√
Δ
)
.(67)

We can bound the probability of the event B2 by working as follows: The assumption
is that v is (200, R)-nice for radius R ≥ Δ3/5. Then, each vertex z ∈ B√

Δ(v
∗)

is (400, R′)-nice for the constant radius R′(γ, δ) required for the statement for the
hypothesis of Theorem 18. Therefore, in the interval I = [Tb, Tm] the uniformity
condition for each vertex z fails with probability at most exp(−Δ/C). More precisely,
we have that

(68) Pr [B2] ≤ exp(−Δ/C)Δ
√
Δ+1 ≤ exp

(
−2

√
Δ
)
.

Using a simple union bound, we get that Pr [B] ≤ Pr [B1]+Pr [B2]. Then (65) follows
by plugging (67) and (68) into the union bound.

Proof of (66). Recall that for the two chains Xt, Yt we defined the following no-
tion of distance:

D(Xt, Yt) =
∑

w∈Xt⊕Yt

Φ(w).

Note that for every z ∈ V it holds that 1 ≤ Φ(z) ≤ 12. This implies that we always
have that D(Xt, Yt) ≥ H(Xt, Yt), where H(Xt, Yt) is the Hamming distance between
Xt, Yt. For showing that (66) indeed holds, it suffices to show that

(69) E [D(XTm , YTm)1{G}] ≤ 1/9.

Let Q0 = Xt, Q1, Q2, . . . , Qh = Yt be a sequence of independent sets where h =
|Xt ⊕ Yt| and Qi+1 is obtained from Qi by changing the assignment of one vertex wi
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from Xt(wi) to Yt(wi). We maximally couple Qi and Qi+1 in one step of the Glauber
dynamics to obtain Q′

i and Q
′
i+1. More precisely, both chains update the spin of the

same vertex and maximize the probability of choosing the same new assignment for
the chosen vertex.

Consider a pair Qi, Qi+1. Note that Qi, Qi+1 differ only on the assignment of
wi. With probability 1/n both chains update the spin of vertex wi. Since all of the
neighbors of wi have the same spin, with probability 1 we assign the same spin on wi
in both chains. Such an update reduces the distance of the two chains by Φ(wi).

Consider now the update of vertex w ∈ N(wi). Also, without loss of generality
assume that Qi(wi) is occupied while Qi+1(wi) is unoccupied. It is direct that the
worst case is when w is unblocked in the chain Qi+1. Otherwise, i.e., if w is blocked,
then with probability 1 we have Q′

i+1(w) = Q′
i(w) =“unoccupied.”

Assuming that wi is blocked in the chain Qi and unblocked in the chain Qi+1, we
get Q′

i(w) 
= Q′
i+1(w) if the coupling chooses to set wi occupied in Q′

i+1. Otherwise,
we have Q′

i(w) = Q′
i+1(w). Therefore, the disagreement happens with probability

≤ λ
1+λ < e/Δ, where the last inequality holds for λ < λc and Δ ≥ Δ0.
Therefore, given Qi, Qi+1, we have that

(70) E
[D(Q′

i, Q
′
i+1)−D(Qi, Qi+1)

] ≤ −Φ(wi)
n

+
e

nΔ

∑
z∈N(wi)

Φ(z).

Since we have that 1 ≤ Φ(z) ≤ 12, for any z ∈ V and |N(v)| ≤ Δ, we get the trivial
bound that

E
[D(Q′

i, Q
′
i+1)−D(Qi, Qi+1)

] ≤ 35/n.

Therefore,

(71) E [D(Xt+1, Yt+1)] ≤ (1 + 35/n)D(Xt, Yt).

The above bound is going to be used only for the burn-in phase, i.e., the first Tb steps.
We use a significantly better bound for the remaining Tm − Tb steps.

Since the event G holds, for all 0 ≤ i ≤ h, z ∈ BR(v
∗) and all t ∈ [Tb, Tm − 1], we

have that

(72) WQi(z) ≤ Θ(z, ε) +Δ2/3 ≤ Θ(z, 2ε).

The first inequality follows from our assumption that both event Ē and B̄2 occur. The
second follows from the definition of the quantity Θ.

Using Lemma 24 we get the following: For Qi, Qi+1 which satisfy (72) it holds
that

E
[D(Q′

i, Q
′
i+1)

] ≤ (1− C′/n)D(Qi, Qi+1)

for appropriately chosen C′. The above inequality implies the following: given Xt, Yt
and assuming that G(t) holds, we get that

(73) E [D(Xt+1, Yt+1)] ≤ (1− C/n)D(Xt, Yt).

Let t ∈ [Tb, Tm − 1]. Then we have that

E [D(Xt+1, Yt+1)1{G(t)}] = E [E [D(Xt+1, Yt+1)1{G(t)} | X0, Y0, . . . , Xt, Yt]]

= E [E [D(Xt+1, Yt+1) | X0, Y0, . . . , Xt, Yt]1{G(t)}]
≤ (1− C/n)E [D(Xt, Yt)1{G(t)}]
≤ (1− C/n)E [D(Xt, Yt)1{G(t− 1)}].
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The first equality is Fubini’s theorem, and the second equality is due to the fact that
X0, Y0, . . . Xt, Yt determine uniquely G(t). The first inequality uses (73) while the
second inequality uses the fact that G(t) ⊂ G(t− 1). By induction, it follows that

E [D(XTm , YTm)1{G(Tm)}] ≤ (1− C/n)
Tm−Tb E [D(XTb

, YTb
)1{G(Tb)}].

Using the same arguments and (71) for E [D(XTb
, YTb

)1{G(Tb)}] we get that

(74) E [D(XTm , YTm)1{G(Tm)}] ≤ (1− C/n)
Tm−Tb (1 + 35/n)

Tb D(X0, Y0).

The result follows from the choice of constants and noting that D(X0, Y0) < 12.

Proof of Theorem 19.2. Recall from the proof of Theorem 19.1 that B1 is the
event that D≤Tm 
⊆ B√

Δ(v
∗). Also consider J1 to be the event that DTm 
⊆ B√

Δ(v
∗).

Noting that J1 ⊂ B1, we get that

Pr [J1] ≤ Pr [B1] ≤ exp
(
−
√
Δ
)
,

where the last inequality follows from (67).
Let J2 be the event that XTm or YTm has a vertex w ∈ B√

Δ(v
∗) which is not

(50, r)-nice, where r = R − √
Δ − 2. By the hypothesis of Theorem 19, each vertex

w ∈ B√
Δ(v

∗) is (400, r)-nice for radius r = R − √
Δ in both X0 and Y0. Therefore,

by Lemma 22, each vertex w ∈ B√
Δ(v

∗) is (50, r)-nice for radius r = R − √
Δ − 2

in XTm and YTm with probability ≥ 1 − exp(−Δ/(Cb logΔ)). Therefore, by a union
bound over the vertices in B√

Δ(v
∗) we have that

Pr[J2] ≤ exp(−Δ/(2Cb logΔ)).

Theorem 19.2. follows by noting that Pr[Z] ≤ Pr[J1] + Pr[J2].

5.6. Proof of Lemma 17.

Proof of Lemma 17. The proof of the lemma is identical to the proof of [4, Lem-
ma 12]. We present it here to illustrate how the various results in this paper combine
together.

For proving the lemma, the basic idea is to combine Lemma 23, Theorem 19,
and path coupling. To be more specific, we partition the time interval [0, T ] into
epochs, and each one is of length Tm = C′n/ε. For each epoch i ≥ 1 we analyze
the expected number of disagreements, i.e., E[|XiTm ⊕ YiTm |]. Given XiTm , YiTm we
analyze E[|X(i+1)Tm

⊕ Y(i+1)Tm
|] by using path coupling. Path coupling considers a

sequence of configurations Z0, . . . , Z� for some �, such that Z0 = XiTm , Z� = YiTm and
each Zj , Zj+1 differ on the assignment of a single vertex wj . We couple each Zj, Zj+1

for Tm steps and we get Z ′
j, Z

′
j+1. Path coupling implies that

(75) E
[|X(i+1)Tm

⊕ Y(i+1)Tm
|] ≤ �−1∑

j=0

E
[|Z ′

j ⊕ Z ′
j+1|

]
.

We call the sequence Z0, . . . , Z� as the interpolating sequence. In the rest of the proof
when we use the phrase “by path coupling” we imply that we use the interpolating
sequence and the above relation to bound expected number of disagreements at a
specific moment.

For bounding each E[|Z ′
j ⊕ Z ′

j+1|] we use either Lemma 23 or Theorem 19. The
choice depends on whether wj , the vertex that Zj, Zj+1 disagree, is nice or bad. For
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the (i + 1)th epoch, we consider the disagreement between XiTm and YiTm being
(200, Ri)-bad or not for Ri = 2Δ3/5 − 2i

√
Δ.

We need to define the following events: Let E ′
i be the event that for some t ≤ iTm

we have |Xt ⊕ Yt| ≥ Δ2i/3. Let Si be the event that for some t ≤ iTm there exists a
(200, Ri)-bad disagreement for Xt and Yt.

Letting Hi+1 = |X(i+1)Tm
⊕ Y(i+1)Tm

|, we have

(76) E [Hi+1] ≤ E [Hi+11{E ′
i}] + E

[
Hi+11{S̄i}

]
+ E

[
Hi+11{Ē ′

i}1{Si}
]
.

The lemma follows by bounding appropriately the three summands on the r.h.s. of
(76).

As far as E [Hi+11{E ′
i}] is concerned, we have that

E [Hi+11{E ′
i}] = E [E [Hi+11{E ′

i} | Xt, Yt, for t ≤ iTm]]

= E [E [Hi+1 | Xt, Yt, for t ≤ iTm] 1{E ′
i}]

≤ exp (3C′/ε)E [Hi 1{E ′
i}](77)

≤ exp (3C′/ε)
(
E
[
Hi 1{E ′

i−1}
]
+ E

[
Hi 1{E ′

i}1{Ē ′
i−1}

])
,(78)

where in (77) we use Lemma 23.1 and path coupling. We proceed by bounding the
two terms in the r.h.s. of (78).

Starting with E[Hi 1{E ′
i}1{Ē ′

i−1}] consider the interpolating sequence Z0, . . . , Z�
we use for X(i−1)Tm

and Y(i−1)Tm
so as to bound the expectation of Hi. For every

j = 0, . . . , � − 1, let (Z ′
j , Z

′
j+1) be the pair of configuration after coupling the pair

(Zj , Zj+1) for Tm steps, while Hi,j = |Z ′
j ⊕ Z ′

j+1|. Let E ′
i,j be the event that Hi,j ≥

Δ2/3. For both E ′
i and Ē ′

i−1 to occur there should be at least one j ∈ {0, . . . , � − 1}
such that Hi,j ≥ Δ2/3, i.e., the event E ′

i,j occurs.

Noting that Hi ≤
∑Hi−1

j=1 Hi,j and E ′
i = Ei−1 ∪ (∪Hi−1

j=1 E ′
i,j) we have

Hi1{Ei}1{Ē ′
i−1} ≤

Hi−1∑
j=1

Hi,j

Hi−1∑
k=1

1{Ei,k}1{Ē ′
i−1}

≤
Δ2(i−1)/3∑
j,k=1

Hi,j1{Ei,k}

≤ Δ2(i−1)/3
Δ2(i−1)/3∑
j=1

Hi,j1{Ei,j}.

Applying Lemma 23 for each pair Zj, Zj+1, path coupling yields

E
[
Hi 1{E ′

i}1{Ē ′
i−1}

] ≤ Δ4(i−1)/3 exp
(
−
√
Δ
)
.(79)

As far as E[Hi 1{E ′
i−1}] is concerned, we use induction. More specifically, we have

E [Hi+1 1{E ′
i}] ≤ E

[
Hi 1{E ′

i} 1{E ′
i−1}

]
+ E

[
Hi 1{E ′

i} 1{Ē ′
i−1}

]
≤ E

[
Hi 1{E ′

i−1}
]
+ E

[
Hi 1{E ′

i} 1{Ē ′
i−1}

]
≤ E

[
Hi 1{E ′

i−1}
]
+Δ4(i−1)/3 exp

(
−
√
Δ
)
.(80)

Using the above and noting that H0 = 1 we get

(81) E
[
Hi 1{E ′

i−1}
] ≤ exp (3iC′/ε)Δ4(i)/3 exp

(
−
√
Δ
)
.
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As far as the second summand in the r.h.s. of (76) we have

E
[
Hi+11{S̄i}

]
= E

[
E
[
Hi+11{S̄i} | Hi

]]
≤ 3−1E

[
Hi1{S̄i}

]
≤ 3−1E

[
Hi1{S̄i−1}

]
≤ 3−(i+1)H0 = 3−(i+1).(82)

As far as the third summand in the r.h.s. of (76) we have

E
[
Hi+11{Ē ′

i}1{Si}
]
= E

[
E
[
Hi+1 | XiTm,YiTm

]
1{Ē ′

i}1{Si}
]

≤ exp (3C′/ε)E
[
Hi1{Ē ′

i}1{Si}
]

≤ Δ2i/3 exp (3C′/ε)Pr
[Si \ Ē ′

i

]
.(83)

We bound Pr[Si \ Ē ′
i ] by using Theorem 19.2 to each pair of neighboring inde-

pendent sets that arise at time jTm for j = 0, 1, . . . , i − 1. Since E ′
i does not occur,

there are at most Δ2i/3 neighboring pairs that we need to consider for each j. For
each of these pairs we use Theorem 19.2 to bound the probability that a (200, Ri)-bad
disagreement is generated within the following Tm steps. Taking a union bound over
all of the ≤ iΔ2i/3 neighboring pairs we consider we get that

(84) E
[
Hi+11{Ē ′

i}1{Si}
] ≤ i exp (3C′/ε)Δ4i/3 exp

(
−
√
Δ
)
.

Plugging (81), (82), and (84) into (76) we get that

(85) E [Hi+1] ≤ 3−(i+1) + exp (3C′/ε)Δ5i/3 exp
(
−
√
Δ
)
≤
(√

Δ
)−1

,

where the last inequality follows by choosing sufficiently large Δ.

6. Rapid mixing for random regular (bipartite) graphs. It turns out that
the girth restriction of Theorem 1 can be relaxed a bit. The main technical reason why
we need girth at least 7 is for establishing Theorem 18, our so-called local uniformity
result for the Glauber dynamics. Roughly speaking, local uniformity amounts to
showing that the number of unblocked neighbors of a vertex v is concentrated about
the quantity

∑
z∈N(v) ω

∗(z), where ω∗ ∈ [0, 1]V are the fixed points of a BP-like
system of equations.

The analysis of local uniformity can be carried out for a graph with short cycles,
i.e., cycles of length less than 7, as long as these cycles are far apart. Generally, the
effect of a short cycle is an increase to the fluctuation of the number of unblocked
neighbors of a vertex. If the short cycles in G are far apart from each other, then the
cumulative increase in the fluctuation is negligible.

Proof of Theorem 2. For an integer r > 0, let Gn(Δ, r) be the family of Δ-regular
graphs on n vertices such that the following holds: For each G ∈ Gn(r), any two cycles
of length < 7 are at graph distance greater than r from each other.

First, we are going to show the following: there exist r = r(δ), Δ0 = Δ0(δ), and
C = C(δ) for all Δ ≥ Δ0, all λ < (1− δ)λc(Δ), all ε > 0, and for all G ∈ Gn(Δ, r) the
mixing time of the Glauber dynamics on G satisfies

Tmix(ε) ≤ Cn log(n/ε).
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Since we consider regular graphs, the weights we introduce in Theorem 9 are not
necessary for the path coupling. Additionally, it is direct to see that once we have
established the local uniformity property then the path coupling arguments from
section 5.2 hold and imply rapid mixing. Hence, for G ∈ Gn(Δ, r), the only aspect of
the rapid mixing proof that changes in the presence of short cycles is proving local
uniformity.

For an independent set σ and vertex v, let

Q(σ, v) =
∑

z∈N(v)

Uz,v(σ).

Uniformity amounts to showing that for appropriate γ > 0 we have the following: Let
(Xt) be the continuous (or discrete) time Glauber dynamics on the hard-core model
with fugacity λ. If X0 is (400, R)-nice at v ∈ V for radius R = R(δ, γ) > 1, there is
C1 > 0 such that

(86) Pr

⎡
⎣(∀t ∈ I) Q(Xt, v) <

∑
z∈N(v)

ω∗(z) + γΔ

⎤
⎦ ≥ 1− exp (−Δ/C1) ,

where the time interval I = [C1n, n exp(Δ/C1)] and ω
∗ is defined in Lemma 4.

Let Y contain the set of vertices in G which do not belong to any short cycle,
namely, any cycle of length < 7. For each vertex u and some independent set σ, we
define

Z(σ, u) =
∏

z∈N̂(u)

Pr [z /∈ Y | u /∈ Y, Y (S2(u)) = σ(S2(u))],

where N̂(u) ⊆ N(u) contains every w ∈ N(u) such that w ∈ Y and N(w) ⊂ Y. Recall
from (21) the quantity R(σ, u). The difference between the quantities R(σ, u) and
Z(σ, u) is that the former considers N(u) and the later considers N̂(u). Note that
|N(u) \ N̂(u)| ≤ 2.

To get some intuition why we choose to define Z(σ, u) consider the following. Let
Λ be the set of vertices that are reachable from u through paths of length 2 that don’t
use vertices in N(u) \ N̂(u). Then, the subgraph that is induced by Λ is a tree. The
local tree like neighborhood that we used to establish uniformity in Theorem 18 is
now replaced by Λ.

To establish (86) we work similarly to the proof of Theorem 18. That is, first
we show the following: Let (Xt) be the continuous time Glauber dynamics on the
hard-core model with fugacity λ and underlying graph G. Then there exists C1 > 0,
such that for any X0 which is (400, R)-nice at v ∈ V we have that

Pr [(∀t ∈ I) |Z(Xt, v)− ω∗(v)| ≤ γ/10] ≥ 1− exp (−20Δ/C1) .(87)

To obtain (87) we use the following: Let (Xt) be the continuous time Glauber dy-
namics on the hard-core model. Assume that X0 is (400, R′)-nice at w ∈ V for radius
R′ ≤ Δ9/10. Then, for x ∈ BR/2(v) and I = [t0, t1], where t0 = Cn, there exists

Ĉ > 0 such that

Pr

⎡
⎣(∀t ∈ I)

∣∣∣∣∣∣Z(Xt, x)− exp

⎛
⎝− λ

1 + λ

∑
z∈N̂(x)

Etz [Z(Xtz , z)]

⎞
⎠
∣∣∣∣∣∣ ≤ γ2δ/40

⎤
⎦

≥ 1−
(
1 +

t1 − t0
n

)
exp

(
−Δ/Ĉ

)
,(88)
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where Etz [Z(Xtz , z)] is the expectation w.r.t. random time tz, the last time that vertex
z is updated prior to time t. Equation (88) follows by using arguments very similar
to those we used in the proof of Lemma 33.

In light of (88), (87) follows by working as in the proof of Lemma 32. Let us be
more specific. Consider some time interval I ′ which starts prior to I. Assume that
for every t ∈ I ′, (88) holds for every z ∈ BR(v). A union bound implies that this
holds with probability at least 1− exp(−2Δ/Ĉ).

Furthermore, consider some integer i < R. Assume that there exists some s ∈
I ′ \ I such for any t ≥ s, for every vertex z ∈ Bi+1(v) ∩ Y we have that

|Ψ (Etz [Z(Xtz , z)])− Ψ(ω∗(z))| ≤ β

for some β > ε/20. Then, in the heart of the proof of (87) we have the following
contraction property: For every u ∈ Bi(v), it holds that

(89) |Ψ(Z(Xt, u))− Ψ(ω∗(u))| ≤ (1− δ/24)β.

To show (89), we note that λ ≤ e/Δ for Δ ≥ Δ0, and for any vertex w we have
N(w) \ N̂(w) ≤ 2 and get that

|Ψ(Z(Xt, u))− Ψ(ω∗(u))| ≤ (1/10)γ2δ +

∣∣∣∣∣∣Ψ
⎛
⎝ ∏
z∈N(u)

(
1− λ

1 + λ
ω̃(z)

)⎞⎠− Ψ(ω∗(u))

∣∣∣∣∣∣ ,
where ω̃ is such that for every z ∈ Y we have ω̃(z) = Etz [Z(Xtz , z)] while for every
z /∈ Y we have ω̃(z) = ω∗(z). The actual derivations for getting the above are very
similar to those from (118) until (121) in the proof of Lemma 32. Furthermore, the
above inequality implies that

|Ψ(Z(Xt, w)) − Ψ(ω(z))| ≤ (1/10)γ2δ +Dv,i(F (ω̃), ω
∗)

≤ (1/10)γ2δ + (1− δ/6)β ≤ (1− δ/24)β,

where F (·) is the function defined in (3). The second derivation follows from Lemma 5,
while the last follows by having small γ > 0. Therefore (89) follows. Given the above
contraction, we get (87) by following very similar arguments to those we used for
Lemma 32.

Additionally to (87), we need to define

B(Xt, v) =
∑

z∈N̂(v)

Uz,v(Xt).

As opposed to Q(Xt, v), the quantity B(Xt, v) considers only the neighbors of v which
belong to N̂(v).

Using arguments identical to those in the proof of Lemma 34 we get the following:
Let (Xt) be the continuous time Glauber dynamics on the hard-core model with
fugacity λ. Assume that X0 is (400, R)-nice at v. Then, there is Ĉ1 = Ĉ1(ε) > 0 such
that for any t ∈ I we have

Pr

⎡
⎣
∣∣∣∣∣∣B(Xt, v)−

∑
z∈N̂(v)

Etz [Z(Xtz , z)]

∣∣∣∣∣∣ > (γ/20)Δ

⎤
⎦ < exp

(
−10Δ/Ĉ1

)
.
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Combining the above with (87) in the same way as in the proof of Theorem 18, we
get the following: Let (Xt) be the continuous (or discrete) time Glauber dynamics on
the hard-core model. If X0 is (400, R)-nice at v ∈ V , there exists C1 = C1(δ, ε) > 0
such that

(90) Pr

⎡
⎣(∀t ∈ I) BXt(v) <

∑
z∈N̂(v)

ω∗(z) + (γ/2)Δ

⎤
⎦ ≥ 1− exp (−Δ/C1) .

Then, we get (90) by noting that it always holds that |B(Xt, v) − Q(Xt, v)| ≤
2maxz{ω∗(z)} ≤ 2, since ω∗(z) ≤ 1.

With all of the above, we conclude that indeed we have rapid mixing for every
G ∈ Gn(Δ, r). In light of this conclusion, we prove the theorem by showing that the
typical instances of the random graphs we consider in our theorem belong to Gn(Δ, r)
for any fixed integer r > 0. Since the arguments we employ for random regular graphs
and random regular bipartite graphs are very similar with each other, our focus will
be on random regular graphs.

Let G be a random regular graph of degree Δ. For each integer r > 0, let Sr
be the family of subsets of vertices of G with cardinality at most r. Furthermore,
let S′

r ⊆ Sr contain each Λ ∈ Sr such that the vertices of Λ span a number of edges
which is greater than the cardinality of Λ.

Note that if there is a pair of cycles in G of length �1, �2 which are at distance �3
from each other, then S′

�1+�2+�3

= ∅.

Let Yr be the cardinality of the set S′
r in G. Following some standard but tedious

derivations (e.g., see [17, section 9.2]) we get that E [Yr] = O(n−1) for any fixed r.
Then, applying Markov’s inequality we get that with probability 1−O(n−1) we have
Yr = 0. Clearly, this implies that with probability 1−O(n−1) we have that G ∈ Gn(r)
for any fixed integer r > 0.

The theorem follows.

7. BP convergence: Proofs of Propositions 7 and 8. Let fλ,d(x) = (1 +
λx)−d be the symmetric version of the BP recurrence (3). Let x̂ = x̂(λ, d) be the
unique fixed point of fλ,d(x), satisfying x̂(λ, d) = (1 + λx̂(λ, d))−d. We define

α(λ, d) =

√
d · λx̂(λ, d)
1 + λx̂(λ, d)

.

Proposition 7 in section 2 states that for all δ > 0, there exists Δ0 = Δ0(δ),

and for all Δ ≥ Δ0, all λ < (1 − δ)λc(Δ), where λc(Δ) = (Δ−1)Δ−1

(Δ−2)Δ
, it holds that

α(λ,Δ) ≤ 1− δ/6.

Proof of Proposition 7. Let x0 = 1−δ/3
λ(Δ−1+δ/3) . It is easy to verify that√

Δ · λx0
1 + λx0

≤ 1− δ/6.

Note that the function
√

Δλx
1+λx is increasing in x. Since f(x) is increasing in λ, it is

easy to verify that x̂(λ, d) is increasing in λ. We then show that for all Δ ≥ Δ0, it

holds that x̂(λ0, Δ) ≤ x0, where λ0 = (1− δ)λc(Δ) = (1−δ)(Δ−1)Δ−1

(Δ−2)Δ , which will prove
our proposition.

Since fλ0,Δ(x) is decreasing in x and fλ0,Δ(x̂(λ0, Δ)) = x̂(λ0, Δ), it is sufficient
to show that

fλ0,Δ(x0) = (1 + λ0x0)
−Δ ≤ x0.
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Note that it holds that

fλ0,Δ(x0)

x0
=

λ0(Δ− 1 + δ/3)

(1− δ/3)(1 + 1−δ/3
(Δ−1+δ/3) )

Δ

=
1− δ

1− δ/3
· (Δ− 1)Δ(Δ− 1 + δ/3)Δ

(Δ− 2)ΔΔΔ
· Δ− 1 + δ/3

Δ− 1
.

Therefore, there is a suitable Δ0 = O(1δ ) such that for all Δ ≥ Δ0,

fλ0,Δ(x0)

x0
≤ 1− δ

1− δ/3

(
1 +O

( η
Δ

))
eδ/2.99 < 1,

which proves the proposition.

Let G = (V,E) be a graph with maximum degree at most Δ. Assume that
α(λ,Δ) ≤ 1. Recall recurrence F as defined in (3). Proposition 8 in section 2 states
that for any ω ∈ [0, 1]V , and v ∈ V , it holds that√

λF (ω)(v)

1 + λF (ω)(v)

∑
u∈N(v)

√
λω(u)

1 + λω(u)
≤ α(λ,Δ).

This proposition was proved implicitly in [20]. We state the proof here in our context
for the completeness of the paper.

Proof of Proposition 8. Let ω̄ ∈ [0, 1] satisfy 1+λω̄ = (
∏
u∈N(v)(1+λω(u)))

1
|N(v)| .

Denote that ν̄ = ln(1 + λω̄) and ν(u) = ln(1 + λω(u)). It then holds that ν̄ =
1

|N(v)|
∑

u∈N(v) ν(u). Due to the concavity of
√

eν−1
eν in ν, by Jensen’s inequality,

1

|N(v)|
∑

u∈N(v)

√
λω(u)

1 + λω(u)
=

1

|N(v)|
∑

u∈N(v)

√
eν(u) − 1

eν(u)
≤
√

eν̄ − 1

eν̄
=

√
λω̄

1 + λω̄
.

Therefore, √
λF (ω)(v)

1 + λF (ω)(v)

∑
u∈N(v)

√
λω(u)

1 + λω(u)
≤
√

λdf(ω̄)

1 + λf(ω̄)
· λdω̄

1 + λω̄
,

where d = |N(v)| is the degree of vertex v in G and f(ω̄) = (1+λω̄)−d is the symmetric
version of the recursion (3).

Define αλ,d(x) =
√

λdf(x)
1+λf(x) · λdx

1+λx , where as before f(x) = (1+λx)−d. The above
convexity argument shows that√

λF (ω)(v)

1 + λF (ω)(v)

∑
u∈N(v)

√
λω(u)

1 + λω(u)
≤ αλ,d(x) for some x ∈ [0, 1].(91)

Fixing any λ and d, the critical point of αλ,d(x) is achieved at the unique positive
x(λ, d) satisfying

λdx(λ, d) = 1 + λf(x(λ, d)).(92)
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It is also easy to verify by checking the derivative
dαλ,d(x)

dx that the maximum of
αλ,d(x) is achieved at this critical point x(λ, d).

Recall that x̂(λ, d) is the fixed point satisfying x̂(λ, d) = f(x̂(λ, d)) = (1 +

λx̂(λ, d))−d, and α(λ, d) =
√

λdx̂(λ,d)
1+λx̂(λ,d) . Under the assumption that α(λ, d) ≤ 1,

we must have x̂(λ, d) ≤ x(λ, d). If otherwise x̂(λ, d) > x(λ, d), then we would have
λdx̂(λ, d) > λdx(λ, d) = 1+λf(x(λ, d)) > 1+λf(x̂(λ, d)) = 1+λx̂(λ, d), contradicting

that λdx̂(λ,d)
1+λx̂(λ,d) = α(λ, d)2 ≤ 1. Therefore, for any x ∈ [0, 1], it holds that

αλ,d(x) ≤ α(d, x(λ, d))

=

√
λdf(x(λ, d))

1 + λf(x(λ, d))
· λdx(λ, d)

1 + λx(λ, d)

=

√
λdf(x(λ, d))

1 + λx(λ, d)
(due to (92))

≤
√
λdf(x̂(λ, d))

1 + λx̂(λ, d)
(x̂(λ, d) ≤ x(λ, d))

=

√
λdx̂(λ, d)

1 + λx̂(λ, d)

= α(λ, d).

Finally, it is easy to observe that α(λ, d) is increasing in d since α(λ, d) is increasing
in x̂(λ, d) and x̂(λ, d) is increasing in d. Therefore, α(λ, d) ≤ α(λ,Δ) because d =
|N(v)| ≤ Δ. Combined this with (91), the proposition is proved.

8. Loopy BP: Proof of Theorem 3. Consider the version of loopy BP defined
with the following sequence of messages: For all t ≥ 1, for v ∈ V ,

(93) R̃tv = λ
∏

w∈N(v)

1

1 + R̃t−1
w

.

The system of equations specified by (93) is equivalent to the one in (3) in the following
sense: Given any set of initial messages (R̃0

v)v∈V ∈ R≥0, it holds that R̃
t
v = λF t(ω̄)(v)

for appropriate ω̄ which depends on the initial messages, i.e., (R̃0
v)v∈V . F

t is the tth
iteration of the function F .

Of interest is the quantity qt(v), v ∈ V , defined as follows:

q̃t(v) =
R̃tv

1 + R̃tv
.

From Lemma 4, there exists q̃∗ ∈ [0, 1]V such that q̃t converges to q̃∗ as t → ∞, in
the sense that q̃t/q̃∗ → 1. It is elementary to show that the following holds for any
t > 0, any p ∈ V , and v ∈ N(p):

qt(v, p)

μ(v is occupied | p is unoccupied)
=
qt(v, p)

q∗(v, p)
q∗(v, p)
q̃∗(v)

· q̃∗(v)
μ(v is occupied)

· μ(v is occupied)

μ(v is occupied | p is unoccupied)
.
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The theorem follows by showing that each of the four ratios on the r.h.s. are sufficiently
close to 1. For the first two ratios we use Theorem 25, and for the third one we use
the Lemma 26.

Theorem 25. For all δ, ε > 0, there exists Δ0 = Δ0(δ, ε) and C = C(δ, ε), such
that for all Δ ≥ Δ0, all λ < (1 − δ)λc(Δ), all graphs G of maximum degree Δ and
girth ≥ 6, and all ε > 0 the following holds:

There exists q∗ ∈ [0, 1]E such that for t ≥ C, for all p ∈ V , v ∈ N(p) we have
that ∣∣∣∣ qt(v, p)q∗(v, p)

− 1

∣∣∣∣ ≤ ε and

∣∣∣∣q∗(v, p)q̃∗(v)
− 1

∣∣∣∣ ≤ ε,(94)

where qt(v, p) is defined in (1).

Proof. Note that by denoting ωt(v, p) =
Rt

p→v

λ , we have

ωt+1(v, p) = H(ωt)(v, p),

where H is as defined in (8). Then the convergence of qt(v, p) =
Rt

p→v

1+Rt
p→v

to a unique

fixed point q∗ follows from Corollary 6. More precisely, there is Δ0 = Δ0(δ) and
C = C(ε0, δ) such that for all Δ > Δ0 all λ < (1 − δ)λc(TΔ) and all t > C,∣∣ωt(v, p)− ω∗(v, p)

∣∣ ≤ ε0.

Note that for all t > 1, we have ωt(v, p), ω∗(v, p) ∈ [(1 + λ)−Δ, 1], where (1 + λ)−Δ >
1/36 for λ < λc(TΔ) for all sufficiently large Δ. Then∣∣∣∣ qt(v, p)q∗(v, p)

− 1

∣∣∣∣ =
∣∣∣∣ωt(v, p)ω∗(v, p)

· 1 + ω∗(v, p)
1 + ωt(v, p)

− 1

∣∣∣∣ = |ωt(v, p)− ω∗(v, p)|
ω∗(v, p)(1 + ωt(v, p))

≤ 36ε0.

By choosing ε0 = ε
36 , we have | qt(v,p)q∗(v,p) − 1| ≤ ε.

We then show that there is a Δ0 = O( 1
δε ) such that for all Δ > Δ0 and all

λ < (1− δ)λc(TΔ), the fixed points of the two BPs have | q∗(v,p)q̃∗(v) − 1| ≤ ε.

Let ωt(v, p) = qt(v,p)
λ(1−qt(v,p)) and ω̃t(v) = q̃t(v)

λ(1−q̃t(v)) . It follows that

ωt+1(v, p) =
∏

u∈N(v)\{p}

1

1 + λωt(u, v)
= (1 + λωt(p, v))

∏
u∈N(v)

1

1 + λωt(u, v)
,

ω̃t+1(v) =
∏

u∈N(v)

1

1 + λω̃t(u)
.

We also define

ωt+1(v) =
∏

u∈N(v)

1

1 + λωt(u, v)
,

and therefore ωt+1(v, p) = (1+λωt(p, v))ωt+1(v). Note that ωt(p, v) ∈ (0, 1], and thus
|ωt+1(v, p)−ωt+1(v)| ≤ λ. Also recall that λ < λc(TΔ) ≤ 3/(Δ−2) for all sufficiently
large Δ, and therefore ∣∣ωt+1(v, p)− ωt+1(v)

∣∣ ≤ 3/(Δ− 2).
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Let Ψ(·) be as defined in (5). Note for t > 1 both ωt+1(v, p) and ωt+1(v) are from the
range [(1 + λ)−Δ, 1]. By (6), for λ < λc(TΔ) for all sufficiently large Δ, and we have∣∣Ψ (ωt+1(v, p)

)− Ψ
(
ωt+1(v)

)∣∣ ≤ 9/(Δ− 2).(95)

We assume that |Ψ(ωt(v, p))− Ψ(ω̃t(v))| ≤ ε0 for all (v, p) ∈ E. Then due to (11),∣∣Ψ (ωt+1(v)
) − Ψ

(
ω̃t+1(v)

)∣∣ ≤ (1− δ/6)

· max
u∈N(v)

∣∣Ψ (ωt(u, v))− Ψ
(
ω̃t(u)

)∣∣ ≤ (1 − δ/6)ε0.

Combined with (95), by triangle inequality, we have∣∣Ψ (ωt+1(v, p)
)− Ψ

(
ω̃t+1(v)

)∣∣ ≤ (1 − δ/6)ε0 + 9/(Δ− 2),

which is at most ε0 as long as Δ ≥ Δ0 ≥ 54
δε0

+ 2. It means that if |Ψ(ωt(v)) −
Ψ(ωt(v, p))| ≤ ε0 ≤ 54

δ(Δ0−2) , then |Ψ(ωt+1(v, p)) − Ψ(ω̃t+1(v))| ≤ 54
δ(Δ0−2) . Knowing

the convergences of ωt(v, p) to ω∗(v, p) and ω̃t(v) to ω∗(v) as t → ∞, this gives us
that

|Ψ (ω∗(v, p)) − Ψ (ω̃∗(v))| ≤ 54

δ(Δ0 − 2)
.

By (6), it implies |ω∗(v, p)− ω̃∗(v)| ≤ 162
δ(Δ0−2) . Again since ω∗(v, p), ω̃∗(v) ∈ [1/36, 1]

when λ < λc(TΔ) for sufficiently large Δ. It holds that∣∣∣∣q∗(v, p)q̃∗(v)
− 1

∣∣∣∣ =
∣∣∣∣ω∗(v, p)
ω̃∗(v)

· 1 + λω̃∗(v)
1 + λω∗(v, p)

− 1

∣∣∣∣ ≤ 6000

δ(Δ0 − 2)
.

By choosing a suitable Δ0 = O( 1
δε ), we can make this error bounded by ε.

Lemma 26. For all δ, ε > 0, there exists Δ0 = Δ0(δ, ε) and C = C(δ, ε), such that
for all Δ ≥ Δ0, all λ < (1 − δ)λc(Δ), all graphs G of maximum degree Δ and girth
≥ 6, the following holds: Let μ(·) be the Gibbs distribution, and for all v ∈ V we have∣∣∣∣ q̃∗(v)

μ(v is occupied)
− 1

∣∣∣∣ ≤ ε.

Proof. It holds that∣∣∣∣ q̃∗(v)
μ(v occupied)

− 1

∣∣∣∣ =
∣∣∣∣∣ q∗(v)

λ
1+λE [R(X, v)]

λ
1+λE [R(X, v)]

μ(v occupied)
− 1

∣∣∣∣∣ ,(96)

where the expectation in the nominator is w.r.t. the random variable X which is
distributed as in μ. For showing the lemma we need to bound appropriately the two
ratios on the r.h.s. of (96). For this we use the following two results. The first one is
that

(97)

∣∣∣∣∣
λ

1+λE [R(X, v)]

μ(v is occupied)
− 1

∣∣∣∣∣ ≤ 200eeλ.

Before proving (97), let us show how it implies the lemma, together with Lemma 13.
For any independent set σ and any v, it holds that e−e ≤ ω∗(v),R(σ, v) ≤ 1. Then,
Lemma 13 implies that

(98)

∣∣∣∣ ω∗(v)
E [R(X, v)]

− 1

∣∣∣∣ ≤ ε/20.
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Noting that by definition it holds that q̃∗(v) = λω∗
1+λω∗ , and we have that

∣∣∣∣∣ q̃∗(v)
λ

1+λE [R(X, v)]
− 1

∣∣∣∣∣ =
∣∣∣∣ 1 + λ

1 + λω∗(v)
ω∗(v)

E [R(X, v)]
− 1

∣∣∣∣
≤ 10λ

(1 + λω∗(v))
ω∗(v)

E [R(X, v)]
+

∣∣∣∣ ω∗(v)
E [R(X, v)]

− 1

∣∣∣∣ ≤ ε/15.(99)

In the last inequality we use (98), the fact that λ < 2e/Δ and Δ is sufficiently large.
The lemma follows by plugging (97) and (99) into (96). We proceed by showing (97).
It holds that

(100) μ(v is occupied) =
λ

1 + λ
μ(v is unblocked)

We are going to express μ(v is unblocked) it terms of the quantity R(·, ·). For X
distributed as in μ it is elementary to verify that

(101) E [R(X, v) | v is unoccupied] = μ(v is unblocked|v is unoccupied).

Furthermore, it holds that

E [R(X, v)]

= μ(v occupied) · E [R(X, v) | v occupied] + μ(v unoccupied)

· E [R(X, v) | w unoccupied]

≤ μ(v occupied) + E [R(X, v) | v unoccupied] (since 0 < R(X, v) ≤ 1)

≤ 2λ+ E [R(X, v) | v unoccupied] (since μ(v occupied) ≤ 2λ).

Since e−e ≤ R(X, v) ≤ 1, the inequality above yields

E [R(X, v) | v unoccupied] ≥ (1− 2eeλ)E [R(X, v)].

Also, using the fact that R(X, v) > 0, we get

E [R(X, v) | v unoccupied] ≤ E [R(X, v)]

μ(v is unoccupied)
≤ (1 + 5λ)E [R(X, v)].

In the last inequality we use the fact that μ(w is occupied) ≤ 2λ. From the above
two inequalities we get that

(102) |E [R(X,w) | w unoccupied]− E [R(X,w)]| ≤ 10eeλ.

In a very similar manner as above, we also get that

(103) |μ(v is unblocked|v is unoccupied)− μ(v is unblocked)| ≤ 10eeλ.

Combining (101), (102), (103), (100) and using the fact that e−e ≤ μ(v is unblocked),
E [R(X,w)] we get the following:

(104) μ(v is occupied) =
λ

1 + λ
E [R(X,w)] (1 + 50eeλ) .

Then (97) follows from (104).
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The theorem follows by showing that∣∣∣∣ μ(v is occupied)

μ(v is occupied | p is unoccupied)
− 1

∣∣∣∣ ≤ 10/Δ.

From Bayes’ rule we get that μ(v is occupied | p is unoccupied) = μ(v is occupied)
μ(p is unoccupied) .

Using this observation we get that∣∣∣∣ μ(v is occupied)

μ(v is occupied | p is unoccupied)
− 1

∣∣∣∣ = |μ(p is unoccupied)− 1| ≤ 10/Δ.

In the last inequality we use the fact that 0 ≤ μ(p is occupied) ≤ λ.

9. Basic properties of Glauber dynamics.

9.1. Continuous versus discrete time chains. For many of our results we
have a simpler proof when instead of a discrete time Markov chain we consider a
continuous time version of the chain. That is, consider the Glauber dynamics where
the spin of each vertex is updated according to an independent Poisson clock with
rate 1/n.

We use the following observation [24, Corollary 5.9] as a generic tool to argue
that typical properties of continuous time chains are typical properties of the discrete
time chains too.

Observation 27. Let (Xt) by any discrete time Markov chain on state space Ω,
and let (Yt) be the corresponding continuous-time chain. Then for any property
P ⊂ Ω and positive integer t, we have that

Pr [Xt /∈ P ] ≤ e
√
tPr [Yt /∈ P ].

Observation 27 would suffice for our purposes when Δ = Ω(logn), but not for
Glauber dynamics on graphs of, e.g., constant degree. For the latter case, instead of
focusing on specific times t in discrete time, our goal will be to show how events which
are rare at a single instant in continuous time must also be rare over a time interval
of length O(n) in discrete time, without taking a union bound over all the times in
the time interval.

Let the set Ω contain all the independent sets of G. We say that a function
f : Ω → R has “total influence” J if for every independent set X ∈ Ω we have

E [|f(X ′)− f(X)|] ≤ J/n,

where X ′ is the result of one Glauber dynamics update, starting from X .
The next result [10, Lemma 13] shows that, for functions f which have Lipschitz

constant O(1/Δ) and total influence J = O(1), in order to prove high-probability
bounds for the discrete-time chain that apply for all times in an interval of length
O(n), it suffices to be able to prove a similar bound at a single instant in continuous
time.

Lemma 28 (Hayes [10]). Suppose f : Ω → R is a function of independent sets
of G and f has Lipschitz constant α < O(1/Δ) and total influence J = O(1). Let
X0 = Y0 be given and let (Xt)t≥0 be continuous-time single site dynamics on the hard-
core model of G and let (Yi)i=0,1,2... be the corresponding discrete-time dynamics.

Suppose that t0 is a positive integer and S is a measurable set of real numbers,
such that for all t ≥ t0, Pr [f(Xt) ∈ S] ≥ 1 − exp(−Ω(Δ)). Then, for all ε ∈ Ω(1)
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and all integers t1 ≥ t0, where t1 − t0 = O(n), we have that

Pr [(∀i ∈ {t0, t0 + 1, . . . , t1}) f(Yi) ∈ S ± ε] ≥ 1− exp (−Ω(Δ)) ,

where the hidden constant in Ω notation depends only on the hidden constant in the
assumption.

9.2. G versus G∗ and comparison. Consider G with girth ≥ 7. For such a
graph and some vertex w in G, the radius 3 ball around w is a tree. We let G∗

w be the
graph that is derived from G by orienting toward w every edge that is within distance
2 from w. (An edge {w1, w2} ∈ E is at distance � from w if the minimum distance
between w and any of w1, w2 is �.) For a vertex x ∈ G∗

w, we let N
∗(x) ⊆ N(x) contain

every z in the neighborhood of x such that either the edge between x, z is unoriented
or the orientation is toward x.

We let the Glauber dynamics (X∗
t ) on the hard-core model with underlying graph

G∗
w and fugacity λ be a Markov chain whose transition Xt → Xt+1 is defined by the

following:
1. Choose u uniformly at random from V .
2. If N∗(u) ∩X∗

t = ∅, then let

X∗
t+1 =

{
X∗
t ∪ {u} with probability λ/(1 + λ),

X∗
t \ {u} with probability 1/(1 + λ).

3. If N∗(w) ∩Xt 
= ∅, then let X∗
t+1 = X∗

t .
The state space of (X∗

t ) that is implied by the above is a superset of the independent
sets of G, since there are pairs of vertices which are adjacent in G while they can both
be occupied in X∗

t .
The motivation for using G∗

w and (X∗
t ) is better illustrated by considering Lem-

ma 12. In Lemma 12 we establish a recursive relation for R() for G of girth ≥ 6,
in the setting of the Gibbs distribution. An important ingredient in the proof there
is that for every vertex x conditioned on the configuration at x and the vertices at
distance ≥ 3 from x, the children of x are mutually independent of each other under
the Gibbs distribution.

For establishing the uniformity property for Glauber dynamics we need to es-
tablish a similar “conditional independence” relation but in the dynamic setting of
Markov chains. To obtain this, we will need that G has girth at least 7. Clearly,
the conditional independence of Gibbs distribution no longer holds for the Glauber
dynamics. To this end we employ the following: Instead of considering G and the
standard Glauber dynamics (Xt), we consider G∗

w and the corresponding dynamics
(X∗

t ).
Using G∗

w and (X∗
t ) we get (in the dynamics setting) an effect which is similar

to the conditional independence. During the evolution of (X∗
t ) the neighbors of w

can only exchange information through paths of G∗
w which travel outside the ball of

radius 3 around w, i.e., B3(w). This holds due to the girth assumption for G∗
w and

the definition of (X∗
t ). In turn this implies that conditional on the configuration of

X∗
t outside B3(w), the (grand)children of w are mutually independent.
The above trick allows us to get a recursive relation for R(X∗

t , w) similar to that
for the Gibbs distribution. To argue that a somehow similar relation holds for the
standard dynamics (Xt), we use the following result which states that if (X∗

t ) and
(Xt) start from the same configuration, then after O(n) the number of disagreements
between the two chains is not too large.
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Lemma 29. For γ > 0, C1 > 0, there exists Δ0, C2 > 0 such that the following is
true: For w ∈ V consider G∗

w of maximum degree Δ > Δ0 and girth at least 7. Also,
let (Xt) and (X∗

t ) be the continuous time Glauber dynamics on the hard-core model
with fugacity λ < (1 − δ)λc(Δ), underlying graphs G and G∗

u, respectively.
Assume that (X∗

t ) and (Xt) are maximally coupled. Then, if X0 = X∗
0 for X0

which (400, R)-nice at w for radius R ≤ Δ9/10, we have that

Pr[∀s ≤ C1n, ∀u ∈ V |(Xs ⊕X∗
s ) ∩B2(u)| ≤ γΔ] ≥ 1− exp (−Δ/C2) .

Before proving Lemma 29 we need to introduce certain notions.
Let us call Z a “generalized Poisson random variable with jumps α and instanta-

neous rate r(t)” if Z is the result of a continuous-time adapted process, which begins
at 0 and in each subsequent infinitesimal time interval, samples an increment ∂Z from
some distribution over [0, α], having mean ≤ r(t)dt. Z, the sum of the increments
over all times 0 < t < 1, is a random variable, as is the maximum observed rate,
r∗ = maxt∈[0,1] r(t).

Remark 30. In the special case where α ≥ 1 and the distribution is supported in
{0, 1} with constant rate μ · dt, Z is a Poisson random variable with mean μ.

We are going to use the following result [10, Lemma 12].

Lemma 31 (Hayes). Suppose Z is a generalized Poisson random variable with
maximum jumps α and maximum observed rate r∗. Then, for every μ > 0, C > 1 it
holds that

Pr [Z ≥ Cμ and r∗ ≤ μ] ≤ exp
[
−μ
α
(C ln(C) − C + 1)

]
<
( e
C

)μCα
.

Proof of Lemma 29. In this proof assume that γC1 is sufficiently small constant.
Also, let D = ∪t≤C1n(Xt ⊕ X∗

t ), i.e., D denotes the set of all vertices which are
disagreeing at least once during the time interval from 0 to C1n. Given some vertex
u ∈ V let Au = ∪t≤C1nXt ∩N(u) and A∗

u = ∩t≤C1nX
∗
t ∩N(u). That is, Au contains

every z ∈ N(u) for which there exists at least one s < C1n such that z is occupied in
Xs, and similarly for A∗

u. Finally, let the integer r = �γ5 Δ
logΔ�.

Let A denote the event that ∃s ≤ C1n, ∃u ∈ V |(Xs ⊕ X∗
s ) ∩ S2(u)| ≥ γΔ/2.

Consider the events B1,B2, B3, B4, and B5 to be defined as follows: B1 denotes the
event that D � Br(w). B2 denotes the event that |D| ≥ γ3Δ2. B3 denotes the event
that the total number of disagreements that appear in N(u), for every u ∈ V , is at
most γ3Δ. Finally, B4 denotes the event that there exists u ∈ B100(w) such that
either |A(u)| ≥ γ3Δ or |A∗(u)| ≥ γ3Δ.

Then, the lemma follows by noting the following:

(105) Pr [∃s ≤ C1n, ∃u ∈ V |(Xs ⊕X∗
s ) ∩B2(u)| ≥ γΔ] ≤ Pr [A] +Pr [B3].

The lemma follows by bounding appropriately the probability terms on the r.h.s. of
(105).

First consider Pr [A]. Let B = B1 ∪ B2 ∪ B3 ∪ B4. We bound Pr [A] by using B
as follows:

Pr [A] = Pr [B,A] +Pr
[B̄,A]

≤ Pr [B] +Pr
[B̄,A]

≤
4∑
i=1

Pr [Bi] +Pr
[B̄,A],(106)

where the last inequality follows by applying a simple union bound.
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Consider some vertex u ∈ V and let Z be the total number of disagreements
that ever occur in S2(u) up ot the first time that either B occurs or up to time C1n,
whichever happens first. If u /∈ Br(w), then Z is always zero since we stop the clock
when D � Br−1(w). So our focus is on the case where u ∈ Br−1(w). For such u
the random variable Z follows a generalized Poisson distribution, with jumps of size
1 and maximum observed rate at most 30γ3Δdt/n, over at most C1n time units. To
see this consider the following.

Given that B does not occur, disagreements in S2(u) may be caused due to the
following categories of disagreeing edges. Each disagreement in N(u) has at mostΔ−1
disagreeing edges in S2(u). Since the number of disagreements that appear in N(u)
during the time period up to C1n is at most γ3Δ, there are at most γ3Δ2 disagreeing
edges incident to S2(u). On the whole there are at most γ3Δ2 disagreements from
vertices different than those in N(u). Each one of them has at most one neighbor
in S2(u), since the girth is at least 7. That is, there are additional γ3Δ2 many
disagreeing edges. Finally, disagreements on S2(u) may be caused by edges which
belong to G ⊕G∗

w. There are at most Δ3 many such edges. Each one of these edges
generates disagreements only on the vertex on its tail. Since the out-degree in G∗

w is
at most 1, there are Δ2 disagreeing edges from G ⊕G∗

w which are incident to S2(v).
Additionally, each one of these edges should point to an occupied vertex so as to be
disagreeing. Since B4 does not occur, there at most 2γ3Δ2 edges in G ⊕ G∗

w which
point to an occupied vertex and have the tail in S2.

From the above observations, we have that there are at most 10γ3Δ2 disagreeing
edges incident to S2. For the new disagreement to occur in S2 due to a given such
edge, a specific vertex must chosen and should become occupied, which occurs with
rate at most e · dt/(nΔ).

Using Lemma 31, applied with μ = 30C1γ
3Δ, α = 1, and C = γΔ/μ, we have

that

Pr [Z ≥ γΔ] ≤ (
30eγ2C1

)γΔ
.

Taking a union bound over the, at most, Δr vertices in Br(v), we get that

Pr
[B̄,A] ≤ Δr

(
30eγ2C1

)γΔ
= exp (−Δ/C3) ,(107)

where C3 = C3(γ) > 0 is a sufficiently large number. In the last derivation we used

the fact that r ≤ γ5Δ
logΔ .

We proceed by bounding the probability of the events B1, B2, B3, and B4. The
approach is very similar to the proof of [10, Theorem 27]. We repeat it for the sake
of completeness.

Recall that B1 denotes the event that D � Br(w). The bound for Pr [B1] uses
standard arguments of disagreement percolation. First we observe that every disagree-
ment outside Br(w) must arise via some path of disagreement which starts within
B2(w). That is, we need at least one path of disagreement of length r − 4. We fix a
particular path of length r − 4 with Br(w). Let us call it P . We are going to bound
the probability that disagreements percolate along P within C1n time units. Let us
call this probability ρ.

The number of steps along this path that a disagreement actually percolates is
a generalized Poisson random variable with jumps 1 and maximum overall rate at
most C1e/Δ. This follows by noting that the maximum instantaneous rate is at most
e·dt/(nΔ) integrated over C1n time units. We use Lemma 31 to bound the probability
for the disagreement to percolate along P , i.e., ρ. Setting μ = eC1/Δ, α = 1, and
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C = (r − 4)/μ in Lemma 31 yields the following bound for ρ:

ρ ≤
(

e2C1

Δ(r − 4)

)r−4

.

The above bound holds for any path of length r− 4 in Br(w). Taking a union bound
over the at most Δ3 starting point in B2(w) and the at most Δr−4 paths of length
r − 4 from a given starting point we get that

(108) Pr [B1] ≤ Δ3

(
e2C1

r − 4

)r−4

≤ exp (−Δ/C4) ,

where C4 = C4(γ) > 0 is a sufficiently large number.
Recall that B2 denotes the event that |D| ≥ γ3Δ2. For Pr[B2] we consider the

waiting time τi for the ith disagreement, counting from when the (i−1)st disagreement

is formed. The event B2 is equivalent to
∑(γ3Δ2)
i=1 τi ≤ C1n.

Each new disagreement can be attributed to either an edge joining it to an existing
disagreement or to one of the edges in G⊕G∗

w. It follows easily that the total number
of such edges is at most |G⊕G∗

w|+ |(i− 1)Δ| = Δ3 + (i− 1)Δ. Furthermore, for the
new disagreement to occur due to a given such edge, a specific vertex must chosen,
which occurs with rate at most e · dt/(nΔ).

The above observations suggest that the waiting time τi is stochastically domi-
nated by an exponential distribution with mean n/[e(Δ2+i−1)], even conditioning on
an arbitrary previous histry τ1, τ2, . . . , τi−1. Therefore,

∑
i τi is stochastically domi-

nated by the sum of independent exponential distributions with mean n/[e(Δ2+i−1)].
Applying [10, Corollary 26] to τ1 + · · ·+ τ(γ3Δ2) with

μ =

(γ3Δ2)∑
i=1

n

e(Δ2 + i− 1)
≥
∫ (γ3Δ2)

0

n

e(Δ2 + x)
dx =

n

e
log

(
1 + γ3

)

and

V =

(γ3Δ2)∑
i=1

n2

e2(Δ2 + i− 1)2
≤
∫ ∞

0

n2

e2(Δ2 + x− 1)2
dx =

n2

e2(Δ2 − 1)
,

all the above yield

(109) Pr[B2] ≤ exp
(−(μ− C1n)

2/(2V )
) ≤ exp

(−Δ2/C5

)
,

where C5 = C5(γ) > 0 is sufficiently large number.
Let Y be the total number of disagreements that ever occur in N(u) up to the first

time that either D � Br−1(w) or |D| > γ3Δ2 occur or time C1n, whichever happens
first. The variable Y follows a generalized Poisson distribution with jumps of size 1. It
is direct to check that the maximum observed rate is at most (γ3Δ2+2Δ)e·dt/(Δn) ≤
10γ3Δdt/n, integrated over at most C1n time units. This is because the clock stops
when |D| ≥ γ3Δ2 and since G has girth at least 7 it is only vertex u that is adjacent to
more than one element of N(u). Hence there are at most γ3Δ2 +Δ− 1 edges joining
joining a disagreement with some vertex in N(u) before the clock stops. Furthermore,
disagreements on N(u) may also be caused by incident edges which belong to G⊕G∗

w.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

631

Each vertex in v ∈ N(u) is incident to at most one edge which belongs to G ⊕ G∗
w

and could cause disagreement in v. That is, N(u) has at most at most Δ such edges.
Applying Lemma 31, once more, for Y with μ = 10C1γ

3Δ, α = 1, and C =
γ3/2Δ/μ we get that

Pr
[
Y ≥ γ2Δ

] ≤ (
10eC1γ

3Δ

γ3/2Δ

)γ3/2Δ

≤
(
10eC1γ

3/2
)γ3/2Δ

.

Taking a union bound over the at most Δr vertices in Br(w) gives an upper bound for
the probability the event B3 happens and at the same time neither B1 nor B2 occur.
That is,

(110) Pr
[B̄1 and B̄2 and B3

] ≤ Δr
(
10eC1γ

3/2
)γ3/2Δ

.

Letting C = B1 ∪ B2, we have that

Pr [B3] = Pr [C,B3] +Pr
[C̄,B3

]
≤ Pr [C] +Pr

[C̄,B3

]
≤ Pr [B1] +Pr [B2] +Pr

[B̄1 and B̄2 and B3

]
(by a union bound for Pr [C])

≤ exp (−Δ/C6) ,(111)

where C6 = C6(γ) > 0. In the last inequality we used (110), (109), and (108).
As far as Pr [B4] is concerned, first recall that B4 denotes the event that there

exists z ∈ B100(w) such that either |A(u)| ≥ γ3Δ or |A∗(u)| ≥ γ3Δ. Fix some vertex
z ∈ B100(w). Without loss of generality we consider the chain Xt. There are two cases
for z. The first one is that z is occupied in X0. The second one is z is not occupied
in X0. Then the probability that the vertex z is updated and becomes occupied at
least once up to time C1n is at most 2C1e/Δ, regardless of the rest of the vertices.

Fix some vertex u ∈ B100(w). Let Ju be the number of vertices z ∈ N(u)
which are unoccupied in X0, but they get into Au. Ju is dominated by the binomial
distribution with parameters Δ and 2C1e/Δ, i.e., B(Δ, 2C1e/Δ). Using Chernoff’s
bounds we get that

Pr
[
Ju ≥ γ3Δ/10

] ≤ exp
(−γ3Δ/10) .

Let Lu be the number of vertices in z ∈ N(u) which are occupied in X0. Since we have
that X0 is (400, R)-nice at w for radius R � 100 and u ∈ B100(w), it holds that Lu ≤
400Δ/ logΔ. Since |Au| = Ju + Lu we get that Pr

[|Au| ≥ γ3Δ
] ≤ exp(−γ3Δ/10).

Taking a union bound over the at most Δ100 vertices in B100(w) we get that

Pr
[∃u ∈ B100(w) s.t. |Au| ≥ γ3Δ

] ≤ Δ100 exp
(−γ3Δ/10) ≤ exp

(−γ3Δ/20) ,
where the last inequality holds for sufficiently large Δ. Working in the same way we
get that

Pr
[∃u ∈ B100(w) s.t. |A∗

u| ≥ γ3Δ
] ≤ exp

(−γ3Δ/20) .
Combining the two inequalities above, there exists C7 = C7(γ) > 0 such that

(112) Pr [B4] ≤ exp (−Δ/C7) .

Plugging (112), (111), (109), (108), and (107) into (106), we get that

(113) Pr [A] ≤ exp (−Δ/C8)

for appropriate C8 > 0. The lemma follows by plugging (113) and (111) into (105).
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10. Proof of local uniformity—Proof of Theorems 11 and 18. In light of
Lemma 21, Theorem 11 follows as a corollary from Theorem 18. For this reason we
focus on proving Theorem 18. We will use Lemmas 21 and 29 to complete the proof
of Theorem 18.

For an independent set σ of G and w ∈ V , recall that R(σ,w) =
∏
z∈N(w)(1 −

λ
1+λUz,v(σ)), where Uz,w(σ) = 1 {σ ∩ (N(z) \ {w}) = ∅}.

Lemma 32. Let ε > 0, R, C, and λ be as in Theorem 18. Let (Xt) be the contin-
uous time Glauber dynamics on the hard-core model with fugacity λ and underlying
graphs G. If X0 is (400, R)-nice at w ∈ V , then we have that

Pr [(∀t ∈ I) |R(Xt, w)− ω∗(w)| ≤ ε/10] ≥ 1− exp (−20Δ/C) ,(114)

where I = [Cn, n exp(Δ/C)].

The proof of Lemma 32 makes use of the following result, which is the Glauber
dynamics version of Lemma 12 in section 4.1.

Lemma 33. For δ, γ > 0, let Δ0 = Δ0(δ, γ), C = C(δ, γ), Ĉ = Ĉ(δ, γ). For all
graphs G = (V,E) of maximum degree Δ ≥ Δ0 and girth ≥ 7, all λ < (1 − δ)λc(Δ),
let (Xt) be the continuous time Glauber dynamics on the hard-core model.

Let X0 be (400, R)-nice at w for radius R ≤ Δ9/10. Then, for x ∈ BR/2(w) and
I = [t0, t1], where t0 = Cn, it holds that

Pr

⎡
⎣(∀t ∈ I)

∣∣∣∣∣∣R(Xt, x)− exp

⎛
⎝− λ

1 + λ

∑
z∈N(x)

Etz [R(Xtz , z)]

⎞
⎠
∣∣∣∣∣∣ ≤ γ

⎤
⎦

≥ 1−
(
1 +

t1 − t0
n

)
exp

(
−Δ/Ĉ

)
,

where Etz [R(Xtz , z)] is the expectation w.r.t. random time tz, the last time that vertex
z is updated prior to time t.

Note that Etz [R(Xtz , z)] = exp(−t/n) R(X0, z) +
∫ t
0 R(Xs, z)n exp((s− t)/n)ds.

The proof of Lemma 33 is lengthy for this reason we present it separately in sec-
tion 10.1.

Proof of Lemma 32. Recall that I = [Cn, n exp(Δ/C]. LetR = �30δ−1 log(6ε−1)�.
Assume that C is sufficiently large such that C = (R+1)C1, where C1 is specified later.
Let T0 = (R+1)C1n and T1 = exp(Δ/C). Finally, for i ≤ R let Ii := [T0− iC1n, T1].

Consider the continuous time Glauber dynamics (Xt). Also, consider times t ≥
T0 −RC1n . For each such time t and positive integer i ≤ R, we define

αi := max |Ψ(R(Xt, x))− Ψ(ω∗(x))| ,
where Ψ is defined in (5). The maximum is taken over all t ∈ Ii and over all vertices
x ∈ Bi(w).

An elementary observation about αi is that αi ≤ 3 for every i ≤ R. To see why
this holds, note the following: For any z ∈ V and any independent sets σ, it holds
that

R(σ, z) =
∏

r∈N(z)

(
1− λ ·Ur,z(σ)

1 + λ

)
≥ (1 + λ)−Δ ≥ e−λΔ ≥ e−e,

where in the last inequality we use the fact that Δ is sufficiently large, i.e., Δ >
Δ0(ε, δ) and λ < e/Δ. Furthermore, using the same arguments as above we get that
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ω∗(z) ≥ e−e, as well. Since for any x ∈ V and any independent sets σ, we have
R(σ, x), ω∗(x) ∈ [e−e, 1], (6) implies αi ≤ C0 = 3 for every i ≤ R.

We prove our result by showing that typically α0 is very small. Then, the lemma
follows by using standard arguments. We use an inductive argument to show that α0

is very small. We start by using the fact that αR ≤ C0. Then we show that with
sufficiently large probability, if αi+1 ≥ ε/20, then αi ≤ (1− γ)αi+1, where 0 < γ < 1.

For any i ≤ R, we use the fact that there exists Ĉ > 0 such that with probability
at least 1−exp(−Δ/Ĉ) the following is true: For every vertex z ∈ Bi(w) it holds that

(∀t ∈ Ii)
∣∣∣∣∣∣R(Xt, z)− exp

⎛
⎝− λ

1 + λ

∑
r∈N(z)

ω̃(r)

⎞
⎠
∣∣∣∣∣∣ <

ε2δ

40
,(115)

where

(116) ω̃t(r) = exp(−C1) ·R(Xt−C1n, r) +

∫ t

t−C1n

R(Xs, r)n exp [(s− C1n)/n] ds.

Equation (115) is implied by Lemma 33.
Fix some i ≤ R, z ∈ Bi(w) and time s ∈ Ii. We consider Xs by conditioning

on Xs−C1n. From the definition of the quantity αi+1 we get the following: For any
x ∈ Bi+1(w) consider the quantity ω̃s(x). We have that

Dv,i+1(ω̃s, ω
∗) ≤ αi+1.(117)

We will show that if (115) holds for R(Xs, z), where z ∈ Bi(w), and αi+1 ≥ ε/20,
then we have that

|Ψ (R(Xs, z))− Ψ (ω∗(z))| ≤ (1− δ/24)αi+1.

For proving the above inequality, first note that if R(Xs, z) satisfies (115), then (6)
implies that ∣∣∣∣∣∣Ψ (R(Xs, z))− Ψ

⎛
⎝exp

⎛
⎝− λ

1 + λ

∑
r∈N(z)

ω̃s(r)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣ ≤ δε2

12
.(118)

Furthermore, we have that

|Ψ (R(Xs, z))− Ψ (ω∗(z))|

≤ δε2

12
+

∣∣∣∣∣Ψ
(
exp

(
− λ

1 + λ

∑
r∈Nz

ω̃s(r)

))
− Ψ (ω∗(z))

∣∣∣∣∣ (from (118))

≤ δε2

12
+

∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)⎞⎠− Ψ (ω∗(z))

∣∣∣∣∣∣
+

∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)⎞⎠− Ψ

⎛
⎝exp

⎛
⎝− λ

1 + λ

∑
r∈N(z)

ω̃(r)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣ ,(119)

where the last derivation follows from the triangle inequality.
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From our assumptions about λ,Δ and the fact that ω̃s(r) ∈ [e−e, 1] for r ∈ N(z),
we have that ∣∣∣∣∣∣

∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)
− exp

⎛
⎝−λ

∑
r∈N(z)

ω̃s(r)

1 + λ

⎞
⎠
∣∣∣∣∣∣ ≤

10

Δ
.

The above inequality and (6) imply that∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)⎞⎠− Ψ

⎛
⎝exp

⎛
⎝− λ

1 + λ

∑
r∈N(z)

ω̃s(r)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣ ≤

30

Δ
.

Plugging the inequality above into (119) we get that

|Ψ (R(Xs, z))− Ψ (ω∗(z))| ≤ δε2

12
+

30

Δ
+

∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)⎞⎠− Ψ (ω∗(z))

∣∣∣∣∣∣
≤ δε2

12
+

30

Δ
+

∣∣∣∣∣∣Ψ
⎛
⎝ ∏
r∈N(z)

(
1

1 + λω̃s(r)

)⎞⎠− Ψ (ω∗(z))

∣∣∣∣∣∣
+3

∣∣∣∣∣∣
∏

r∈N(z)

(
1− λω̃s(r)

1 + λ

)
+

∏
r∈N(z)

(
1

1 + λω̃s(r)

)∣∣∣∣∣∣(120)

≤ δε2

12
+

60

Δ
+Dv,i(F (ω̃), ω

∗),(121)

where we derive (120) by applying the triangle inequality and (6). Equation (121)

follows by noting that for any r ∈ N(z) we have ( 1
1+λω̃s(r)

) − (1 − λω̃s(r)
1+λ ) ≤ (e/Δ)2,

|N(z)| ≤ Δ, and Δ is large. Finally, in (38) the function F is defined in (3). Since ω̃s
satisfies (117), Lemma 5 implies that

(122) Dv,i(F (ω̃), ω
∗) ≤ (1− δ/6)αi+1.

Plugging (122) into (121) we get that

(123) |Ψ (R(Xs, z))− Ψ (ω∗(z))| ≤ δε2

12
+

60

Δ
+ (1 − δ/6)αi+1 ≤ (1− δ/24)αi+1,

where the last inequality follows if we have αi+1 ≥ ε/20 and Δ sufficiently large. Note
that (123) holds provided that R(Xs, z) satisfies (115).

To bound αi we have to take the maximum over all times t ∈ Ii and vertices
z ∈ Bi(w). So far, i.e., in (123), we only considered a fixed time s ∈ Ii and a fixed
vertex z.

Consider, now, a partition of Ii into subintervals each of length ε4η
200Δn, where the

last part can be of smaller length. Let T (j) be the jth part for j ∈ {1, . . . , �200C1

Δ/(ε4η)�}. For some some vertex x ∈ V , each r ∈ N(x) is updated during the time

period T (j) with probability less than ε4η
100Δ , independently of the other vertices.

Chernoff’s bounds imply that with probability at least 1 − exp(−Δε3/3), the
number of vertices in S2(x) which are updated during the interval T (j) is at most
Δε3/3. Furthermore, changing anyΔε2/3 variables in S2(x) can only changeR(Xs, x)
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by at most ε2/3. Consequently, Ψ(R(Xs, x)) can change by only ε2 within T (j). From
a union bound over all subintervals T (j) and all vertices x ∈ Bi(w), there exists
sufficiently large C > 0 such that

Pr
[
αi = max

{
3ε2 + (1− δ/24)αi+1, ε/20

}] ≥ 1− exp (−52Δ/C) .

The fact that αR ≤ C0 and R = �20δ−1 log(6ε−1)� implies the following: With
probability at least 1 − exp(−50Δ/C) for every t ∈ I it holds that α0 ≤ ε/30. In
turn, (6) implies that

(124) |R(Xt, v)− ω∗(v)| ≤ ε/11.

The lemma follows.

We conclude the technical results for Theorem 18 by proving the following lemma.

Lemma 34. Let ε > 0, R, I, and λ be as in Theorem 18. Let (Xt) be the contin-
uous time Glauber dynamics on the hard-core model with fugacity λ and underlying
graphs G. Assume that X0 is (400, R)-nice at v. Then, for any t ∈ I, any γ > 0,
there is Ĉ = Ĉ(γ) > 0 such that

Pr

⎡
⎣
∣∣∣∣∣∣W(Xt, v)−

∑
z∈N(v)

Φ(z) · Etz [R(Xtz , z)]

∣∣∣∣∣∣ > γΔ

⎤
⎦ < exp

(
−Δ/Ĉ

)
.

Recall that Etz [R(Xtz , z)] is the expectation w.r.t. tz the time when z was last up-

dated prior to time t, i.e., Etr [R(Xtz , z)] = exp(−t/n)R(X0, z)+
∫ t
0 R(Xs, z)n exp[(s−

t)/n]ds.

Proof. Consider, first, the graph G∗
v and the dynamics (X∗

t ) such that X∗
0 = X0.

Condition on X∗
0 and on X∗

t restricted to V \ B2(x) for all t ∈ I. Denote this
conditional information by F .

First we are going to show that E [W(X∗
t , v) | F ] and

∑
z∈N(v) Φ(z)·E [R(X∗

t , z) | F ]

are very close. From the definition of W(X∗
t , v) we have that

E [W (X∗
t , v) | F ] =

∑
z∈N(v)

Φ(z) · E [Uz,v(X
∗
t ) | F ].

Let c > 0 be such that t/n = c. For ζ > 0 whose value is going to be specified later,
let H(v) ⊆ N(v) be such that z ∈ H(v) is |N(z) ∩X∗

0 | ≥ ζ−1. In (148) and (149) we
have shown that for z /∈ H(v) it holds that

(125)
∣∣E [Uz,v(X

∗
t ) | F ]− Etz

[
R(X∗

tz , z) | F
]∣∣ ≤ θ,

where 0 < θ = θ(c, ζ) < 20(ζec)−1 while (as in we previously defined)

Etz
[
R(X∗

tz , z) | F
]
= exp(−t/n)R(X∗

0 , z) +

∫ t

0

R(X∗
s , z)n exp [(s− t)/n] ds.
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Since X∗
0 is (400, R)-nice at v it holds that |H(v)| ≤ 400ζΔ. We have that

∣∣∣∣∣∣E [W(X∗
t , v) | F ]−

∑
z∈N(v)

Φ(z) · Etz
[
R(X∗

tz , z) | F
]∣∣∣∣∣∣

≤
∣∣∣∣∣∣E [W(X∗

t , v) | F ]−
∑

z /∈H(v)

Φ(z) · Etz
[
R(X∗

tz , z) | F
]∣∣∣∣∣∣

+
∑

z∈H(v)

Φ(z) · Etz
[
R(X∗

tz , z) | F
]

≤
∣∣∣∣∣∣E [W(X∗

t , v) | F ]−
∑

z /∈H(v)

Φ(z) · Etz
[
R(X∗

tz , z) | F
]∣∣∣∣∣∣

+ 5000ζΔ (since maxz Φ(z) ≤ 12)

≤ (12θ + 5000ζ)Δ (from (125)).(126)

The fact that maxz Φ(z) ≤ 12 is from Theorem 9.
We proceed by showing that W (X∗

t , v) is sufficiently well concentrated about its
expectation. Conditioning on F the random variables Uz,v(X

∗
t ) for z ∈ N(v) are fully

independent. From Chernoff’s bounds, there exists appropriate C1 > 0 such that

(127) Pr [|W(X∗
t , v)− E [W(X∗

t , v) | F ]| > γΔ/100] ≤ exp (−Δ/C1) .

From (127) and (126) there exists C2 > 0 such that that
(128)

Pr

⎡
⎣
∣∣∣∣∣∣W (X∗

t , v)−
∑

z∈N(v)

Φ(z) · Etz
[
R(X∗

tz , z) | F
]∣∣∣∣∣∣ ≥ γΔ/50

⎤
⎦ ≤ exp (−Δ/C2) .

Furthermore, using Lemma 29 with error parameter γ2, i.e., |(X∗
t ⊕Xt)∩B2(v)| ≤ γ2Δ,

we get the following: There exists appropriate C3 = C3(γ) > 0 such that

(129) Pr [|W(X∗
t , v)−W(Xt, v)| ≤ γΔ/40] ≥ 1− exp (−Δ/C3) .

Also, (from Lemma 29 again) with probability at least 1− exp (−Δ/C3) it holds that

(130)

∣∣∣∣
∫ t

0

R(Xs, z)n exp [(s− t)/n] ds−
∫ t

0

R(X∗
s , z)n exp [(s− t)/n] ds

∣∣∣∣ ≤ γ/600

for every z ∈ N(v). The above follows by using the fact that changing the spin of any
γ2Δ vertices in X∗

t (B2(z)) changes R(X∗
t , z) by at most γ/1000.

Noting that Φ(z) ≤ 12, for any z, the lemma follows by combining (130), (129),
and (128).

Using Lemmas 32 and 34, in this section we prove Theorem 18. Recall that
Theorem 11 follows as a corollary of Theorem 18 and Lemma 21.

Proof of Theorem 18. For a vertex u ∈ N(v) consider G∗
u. Consider also the

continuous time dynamics (X∗
t ) such that X∗

0 = X0.
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We condition on the restriction of (X∗
t ) to V \B2(u) for every t ∈ I. We denote

this by F . Fix some t ∈ I. Since u ∈ BR(v) and X0 is (400, R)-nice at v, we get that

Es [R(X∗
s , u) | F ]

= exp(−t/n)R(X∗
0 , u) +

∫ t

0

R(X∗
t , u)n exp ((s− t)/n)

= Es

⎡
⎣exp

⎛
⎝− λ

1 + λ

∑
z∈N(u)

Uz,u(X
∗
s ) +O (1/Δ)

⎞
⎠ | F

⎤
⎦

= exp

⎛
⎝− λ

1 + λ

∑
z∈N(u)

Es [Uz,u(X
∗
s ) | F ] +O (1/Δ)

⎞
⎠

(due to conditioning on F)

≤ exp

⎛
⎝− λ

1 + λ

∑
z∈N(u)

Es [R(X∗
s , z) | F ] + θλΔ+O (1/Δ)

⎞
⎠ ,(131)

where in the last inequality we use (125). Note that so as apply (125) X∗
0 (u) should

be sufficiently “light.” This is guaranteed from our assumption that u ∈ BR(v) and
X0 is (400, R)-nice at v.

Furthermore, (115) and Lemma 29 imply the following: There exists C1 > 0 such
that with probability at least 1− exp(−Δ/C1), we have that

(132) (∀t ∈ I)
∣∣∣∣∣∣R(X∗

t , u)− exp

⎛
⎝− λ

1 + λ

∑
r∈N∗(u)

ω̂(r)

⎞
⎠
∣∣∣∣∣∣ < γ,

where

ω̂(r) = exp(−t/n)R(X∗
0 , r) +

∫ t

0

R(X∗
s , r)n exp [(s− t)/n] ds.

Note that for every r ∈ N∗(u) we have ω̂(r) = Etr [R(X∗
tr , r)|F ]. Using this observa-

tion, we plug (131) into (132) and get

(133) Pr [|R(X∗
t , u)− ω̂(u)| ≥ 10eθ+ γ] ≤ exp (−Δ/C1) .

In the above inequality we used the fact that λΔ < 2e.
Consider the continuous time Glauber dynamics (Xt). From Lemma 29 and (133)

there exists C3 > 0 such that for Xt the following holds:

(134) Pr [|R(Xt, u)− ω̃(u)| ≥ 20eθ + 2γ] ≤ exp (−Δ/C3) ,

where

ω̃(z) = exp(−t/n)R(X0, z) +

∫ t

0

R(Xs, z)n exp [(s− t)/n] ds.

Furthermore a simple union bound over u ∈ N(v) and (134) gives that

(135) Pr [∀u ∈ N(v) |R(Xt, u)− ω̃(u)| ≥ 20eθ + 2γ] ≤ Δ exp (−Δ/C3) .

Taking sufficiently small θ, γ in (135) and using Lemma 34 we get that

(136) Pr

⎡
⎣
∣∣∣∣∣∣W(Xt, v)−

∑
w∈N(v)

Φ(z) ·R(Xt, w)

∣∣∣∣∣∣ > εΔ/15

⎤
⎦ ≤ exp (−Δ/C4)
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for appropriate C4 > 0. Furthermore, applying Lemma 32 for each w ∈ N(v) and
using (136) yields

(137) Pr

⎡
⎣
∣∣∣∣∣∣W(Xt, v)−

∑
w∈N(v)

Φ(w) · ω∗(w)

∣∣∣∣∣∣ > εΔ/2

⎤
⎦ ≤ exp (−Δ/C5)

for appropriate C5 > 0. The above inequality establishes the desired result for a fixed
t ∈ I.

Now we will prove that (137) holds for all t ∈ I. Consider a partition of the time

interval I into subintervals each of length ψ2

Δ n, where the last part can be of smaller
length. The quantity ψ > 0 is going to be specified later. Also, let T (j) be the jth
part.

Each z ∈ B2(v) is updated at least once during the time period T (j) with prob-

ability less than 2ψ
2

Δ , independently of the other vertices. Note that |B2(v)| ≤ Δ2.
Clearly, the number of vertices in B2(v) which are updated during Ti(j) is dom-
inated by B(Δ2, 2ψ2/Δ). Chernoff’s bounds imply that with probability at least
1 − exp(−20Δψ2), the number of vertices in B2(v) which are updated during the
interval T (j) is at most 20ψ2Δ. Furthermore, changing any 2Δψ2 variables in B2(v)
can only change the weighted sum of unblocked vertices in Nv by at most 20C0ψ

2Δ.
Taking sufficiently small ψ > 0 we get the following:

(138) Pr

⎡
⎣
∣∣∣∣∣∣W(Xt, v)−

∑
w∈N(v)

Φ(w) · ω∗(w)

∣∣∣∣∣∣ > εΔ

⎤
⎦ ≤ exp (−2Δ/Cb) .

The above completes the proof of Theorem 18 for the case where (Xt) is the continuous
time process.

The discrete time result follows by working as follows: instead of W(Xt, v) we

consider the “normalized” variable Λ(Xt, v) =
W(Xt,v)

Δ . Rephrasing (137) in terms of
Λ(Xt, v) we have, for a specific t ∈ I,

(139) Pr

⎡
⎣
∣∣∣∣∣∣Λ(Xt, v)−Δ−1

∑
w∈N(v)

Φ(w) · ω∗(w)

∣∣∣∣∣∣ > ε/2

⎤
⎦ ≤ exp (−Δ/C5) .

Note that Λ(Xt, v) satisfies the Lipschitz and total influence conditions of Lemma 28.
Hence by Lemma 28 the result for the discrete time process holds.

10.1. Approximate recurrence for Glauber dynamics—Proof of Lemma
33. Consider G∗

x and let (X∗
t ) be the Glauber dynamics on G∗

x with fugacity λ > 0
and let X∗

0 = X0. Also assume that (X∗
t ) and (Xt) are maximally coupled.

Condition on X∗
0 , and let F be the σ-algebra generated by X∗

t restricted to
V \ B2(x) for all t ∈ I. Fix t ∈ I. Let c > 0 be such that t/n = c, i.e., c is a large
constant. Recalling the definition of R(X∗

t , x), we have that

R(X∗
t , x) =

∏
z∈N(x)

(
1− λ

1 + λ
Uz,x(X

∗
t )

)

= exp

⎛
⎝− λ

1 + λ

∑
z∈N(x)

Uz,x(X
∗
t ) +O (1/Δ)

⎞
⎠ .(140)

Let Q(X∗
t ) =

∑
z∈N(x)Uz,x(X

∗
t ). Conditional on F , the quantity Q(X∗

t ) is a sum
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of |N(x)| many independent random variables in [0, 1]. Applying Azuma’s inequality,
for 0 ≤ γ ≤ (3e)−1, we have

(141) Pr [|E [Q(X∗
t ) | F ]−Q(X∗

t )| ≥ γΔ] ≤ 2 exp
(−γ2Δ/2) .

Combining the fact that E [Q(X∗
t ) | F ] =

∑
z∈N(x) E [Uz,x(X

∗
t ) | F ] with (141) and

(140) we get that
(142)

Pr

⎡
⎣
∣∣∣∣∣∣R(X∗

t , x)− exp

⎛
⎝− λ

1 + λ

∑
z∈N(x)

E [Uz,x(X
∗
t ) | F ]

⎞
⎠
∣∣∣∣∣∣ ≥ 3γλΔ

⎤
⎦ ≤ 2 exp

(−γ2Δ/2) .
For every z ∈ N∗(x), it holds that

E [Uz,x(X
∗
t ) | F ]

=
∏

y∼N(z)\{x}
E [1{y /∈ X∗

t } | F ]

=
∏

y∼N(z)\{x}
(Pr[ty = 0] · 1{y /∈ X∗

0}+ E [1{y /∈ X∗
t } · 1{ty > 0} | F ]) ,(143)

where ty is the time that vertex y is last updated prior to time t and it is defined to
be equal to zero if y is not updated prior to t. Note, for any 0 ≤ s ≤ t, it holds that
Pr[ty ≤ s] = e−(t−s)/n. Also, we have that

E [1{y /∈ X∗
t } · 1{ty > 0} | F ] = E [E [1{y /∈ X∗

t } · 1{ty > 0} | F , ty] | F ]

=

∫ t

0

(
1− λ

1 + λ
Uy,z(X

∗
s )

)
n exp [(s− t)/n] ds,(144)

where the last equality follows because we are using G∗
x and (X∗

t ). The use of G∗

and (X∗
t ) ensures that the configuration in V \ B2(x) is never affected by that in

B2(x). For this reason, if y is updated at time s ∈ I, then the probability for it to
be occupied, given F , is exactly λ

(1+λ)Uy,z(X
∗
s ). That is, the configuration outside

B2(x) does not provide any information for y but the value of Uy,z(X
∗
s ).

Plugging (144) into (143) we get that

E [Uz,x(X
∗
t ) | F ]

=
∏

y∼N(z)\{x}

[
exp (−t/n)1{y /∈ X∗

0} −
∫ t

0

(
1− λ

1 + λ
Uy,z(X

∗
s )

)
n exp [(s− t)/n] ds

]

=
∏

y∼N(z)\{x}

[
1− exp (−t/n)1{y ∈ X∗

0} −
∫ t

0

λ

1 + λ
Uy,z(X

∗
s )n exp [(s− t)/n] ds

]
.

(145)

For appropriate ζ ∈ (0, 1), which we define later, let H(x) ⊆ N∗(x) be such that
z ∈ H(x) if |N∗(z) ∩X∗

0 | ≥ 1/ζ.
Noting that each integral in (145) is less than λ, for every z /∈ H(x), we get that

(146)

E [Uz,x(X
∗
t ) | F ] = (1 + δ)

∏
y∈N(z)\{x}

(
1−

∫ t

0

λ

1 + λ
Uy,z(X

∗
s )n exp [(s− t)/n] ds

)
,

where |δ| ≤ 4(ζec)−1.
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Recall that for some vertex y in G∗
x we let Ety [· | F ] denote the expectation w.r.t.

ty, the random time that y is updated prior to time t. It holds that

Ety [Uy,z(X
∗
ty )|F ] = exp(−t/n)Uy,z(X

∗
0 ) +

∫ t

0

Uy,z(X
∗
s )n exp [(s− t)/n] ds.

For every y ∈ N(z)\{x}, where z /∈ H(x) it holds that

Ety
[
Uy,z(X

∗
ty ) | F

]
−
∫ t

0

Uy,z(X
∗
s )n exp [(s− t)/n] ds = exp (−t/n)Uy,z(X

∗
0 )

≤ exp (−t/n) ≤ exp(−c).(147)

Since λ < e/Δ, (146) implies that there is a quantity θ with 0 < θ ≤ 20(ζec)−1, such
that

E [Uz,x(X
∗
t ) | F ] ≤

∏
y∈N(z)\{x}

(
1−

∫ t

0

λ

1 + λ
Uy,z(X

∗
s )n exp [(s− t)/n] ds

)
+ θ/2

≤
∏

y∈N(z)\{x}

(
1− Ety

[
λ

1 + λ
Uy,z(X

∗
ty ) | F

])
+ θ (from (147))

=
∏

y∈N(z)\{x}

(
1− Es

[
λ

1 + λ
Uy,z(X

∗
s ) | F

])
+ θ,

where in the last derivation, we substituted the variables ty for y ∈ N(z) \ {x} with
a new random variable s which follows the same distribution as ty. Note that the
variables ty are identically distributed.

Given the σ-algebra F , the variables Uy,z(X
∗
s ) for y ∈ N(z)\{x} are independent

with each other; this yields

E [Uz,x(X
∗
t ) | F ] = Es

[∏
y

(
1− λ

1 + λ
Uy,z(X

∗
s )

)
| F

]
+ θ

= Es [R(X∗
s , z) | F ] + θ,(148)

where the last derivation follows from the definition of R(X∗
s , z). In the same manner,

we get that

(149) E [Uz,x(X
∗
t ) | F ] ≥ Es [R(X∗

s , z) | F ]− θ

for every z /∈ H(x).
Since X∗

0 is (400, R)-nice at w, and x ∈ BR(w), we have that |H(x)| ≤ 400ζΔ.
This observation and (148), (149), (142) yield that there exists C ′ > 0 such that

(150)

Pr

⎡
⎣
∣∣∣∣∣∣R(X∗

t , x)− exp

⎛
⎝− λ

1 + λ

∑
z∈N(x)

Es [R(X∗
s , z) | F ]

⎞
⎠
∣∣∣∣∣∣ ≥ 7(θ + 400ζ + 3γ)

⎤
⎦

≤ exp (−C′Δ) ,

where we use the fact λ
1+λΔ < e and θ, ζ, γ are sufficiently small.
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To get from (X∗
t ) to (Xt) we use Lemma 29 with parameter γ3. That is, we have

that
Pr

[∃s ∈ I |(Xs ⊕X∗
s ) ∩ S2(x)| ≥ γ3Δ

] ≤ exp (−Δ/C′′)

for some sufficiently large constant C′′ > 0. This implies that

(151) Pr
[∃t ∈ I |R(X∗

t , x)−R(Xt, x)| ≥ γ2
] ≤ exp (−Δ/C′′) ,

since changing any Δγ3 variables in S2(x) can only change R(X∗
s , x) by at most γ2.

With the same observation we also get that with probability at least
1− exp(−Δ/C′′) it holds that

(152)

∣∣∣∣
∫ t

0

R(X∗
s , x)n exp [(s− t)/n] ds−

∫ t

0

R(Xs, x)n exp [(s− t)/n] ds

∣∣∣∣ ≤ 2γ2.

Plugging (151), (152) into (150) and taking appropriate γ, ζ the following is true:
There exists Ĉ > 0 such that

Pr

⎡
⎣
∣∣∣∣∣∣R(Xt, x) − exp

⎛
⎝− λ

1 + λ

∑
r∈N(x)

E(r)
⎞
⎠
∣∣∣∣∣∣ ≥

ηε

20C0

⎤
⎦ ≤ exp

[
−Δ/Ĉ

]
,

where

E(r) = exp[−t/n] ·R(X0, r) +

∫ t

0

R(Xs, r)n exp [(s− t)/n] ds.

At this point, we remark that the above tail bound holds for a fixed t ∈ I. For
our purpose, we need a tail bound which holds for every t ∈ I.

Consider a partition of the time interval I into subintervals each of length ζ3

200Δn,
where the last part can be of smaller length. Let T (j) be the jth part. Each z ∈ S2(x)

is updated during the time period T (j) with probability less than ζ3

100Δ , independently
of the other vertices.

Note that |S2(x)| ≤ Δ2. Chernoff’s bounds imply that with probability at least
1 − exp(−Δζ3), the number of vertices in S2(x) which are updated more than once
during the time interval T (j) is at most ζ3Δ. Also, changing any Δζ3 variables in
S2(x) can only change R(Xs, x) by at most ζ2.

The lemma follows by taking a union bound over all T (j) for j ∈ {1, . . . , �200|I|
Δ/(ζ3)�} and all vertices BR/2(w).

11. Conclusions. The work of Weitz [42] was a notable accomplishment in
the field of approximate counting/sampling. However a limitation of his approach
is that the running time depends exponentially on logΔ. It is widely believed that
the Glauber dynamics has mixing time O(n logn) for all G of maximum degree Δ
when λ < λc(Δ). However, until now there was little theoretical work to support this
conjecture. We give the first such results which analyze the widely used algorithmic
approaches of MCMC and loopy BP.

One appealing feature of our work is that it directly ties together with Weitz’s
approach: Weitz uses decay of correlations on trees to truncate his self-avoiding walk
tree, whereas we use decay of correlations to deduce a contracting metric for the
path coupling analysis, at least when the chains are at the BP fixed point. We
believe this technique of utilizing the principal eigenvector for the BP operator for
the path coupling metric will apply to a general class of spin systems, such as 2-spin
antiferromagnetic spin systems. (Weitz’s algorithm was extended to this class [20].)
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We hope that in the future more refined analysis of the local uniformity properties
will lead to relaxed girth assumptions. However dealing with very short cycles, such
as triangles, will require a new approach since loopy BP no longer seems to be a good
estimator of the Gibbs distribution for certain examples.
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