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We study the following structure learning problem for H -colorings. For a fixed (and known) constraint graph
H with q colors, given access to uniformly random H -colorings of an unknown graphG = (V ,E), how many
samples are required to learn the edges ofG? We give a characterization of the constraint graphs H for which
the problem is identifiable for every G and show that there are identifiable constraint graphs for which one
cannot hope to learn every graph G efficiently. We provide refined results for the case of proper vertex q-
colorings of graphs of maximum degree d . In particular, we prove that in the tree uniqueness region (i.e.,
when q > d), the problem is identifiable and we can learn G in poly(d,q) ×O (n2 logn) time. In the tree non-
uniqueness region (i.e., when q ≤ d), we show that the problem is not identifiable and thus G cannot be
learned. Moreover, when q ≤ d −

√
d + Θ(1), we establish that even learning an equivalent graph (any graph

with the same set ofH -colorings) is computationally hard—sample complexity is exponential inn in the worst
case. We further explore the connection between the efficiency/hardness of the structure learning problem
and the uniqueness/non-uniqueness phase transition for general H -colorings and prove that under a well-
known uniqueness condition in statistical physics, we can learn G in poly(d,q) ×O (n2 logn) time.

1 INTRODUCTION

Structure learning is a general framework for supervised learning where instead of learning labels
or real numbers as in classification or regression, the task is to learn a more complex structure, such
as a graph. We study structure learning for Markov random fields (undirected graphical models)
where the goal is to recover the underlying graph from random samples; this problem has found
important applications in diverse fields (e.g., [21, 30, 36, 39, 41, 42]).
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Our goal in this work is to understand when structure learning for Markov random fields is
possible in polynomial time. We mostly focus on the task of exact recovery, where a learning al-
gorithm is said to succeed only when it outputs exactly the hidden graph. In applications, exact
recovery of graphical models is often of interest, since the true graph structure contains valuable
information about the dependencies in the model. Consequently, it has been very well studied
(e.g., see [2, 4, 5, 8, 11–13, 27, 31, 33, 34, 40, 46, 47]). Although the typical setting in these works
is soft-constraint models, our focus here is models with hard constraints. Specifically, we consider
the structure learning problem and the closely related question of statistical identifiability in the
general setting of H -colorings. H -colorings are studied in several other contexts, with the asso-
ciated computational problems receiving substantial attention; notably, the decision problem [10,
28, 29, 43] and the exact and approximate counting/sampling problems [17, 19, 23, 26] have been
considered extensively.

Given an undirected, connected constraint graph H = (V (H ),E (H )), with vertices V (H )=
{1, . . . ,q} referred to as colors (or spins), an H -coloring of a graph G = (V ,E) is an assignment
of colors {1, . . . ,q} to the vertices of G such that adjacent vertices of G receive adjacent colors
in H . In other words, an H -coloring σ is a mapping σ : V → V (H ) such that if {v,w } ∈ E, then
{σ (v ),σ (w )} ∈ E (H ). If such an assignment is possible, we say that G is H -colorable. The con-
straint graph H is allowed to have self-loops, but not parallel edges, and every {i, j} such that
{i, j} � E (H ) is called a hard constraint.

Two canonical examples of H -colorings are proper colorings and independent sets. The for-
mer corresponds to the case where H is the complete graph Kq on q vertices with no self-
loops and the latter to the constraint graph H with two vertices V (H ) = {0, 1} and two edges
E (H ) = {{0, 0}, {0, 1}}. Spin systems without hard constraints (i.e., soft-constraint systems) corre-
spond to H = K+q , where K+q denotes the complete graph with a self-loop at every vertex. In this

case, all q |V | labelings of G are valid H -colorings.
We consider structure learning and statistical identifiability for H -colorings with at least one

hard constraint—that is, H � K+q . Note that the missing edge could be a self-loop.

For an H -colorable graphG, let ΩH
G be the set of all possible H -colorings ofG and let πH

G denote
the uniform measure over ΩH

G . Typically, the constraint graph H will be fixed, and thus we will
drop the dependence on H in our notation. Some of our results extend to the more general setting
of a weighted constraint graph H and a weighted graph G, where πH

G is the corresponding Gibbs
distribution; see Section 6.1 for a precise definition.

We first address the statistical identifiability problem for general H -colorings, where the goal is
to characterize the cases when every graph is learnable with an infinite number of samples.

Definition 1.1. A constraint graph H is said to be identifiable with respect to a family of H -
colorable graphs G if for any two distinct graphs G1,G2 ∈ G we have πG1 � πG2 (or equivalently
ΩG1 � ΩG2 ). In particular, when G is the set of all finite H -colorable graphs, we say that H is
identifiable.

To characterize identifiability, we introduce a supergraphGi j of H for {i, j} ∈ E (H ). This super-
graph will not be used as a constraint graph, but rather we will consider the H -colorings of Gi j in
our characterization theorem. Consider an edge {i, j} ∈ E (H ). We constructGi j by starting from H
and duplicating the colors i and j. These new copies, denoted i ′ and j ′, have the same neighbors
as the original colors i and j, respectively, except for the one edge {i ′, j ′}, which is not included;
see Figure 1 for an illustration of this supergraph and Definition 2.2 for a formal definition.

For a constraint graph H , we say that a pair of colors i, j ∈ V (H ) is compatible (respectively,
incompatible) if {i, j} ∈ E (H ) (respectively, {i, j} � E (H )). Our characterization theorem considers
whether in every H -coloring of Gi j the new vertices i ′, j ′ receive compatible colors.
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Fig. 1. Two constraint graphs H and H ′ with corresponding supergraphs G12 and G ′12.

Theorem 1.2. Let H � K+q be an arbitrary constraint graph. If H has at least one self-loop, then

H is identifiable. Otherwise, H is identifiable if and only if for each {i, j} ∈ E (H ) there exists an H -

coloring σ of Gi j such that σ (i ′) and σ (j ′) are incompatible colors in H .

The crucial role of the graph Gi j for identifiability is elucidated in Section 2. We are also able
to extend this characterization theorem to the case of weighted H -colorings; see Theorem 6.7 in
Section 6.4 for a precise statement.

For structure learning, our goal is to efficiently learn the graph G from samples drawn inde-
pendently from πG . More formally, let H be a fixed constraint graph and let G be a family of
H -colorable graphs. Suppose that we are given L samples σ (1),σ (2), . . . ,σ (L) drawn independently
from the distribution πH

G where G ∈ G. A structure learning algorithm for the constraint graph

H and the graph family G takes as input the sample sequence σ (1),σ (2), . . . ,σ (L) and outputs an
estimator Ĝ ∈ G such that Pr[G = Ĝ] ≥ 1 − ε where ε > 0 is a prescribed error (failure probability).

As mentioned earlier, structure learning has been well studied for soft-constraint models (H =
K+q ). For a system with maximum interaction strength β on an unknown n-vertex graph G of
maximum degree d , Klivans and Meka [33] provide a structure learning algorithm that achieves
nearly optimal running time of O (n2 logn) × exp(O (βd )); see earlier related work [4, 27, 47]. All
of these results concern soft-constraint models and do not apply to the setting of hard-constraint
systems. We shall see that although the algorithm in Klivans and Meka [33] achieves (optimal)
single exponential dependence on d for general soft-constraint systems, the structure learning
problem for hard-constraint systems is quite different. Indeed, some hard-constraint systems are
not statistically identifiable (and thus the unknown graphG cannot be learned); others allow very
efficient structure learning algorithms with poly(n,d,q) running time; whereas also in others, any
structure learning algorithm requires exponentially (in n) many samples.

For hard-constraint systems, the structure learning problem was previously studied by Bresler
et al. [6] for independent sets (more generally, for the hard-core model where the independent sets
are weighted by their size and a model parameter λ > 0). They achieve nearly optimal running
time of O (n2 logn) × exp(O (dλ)). For our positive results, we generalize the structure learning
algorithm in Bresler et al. [6].

LetG (n,d ) be the family ofn-vertex graphs of maximum degree at mostd . Our next result shows
that for some identifiable (with respect to G (n,d )) constraint graphs, one cannot hope to learn the
underlying graphG efficiently. As mentioned, this is not the case for soft-constraint models, where
one can always learn G in time O (n2 logn) × exp(O (dβ )) [33].

Theorem 1.3. There exists an identifiable constraint graph H and a constant c > 0 such that for

all n ≥ 8, any structure learning algorithm for H and the graph family G (n, 7) that succeeds with

probability at least exp(−cn) requires at least exp(cn) samples.
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Although this theorem shows that there is no efficient learning algorithm for all identifiable
models, for some relevant models structure learning can be done efficiently.

We focus first on the case of proper q-colorings where H = Kq . In general, the proper color-
ings problem is not identifiable. However, if we consider identifiability with respect to the graph
family G (n,d ),we get a richer picture. We prove that when q > d, the q-colorings problem is iden-
tifiable, whereas when q ≤ d, it is not. This is a natural threshold due to the efficiency of the simple
greedy algorithm for constructing a q-coloring. In addition, it coincides with the statistical physics
uniqueness/non-uniqueness phase transition of the Gibbs distribution on infinite d-regular trees
(see [9, 32]), which is known to be closely connected to the efficiency/hardness of other funda-
mental computational problems, such as sampling and counting (e.g., see [24, 35, 44, 45, 49]).

In the identifiable region q > d, we present an efficient structure learning algorithm with
O (n2 logn) × poly(d,q) running time. When q ≤ d , where we cannot hope to learn the hidden
graph G since there are pairs of graphs with the same set of H -colorings, we may be interested in
a learning algorithm that outputs a graph G ′ that is equivalent to the unknown graph G, in the
sense that ΩG′ = ΩG . We say that an algorithm is an equivalent-structure learning algorithm for a
fixed constraint graph H and a graph family G if for every G ∈ G, with probability at least 1 − ε ,
the algorithm outputs G ′ ∈ G such that ΩG = ΩG′ .

In the q-coloring setting, it turns out that when q ≤ d −
√
d + Θ(1), there is a family of ex-

ponentially many n-vertex graphs with different sets of q-colorings that only differ on an ex-
ponentially small (in n) fraction of their q-colorings. Consequently, any equivalent-structure
learning algorithm requires exponential many samples to distinguish among these graphs. The
q ≤ d −

√
d + Θ(1) threshold is quite curious since it is exactly the same as the one for polynomial-

time/NP-completeness for the decision problem [22, 38], and it was recently shown [3] that it
also aligns with the polynomial-time/#BIS-hardness transition for the identity testing problem
for proper colorings. The graph used in our proof here is inspired by the graphs used in other
works [22, 38].

Our results for statistical identifiability, structure learning, and equivalent-structure learning
for proper q-colorings are stated in the following theorem.

Theorem 1.4. Consider the q-colorings problem H = Kq . The following hold for all d :

(1) Efficient learning for q > d : For all q > d , n ≥ 1, and any G ∈ G (n,d ), there is a structure

learning algorithm that given L = O (qd3 log( n2

ε
)) independent samples from πG outputs G

with probability at least 1 − ε and has running time O (Ln2).
(2) Non-identifiability for q ≤ d : For all q ≤ d and n ≥ q + 2, there exist q-colorable graphs

G1,G2 ∈ G (n,d ) such that G1 � G2 and πG1 = πG2 .

(3) Lower bound for q ≤ d −
√
d + Θ(1): For all d ≥ q +

⌈√
q
⌉
− 1, there exists a constant c > 0

such that any equivalent-structure learning algorithm for the family of graphs G (n,d ) that

succeeds with probability at least exp(−cn) requires at least exp(cn) samples, provided n is

sufficiently large.

(4) Lower bound for q ≤ d : For all 3 ≤ q ≤ d and n ≥ d + 2, any equivalent-structure learn-

ing algorithm for G (n,d ) that succeeds with probability at least 1/2 requires exp(Ω(d − q))
samples.

We remark that part (3) of this theorem provides an exponential lower bound for equivalent-
structure learning in the non-identifiable regime, whereas Theorem 1.3 provides a similar lower
bound but for structure learning for an identifiable model.

Our results for the structure learning problem in the setting of q-colorings suggest an inti-
mate connection between the efficiency/hardness of the learning problem and the uniqueness/
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non-uniqueness phase transition of the Gibbs distribution. We further explore this connection for
general H -colorings.

A well-known sufficient condition for uniqueness on general graphs concerns the maximum in-
fluence of a site. Specifically, if τ ,τw are pairs of spin assignments of a graphG = (V ,E) that differ
only at vertex w , we can define the so-called influence matrix R whose entry Rv,w corresponds
to the maximum (over the pairs τ ,τw ) of the difference in total variation distance of the marginal
distribution at vertex v conditional on the spin assignment τ (V \v ) versus τw (V \v ); see Defini-
tion 4.1. If the maximum column sum ofR is strictly less than 1 (i.e.,α := maxw ∈V

∑
v ∈∂w Rv,w < 1),

then the influence of any vertex on its neighborhood is less than 1. (Observe that Rv,w = 0 for non-
adjacent pairs v,w .) Dobrushin and Shlosman [16] were the first to derive uniqueness from this
type of condition; see Remark 4.2 for some additional background on the α < 1 condition. We show
that we can learn the underlying n-vertex graph in poly(n,q) time when α < 1.

Theorem 1.5. Let H � K+q be an arbitrary constraint graph. Suppose G is such that the unique-

ness condition α < 1 is satisfied for πG . Then, there is a structure learning algorithm that given

L=O (q2 log( n2

ε
)) independent samples from πG outputs the graph G with probability at least 1 − ε

and has running time O (Ln2).

Under a much weaker (i.e., easier to satisfy) condition, we give a structure learning algorithm
with running time exponential in the maximum degree d of the graph G. Our algorithm works for
all permissive systems and generalizes to the weighted setting. The precise definition, as well as the
running time and sample complexity of our algorithm, are provided in Section 6; see Definition 6.1
and Theorem 6.2.

Finally, we mention that the corresponding approximation problem of finding a graph G ′ such
that πG′ and πG are close in some notion of distance, which is not yet well understood for soft-
constraint systems [1, 7], is apparently much simpler for hard-constraint systems. In Section 5,
we provide an algorithm for approximate structure learning for all hard-constraint systems with
polynomial running time and sample complexity (see Theorem 5.1).

The rest of the article is organized as follows. In Section 2, we prove our characterization the-
orem (Theorem 1.2) and our learning lower bound for identifiable models (Theorem 1.3). In Sec-
tion 3, we prove our results for colorings (Theorem 1.4). In particular, in Section 3.1, we introduce a
general structure learning algorithm structlearn-H, which will be the basis of all of our algorith-
mic result. Our poly(n,d,q)-time algorithm in the uniqueness regime (Theorem 1.5) is established
in Section 4. In Section 5, we consider the approximation problem of learning a graphG such that
πG is close in total variation distance to the true distribution. Finally, the case of weighted H and
G is considered in Section 6.

2 IDENTIFIABILITY

As discussed in Section 1, given a constraint graph H , it is possible that πG1 = πG2 for two distinct
H -colorable graphs G1 and G2—that is, the structure learning problem is not identifiable. In this
section, we prove Theorem 1.2 from Section 1 that characterizes the identifiable constraint graphs.

Let G be a family of H -colorable graphs. Recall that a constraint graph H is identifiable with re-

spect to G if for any two distinct graphsG1,G2 ∈ G we have πG1 � πG2 or equivalently ΩG1 � ΩG2 .
In particular, when G is the set of all finite H -colorable graphs, we say that H is identifiable; see
Definition 1.1. Before proving Theorem 1.2, we provide the following useful alternative definition
of identifiability.

Lemma 2.1. A constraint graph H � K+q is identifiable if and only if for any H -colorable graph

G = (V ,E) and any two non-adjacent vertices u,v ∈ V there is an H -coloring ofG where u and v are

assigned incompatible colors.
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Proof. For the forward direction, we prove the contrapositive. LetG = (V ,E) be anH -colorable
graph and suppose there exists two non-adjacent verticesu,v ∈ V such that in every H -coloring σ
ofG these vertices receive compatible colors. Then, the graphG and the graphG ′ = (V ,E ∪ {u,v})
have the same set of H -colorings. Hence, πG = πG′ and thus H is not identifiable.

For the reverse direction, suppose that for every H -colorable graph G = (V ,E) and every pair
of non-adjacent vertices u,v ∈ V there exists an H -coloring of G such that u and v are assigned
incompatible colors. Suppose also that for a pair of H -colorable graphs G1 = (V ,E1) and G2 =

(V ,E2), we have πG1 = πG2 (or equivalently that ΩG1 = ΩG2 ). We show thatG1 = G2. First consider
{u,v} � E1. Then, there exists an H -coloring τ ∈ ΩG1 where u and v receive incompatible colors.
Since also τ ∈ ΩG2 , {u,v} � E2 . Similarly, if {u,v} � E2, then {u,v} � E1. Thus, G1 = G2 and thus
H is identifiable. �

To characterize identifiability of H -colorings, we previously introduced the supergraph Gi j of
H obtained by duplicating the colors i and j. The new copies of i and j, denoted i ′ and j ′, have
the same neighbors as i and j, respectively, except for the one edge {i ′, j ′} that is not present in
Gi j —see Figure 1 for examples of the graph Gi j . We provide next the formal definition of Gi j .

Definition 2.2. Let H = (V (H ),E (H )) be an arbitrary constraint graph with no self-loops. For
each {i, j} ∈ E (H ), we define the graph Gi j = (V (Gi j ),E (Gi j )) as follows:

(1) V (Gi j ) = V (H ) ∪ {i ′, j ′}, where i ′ and j ′ are two new colors;
(2) If {a,b} ∈ E (H ), then the edge {a,b} is also in E (Gi j );
(3) For each k ∈ V (Gi j ) \ {i ′, j ′}, the edge {i ′,k } is in Gi j if and only if the edge {i,k } is in H ,

and similarly {j ′,k } ∈ E (Gi j ) if and only if {j,k } ∈ E (H ).

The intuition for the role of the graph Gi j in our characterization theorem is that if we added
the edge {i ′, j ′} to Gi j to form the graph G ′i j = Gi j ∪ {i ′, j ′}, then in every H -coloring of G ′i j the
vertices i ′, j ′ receive compatible colors. If the same property holds for Gi j —that is, in every H -
coloring of Gi j the vertices i ′, j ′ receive compatible colors—then the edge {i ′, j ′} plays no role and
the pair of graphs Gi j and G ′i j have the same set of H -colorings. In other words, Gi j and G ′i j are
indistinguishable, and thus H is not identifiable.

Our characterization of identifiability (i.e., Theorem 1.2 from Section 1) is established by the
next two lemmas. Lemma 2.3 deals with the case of constraint graphs with at least one self-loop,
whereas Lemma 2.4 considers constraint graphs with no self-loops.

Lemma 2.3. If H � K+q has at least one self-loop, then H is identifiable.

Proof. The proof is divided into two cases corresponding to whether all vertices of H have
self-loops or not.

Case 1: At least one but not all vertices of H have self-loops. LetU be the set of vertices that have
self-loops, and letW = V (H )\U be the set of vertices that do not. By assumption, bothU andW are
not empty. Moreover,U andW are connected because by assumption H is connected. Thus, there
exist i ∈ U and j ∈W such that {i, i}, {i, j} ∈ E (H ) and {j, j} � E (H ). We use this gadget to show that
for anyH -colorable graphG = (V ,E) and any two non-adjacent verticesu,v ∈ V ofG, there exists
an H -coloring σ of G where u and v are assigned incompatible colors. Then, by Lemma 2.1, H is
identifiable. The H -coloring σ is defined as follows: σ (w ) = i for all w � u,v and σ (u) = σ (v ) = j.
Since {i, i}, {i, j} ∈ E (H ), σ is a valid H -coloring ofG. Moreover, since {j, j} � E (H ),u andv receive
incompatible colors and the result follows.

Case 2: All vertices of H have self-loops. Observe first that if H is connected, H � K+q and every
vertex in H has a self-loop, then there exist i, j,k ∈ V (H ) such that {i, j}, {j,k }, {i, i}, {j, j}, {k,k } ∈
E (H ), and {i,k } � E (H ). We use this gadget to show for any H -colorable graphG = (V ,E) and any
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Fig. 2. (a) The constraint graph F ; each thick edge corresponds to 32 edges, one incident to each vertex of
I32. (b) The graph Gm showing the edges in Ei,i+1 and the connections between the vertices a1,a

′
1,b1, c1.

pair of non-adjacent vertices u,v ∈ V there is an H -coloring σ ofG such that (σ (u),σ (v )) � E (H ).
Lemma 2.1 then implies thatH is identifiable. TheH -coloringσ is given byσ (w ) = j for allw � u,v ,
σ (u) = i and σ (v ) = k . Since color j is compatible with colors i , j, and k inH , σ is a validH -coloring
of G. Moreover, u and v receive the incompatible colors i and k and so the result follows. �

Lemma 2.4. If H � K+q has no self-loops, H is identifiable if and only if for each {i, j} ∈ E (H ) there

exists an H -coloring of Gi j where i ′ and j ′ receive incompatible colors.

Proof. Assume first that H � K+q is identifiable and has no self-loops. For every {i, j} ∈ E (H ),
Gi j is clearly H -colorable (simply assign color k ∈ V (H ) to the corresponding vertex in Gi j , color
i to i ′ and color j to j ′). Hence, Lemma 2.1 implies that there exists an H -coloring of Gi j where i ′

and j ′ receive incompatible colors. This proves the forward direction of the lemma.
For the reverse direction, suppose that for every {i, j} ∈ E (H ) there exists an H -coloring of Gi j

where i ′ and j ′ are assigned incompatible colors. LetG = (V ,E) be an arbitrary H -colorable graph.
We show that for every pair of non-adjacent vertices u,v ∈ V inG there exists an H -coloring ofG
where u and v receive incompatible colors. It then follows from Lemma 2.1 that H is identifiable.

Let σ be an H -coloring ofG, and let us assume that σ (u) and σ (v ) are compatible colors. (If σ (u)
and σ (v ) are incompatible colors in H , there is nothing to prove.) We use σ to construct an H -
coloring σ ′ where u andv receive incompatible colors. Let a = σ (u) and b = σ (v ). By assumption,
there exists an H -coloring τ of Gab where the corresponding copies of a and b, a′ and b ′, receive
incompatible colors. Define the H -coloring σ ′ of G as follows:

σ ′(w ) = τ (σ (w )), ∀w � u,v ; σ ′(u) = τ (a′); σ ′(v ) = τ (b ′).

It is straightforward to check thatσ ′ is a properH -coloring ofG. Sinceu andv receive incompatible
colors in σ ′ (i.e., τ (a′) and τ (b ′)), the proof is complete. �

2.1 Learning Lower Bounds for Identifiable Models

In this section, we prove Theorem 1.3 from Section 1. In particular, we provide a constraint graph F
and a family of F -colorable n-vertex graphs of maximum degree 7 such that the number of samples
from π F

G required to learn any graph in this family, even with success probability exp(−O (n)), is
exponential in n.

We define the constraint graph F = (V (F ),E (F )) first, which consists of an independent set of
size 32, denoted I32, and four additional vertices {1, 2, 3, 4}. Every vertex in the independent set I32

is connected to these four vertices and also {1, 2}, {2, 3}, {3, 4} ∈ E (F ); see Figure 2(a).
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Lemma 2.5. F is identifiable.

Proof. Let G = (V ,E) be an F -colorable graph. Since F is tripartite with a unique tripartition
{{1, 3}, {2, 4}, I32}, then so is G. Let {V1,V2,V3} be a tripartition of G, and let u,v be any two non-
adjacent vertices of G. We show that there is always an F -coloring of G where u and v receive
incompatible colors. The result then follows from Lemma 2.1.

If u and v belong to the same Vi , then by coloring all vertices V1 with color 1, all vertices of V2

with color 2, and all vertices in V3 with any color c from I32, we have a coloring of G where u and
v receive the same color. Since F has no self-loops, u and v are assigned incompatible colors.

If u and v belong to different Vi ’s, suppose without loss of generality that u ∈ V1 and v ∈ V2.
Consider the following F -coloring σ of G where c is any color from I32:

σ (w ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ifw = u;

4 ifw = v ;

3 ifw ∈ V1\{u};
2 ifw ∈ V2\{v};
c ifw ∈ V3.

In σ , u and v receive the incompatible colors 1 and 4. Thus, we have shown that it is always
possible to color non-adjacent vertices of G with incompatible colors and the result follows from
Lemma 2.1. �

Next we define a family Gn of n-vertex graphs of maximum degree 7 such that every graph in
the family has almost the same set of F -colorings. Every graph in Gn will be a supergraph of the
graph Gm = (Vm ,Em ), whose vertex set is given by

Vm = {ai ,a
′
i ,bi , ci : 1 ≤ i ≤ m}

with m = n/4. (For clarity, we assume first that 4 divides n; we later explain how to adjust the
definition of Gn when n is not divisible by 4.) For each 2 ≤ i ≤ m, {ai ,a

′
i ,bi , ci } is an independent

set. The edges with both endpoints in {a1,a
′
1,b1, c1} are

E1,1 := {{a1,b1}, {a1, c1}, {a′1,b1}, {a′1, c1}, {b1, c1}}.
The edges between the independent sets {ai ,a

′
i ,bi , ci } and {ai+1,a

′
i+1,bi+1, ci+1} for 1 ≤ i < m are

Ei,i+1 :=
{
{ai ,bi+1}, {ai , ci+1}, {a′i ,bi+1}, {a′i , ci+1}, {bi ,ai+1},
{bi ,a

′
i+1}, {bi , ci+1}, {ci ,ai+1}, {ci ,a

′
i+1}, {ci ,bi+1}}.

We then let Em =
(⋃m−1

i=1 Ei,i+1

)
∪ E1,1; see Figure 2(b).

Now, let
M = {{ai ,bi+2} : i = 1, 2, . . . ,m − 2}, (1)

and let E (1),E (2), . . . ,E (t ) be all possible subsets of M ; hence, t = 2m−2. We define Gn as

Gn = {G (1) = (Vm ,Em ∪ E (1) ),G (2) = (Vm ,Em ∪ E (2) ), . . . ,G (t ) = (Vm ,Em ∪ E (t ) )}.
Since the maximum degree of Gm is 6, every graph in Gn has maximum degree 7. Moreover, if
we let Am = {ai ,a

′
i : 1 ≤ i ≤ m}, Bm = {bi : 1 ≤ i ≤ m}, and Cm = {ci : 1 ≤ i ≤ m}, then it is clear

from our construction that (Am ,Bm ,Cm ) is a tripartition for every graph in Gn . An immediate
consequence of this is that every graph in Gn has an F -coloring that assigns, for example, color 2
to every vertex in Am , color 3 to every vertex in Bm , and a color from the independent set I32 to
every vertex in Cm . Therefore, all graphs in the family Gn are F -colorable.

The next theorem shows that structure learning is hard for F and Gn .
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Theorem 2.6. Letm ∈ N+ such thatm ≥ 2, and letn = 4m. Then, any structure learning algorithm

for the constraint graph F and the family of graphs Gn that succeeds with probability at least 2−(m−3)

requires at least 2m+1 samples.

Before proving this theorem, we state two key facts that will be used in its proof. In particular,
Fact 2.7 shows that actually (Am ,Bm ,Cm ) is the unique tripartition of Gm , and Lemma 2.8 gives a
lower bound for the number of samples required by a structure learning algorithm to guarantee a
prescribed success probability.

Fact 2.7. For any m ∈ N+, the graph Gm is tripartite. Moreover, it has a unique tripartition

(Am ,Bm ,Cm ), where Am = {ai ,a
′
i : 1 ≤ i ≤ m}, Bm = {bi : 1 ≤ i ≤ m}, and Cm = {ci : 1 ≤ i ≤ m}.

Lemma 2.8. Let H be an arbitrary constraint graph. Suppose Ĝ = {Ĝ1, Ĝ2, . . . , Ĝr } is a family of

r distinct H -colorable graphs such that H is identifiable with respect to Ĝ. Assume also that Ĝ1 is a

subgraph of Ĝi for all 2 ≤ i ≤ r and that Ĝr is a supergraph of Ĝi for all 1 ≤ i ≤ r − 1. Let

η = 1 −
|ΩĜr
|

|ΩĜ1
| .

If there exists a structure learning algorithm for H and Ĝ such that for any G∗ ∈ Ĝ, given L inde-

pendent samples from πH
G∗ as input, it outputs G∗ with probability at least 1/r + α with α > 0, then

L ≥ α/η.

We observe that when α = 0, the structure learning algorithm that outputs a graph from Ĝ
uniformly at random has success probability 1/r without requiring any samples. We are now ready
to prove Theorem 2.6.

Proof of Theorem 2.6. Let m ≥ 2 and n = 4m, and for ease of notation, let G = Gn . Let G (1) =

Gm andG (t ) = Gm ∪M,whereM is defined in (1) and t = 2m−2. Hence, the graphG (1) (respectively,
G (t )) is a subgraph (respectively, supergraph) of every other graph in G. Moreover, all graphs in
G are distinct and F is identifiable by Lemma 2.5. Hence, to apply Lemma 2.8, all we need is an
upper bound for η = 1 − |ΩG (t ) |/|ΩG (1) |.

By Fact 2.7,Gm has a unique tripartition (Am ,Bm ,Cm ). Since {{1, 3}, {2, 4}, I32} is a tripartition for
F , every F -coloring ofGm induces the same tripartition ofGm . In other words, in every F -coloring
of Gm , one of the sets Am , Bm , or Cm is colored with colors {1, 3}, another is colored with {2, 4},
and the third one is colored using colors from the independent set I32 of F . Then, the number of
F -colorings ofGm such that Am is colored with colors from I32 is K · 322m , where K is the number
of F -colorings of Bm ∪Cm given a fixed F -coloring of Am that only uses colors from I32. Observe
thatK is the same for every F -coloring ofAm , andK ≥ 2 since we can always color Bm with color 2
and Cm with 3, or color Bm with 3 and Cm with 2. However, the number of F -colorings where Bm

receives colors from I32 is at most 2 · 32m · 2m · 22m = 2 · 32m · 8m , and similarly for Cm . Hence,
the probability that in a uniformly random F -coloring of Gm , Am is colored with colors from the
independent set I32 is at least

K · 322m

K · 322m + 4 · 32m · 8m
= 1 − 4 · 8m

K · 32m + 4 · 8m
≥ 1 − 1

22m−1
.

Let σ be an F -coloring of Gm such that Am is colored with colors from I32. Since colors from
I32 are compatible with any other color, the pair of colors σ (ai ),σ (bi+2) are compatible for any
1 ≤ i ≤ m − 2. Therefore, σ is also a valid F -coloring of G (t ) , and thus σ ∈ ΩG (t ) . We then deduce
that

1 − η =
|ΩG (t ) |
|ΩG (1) |

≥ 1 − 1

22m−1
.
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Since |G| = 2m−2, it follows from Lemma 2.8 that the number of samples required to learn a graph
in G with success probability 2−(m−3) is at least

L ≥ 2−(m−3) − 2−(m−2)

η
≥ 2m+1. �

Next we provide the proof of Fact 2.7; Lemma 2.8 is a direct corollary of Lemma 3.7, which is
proved later.

Proof of Fact 2.7. We prove this by induction. G1 has exactly one tripartition ({a1,a
′
1},b1, c1).

Suppose inductively that (Am−1,Bm−1,Cm−1) is the only tripartition of Gm−1. Since {ai ,bi−1},
{ai , ci−1} ∈ Em , am belongs to Am in any tripartition of Gm . Similar statements hold for a′m , bm ,
and cm as well. Therefore, (Am ,Bm ,Cm ) is the unique tripartition of Gm . �

2.2 Proof of Theorem 1.3

To conclude this section, we provide the proof of Theorem 1.3 from Section 1, which follows
straightforwardly from Theorem 2.6.

Proof of Theorem 1.3. Let n ≥ 8. If 4 divides n, then Theorem 2.6 implies that there exists
a constant c > 0 such that any structure learning algorithm for the constraint graph F and the
graph family Gn with success probability at least exp(−cn)) requires at least exp(cn) samples.
Since Gn ⊆ G (n, 7), the result follows.

The same ideas carry over without significant modification to the case when 4 does not divide
n. For example, suppose that n = 4m + 1 for some m ≥ 2. For G ∈ G4(m+1) , let Ĝ be the subgraph

of G induced by Vm+1 \ {a′m+1,bm+1, cm+1}. We define Gn as the family of the subgraphs Ĝ for
each G ∈ G4(m+1) . When n = 4m + 2 or n = 4m + 3, we consider instead the graph families of the
subgraphs induced by Vm+1 \ {bm+1, cm+1} and Vm+1 \ {cm+1}, respectively. The argument in the
proof of Theorem 2.6 carries over to these graph families straightforwardly. Since in every case
Gn ⊆ G (n, 7), the result follows. �

3 LEARNING PROPER q-COLORINGS

In this section, we consider statistical identifiability, structure learning, and equivalent-structure
learning for proper q-colorings, where H = Kq and πG is the uniform distribution over the proper
q-colorings of the graph G. In particular, we prove Theorem 1.4 from Section 1.

3.1 A Structure Learning Algorithm

In this section, we introduce a general structure learning algorithm for any constraint graph H
with at least one hard constraint (i.e., H � K+q ). In Section 3.2, we analyze its running time and
sample complexity for proper colorings. Later in Sections 4 and 6.3, we consider more general
settings where this algorithm is also efficient.

Fix H � K+q and suppose {i, j} � E (H ). Given independent samples σ (1), . . . ,σ (L) from πG = πH
G

for some unknown graph G = (V ,E), the algorithm checks for every pair of vertices u,v ∈ V
whether there is at least one sample σ (k ) such that σ (k )

u = i and σ (k )
v = j. If this is the case, then the

edge {u,v} does not belong to E. Otherwise, the algorithm adds the edge {u,v} to the estimator Ê of
E. This structure learning algorithm, which we call structlearn-H, has running timeO (Ln2) and
was used before in Bresler et al. [6] for the hard-core model. The effectiveness of structlearn-H
depends crucially on how likely are non-adjacent vertices to receive colors i and j. For v ∈ V , let
Xv be the random variable for the color of v under πG .
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Lemma 3.1. Let H � K+q and {i, j} � E (H ). Suppose that for all {u,v} � E,

Pr[Xu = i,Xv = j] ≥ δ

for some δ > 0. Let Ĝ = (V , Ê) be the output of the algorithm structlearn-H. Then, for all ε ∈ (0, 1),

Pr[E = Ê] ≥ 1 − ε provided L ≥ δ−1 log( n2

2ε
).

Proof. Suppose {u,v} � E, and let Zuv be the number of samples where vertices u and v are
assigned colors i and j, respectively. Since Pr[Xu = i,Xv = j] ≥ δ , we get

Pr[Zuv = 0] ≤ (1 − δ )L ≤ e−δ L ≤ 2ε

n2
.

The result follows from a union bound over the pairs of non-adjacent vertices. �

3.2 Efficient Structure Learning When q ≥ d + 1

In this section, we prove part (1) of Theorem 1.4. We show that for proper q-colorings with q ≥
d + 1 and any graph in G (n,d ), the structure learning algorithm structlearn-H (see Section 3.1)
requires O (qd3 log (n/ε )) samples to succeed with probability at least 1 − ε and has running time
O (qd3n2 log (n/ε )). This can be deduced immediately from the next lemma and Lemma 3.1, since
H = Kq � K+q in this setting.

Lemma 3.2. Suppose that q ≥ d + 1, and let {u,v} � E. Then

Pr[Xu = Xv ] ≥ 1

q(d + 1)3
.

Proof. Let u,v ∈ V be such that {u,v} � E, and let ∂u, ∂v denote the neighborhoods of u and
v , respectively, which may overlap. LetG ′ beG with the vertices u,v removed (the edges adjacent
to u and v are removed as well).

LetA(c, s, t ) be the set of colorings ofG ′where color c appears exactly s times in ∂u and exactly t
times in ∂v . Given a coloring in A(c, s, t ), we produce a coloring in A(c, 0, 0) as follows. List the
positions where c occurs in ∂u ∪ ∂v and then re-color the vertices in the order of the list. Note that
every vertexw in ∂u ∪ ∂v has at least two colors that do not occur in its neighborhood since inG ′

the vertex w has degree at most d − 1 (recall that we removed u and v from G to obtain G ′). This
maps at most ds+t colorings from A(c, s, t ) to a coloring in A(c, 0, 0) (given the list of positions, we
can recover the original coloring; there are at most ds+t lists where we first list the vertices in ∂u
and then vertices in ∂v \ ∂u). Hence, we have

|A(c, 0, 0) | ≥ |A(c, s, t ) |
ds+t

. (2)

Let A(c, ≤ j, ≤ k ) :=
∑

s≤j,t ≤k A(c, s, t ), and let μ be the uniform distribution over the colorings
of G ′. We claim that in any coloring there exist at least q − d colors that satisfy the following: c
occurs at most once in ∂u and at most once in ∂v . Indeed, adding over all colors the number of
occurrences in ∂u and the number of occurrences in ∂v, we can get at most 2d ; thus, at most d
colors can occur at least twice in ∂u or at least twice in ∂v . Thus,

μ (A(1, ≤ 1, ≤ 1)) + μ (A(2, ≤ 1, ≤ 1)) + · · · + μ (A(q, ≤ 1, ≤ 1)) ≥ q − d,

and by symmetry, μ (A(1, ≤ 1, ≤ 1)) ≥ q−d

q
≥ 1

d+1 . Since

μ (A(1, ≤ 1, ≤ 1)) =
∑

i, j ∈{0,1}
μ (A(1, i, j )),
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from (2) we get

μ (A(1, 0, 0)) ≥ 1

(d + 1)3
.

This means that with probability at least 1/(d + 1)3, color 1 does not occur in ∂u ∪ ∂v in a random
coloring of G ′.

Consider generating a uniformly random coloring ofG using rejection sampling as follows. Pick
a uniformly random coloring of G ′, a uniformly random color c1 for u, and a uniformly random
color c2 for v . If the resulting coloring is valid for G, then accept and otherwise reject. Since in
every round each coloring has the same probability of being picked, the generated coloring is a
uniformly random coloring of G. Notice that with probability 1/q2, we propose c1 = c2 = 1 in the
rejection sampling procedure, and hence with probability at least 1

q2 (d+1)3 , our process accepts and

produces a coloring ofG where u,v both receive color 1. Thus, in a uniformly random coloring of
G vertices, u,v receive color 1 with probability at least 1

q2 (d+1)3 , and by symmetry, the probability

that they receive the same color is at least 1
q (d+1)3 , as claimed. �

3.3 Identifiability for Proper q-Colorings

In this section, we prove part (2) of Theorem 1.4. We show that when q ≤ d there exist two distinct
graphs G,G ′ ∈ G (n,d ) such that πG = πG′ , or equivalently that G and G ′ have the same set of
q-colorings.

Theorem 3.3. Letn,q,d ∈ N+ such thatq ≤ d andn ≥ q + 2. Then, the structure learning problem

for q-colorings is not identifiable with respect to the family of graphs G (n,d ).

Proof. Let G = (V ,E) be a graph with

V = {c1, . . . , cq−1,u,v,w1, . . . ,wn−q−1},

where {c1, . . . , cq−1,u,v} is a clique of size q + 1 except for the one edge {u,v} that is not in E, and
{w1, . . . ,wn−q−1} is a simple path from w1 to wn−q−1. G has one additional edge connecting v and
w1. Then, in every q-coloring of G, the vertices u and v receive the same color, and thus u and w1

are assigned distinct colors. Hence, the graphG and the graphG ′ = (V ,E ∪ {u,w1}) have the same
set of q-colorings. Since bothG andG ′ are n-vertex graphs of maximum degree at most q ≤ d , the
structure learning for q-colorings is not identifiable with respect to G (n,d ). �

3.4 Strong Lower Bound When q ≤ d −
√
d + Θ(1)

In this section, we prove part (3) of Theorem 1.4, establishing a strong learning lower bound for
proper colorings when q ≤ d −

√
d + Θ(1).

As defined previously, an equivalent-structure learning algorithm for a graph family G finds a
graph Ĝ ∈ G such that ΩG = ΩĜ , where G ∈ G is the actual hidden graph. We exhibit a family of

graphs of maximum degree q +
⌈√

q
⌉
− 1 such that every graph in the family has almost the same

set of q-colorings. This makes equivalent-structure learning hard in this family. We use this fact
to prove part (3) of Theorem 1.4.

First, we define a graph Γm,t = (V (Γm,t ),E (Γm,t )), which is the base of all graphs in our graph
family. For anym, t ∈ N+ with t < q, the graph Γm,t is defined as follows. LetC1, . . . ,Cm be cliques
of size q − 1, and let I1, . . . , Im be independent sets of size t . Then,

V (Γm,t ) =
m⋃

i=1

(V (Ci ) ∪V (Ii )) ,
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Fig. 3. The graph Gm,t . Each of C1, . . . ,Cm ,C
′
1, . . . ,C

′
m is a clique of size q − 1, and each of

I1, . . . , Im , I
′
1, . . . , I

′
m is an independent set of size t < q. Solid lines between Ci (C ′i ) and Ii (I ′i ) mean that

every vertex inCi (C ′i ) is adjacent to every vertex in Ii (I ′i ). Dashed lines between Ii−1 (I ′i−1) andCi (C ′i ) mean
that every vertex in Ii−1 (I ′i−1) is adjacent to roughly (q − 1)/t vertices inCi (C ′i ) with no two vertices in Ii−1

(I ′i−1) sharing a common neighbor inCi (C ′i ). Each vertex si is adjacent to exactly one vertex from Ii and one
from I ′i .

where V (Ci ),V (Ii ) are the vertices of Ci , Ii , respectively. In addition to the edges in the cliques Ci

for 1 ≤ i ≤ m, E (Γm,t ) contains the following edges:

(1) For 1 ≤ i ≤ m, there is a complete bipartite graph between Ci and Ii . In other words, for
v ∈ Ci and u ∈ Ii , {v,u} ∈ E (Γm,t ).

(2) For 2 ≤ i ≤ m, each Ci is partitioned into t almost equally sized disjoint subsets
Ci,1, . . . ,Ci,t of size either �(q − 1)/t
 or �(q − 1)/t�. Then, the j-th vertex of Ii−1 is con-
nected to every vertex in Ci, j .

For 1 ≤ i ≤ m − 1, pick ui to be a vertex from Ii that is adjacent to exactly �(q − 1)/t
 vertices
in Ci and pick um arbitrarily from Im . We refer to these vertices u1, . . . ,um as ports of the graph
Γm,t . The key fact about the graph Γm,t that allows us to construct a graph family with the desired
properties is the following.

Fact 3.4. Let q,m, t ∈ N+ such that q ≥ 3 and t < q. In every q-coloring of Γm,t , all cliques

C1, . . . ,Cm are colored by the same set of q − 1 colors, and all independent sets I1, . . . , Im are col-

ored with the remaining color.

Fact 3.4, which is proved later, implies that all q-colorings of the graph Γm,t can be classified by
the color of I1.

Next we define a graph Gm,t = (Vm,t ,Em,t ), and every graph in our graph family will be a sub-
graph of Gm,t . Take the graph Γm,t = (V (Γm,t ),E (Γm,t )) and a copy of it Γ′m,t = (V (Γ′m,t ),E (Γ′m,t )).
The ports of Γm,t and Γ′m,t are denoted by u1, . . . ,um and u ′1, . . . ,u

′
m , respectively. Moreover, let

s1, . . . , sm bem additional vertices. Then,

Vm,t = V (Γm,t ) ∪V (Γ′m,t ) ∪ {s1, . . . , sm }
and

Em,t = E (Γm,t ) ∪ E (Γ′m,t ) ∪ {{ui , si }, {u ′i , si } : 1 ≤ i ≤ m
}

;

see Figure 3 for an illustration of the graph Gm,t .
The family of graphs Gm,t is defined as follows. All graphs in this family are distinct and are

subgraphs of Gm,t . Assumem ∈ N+ is even. Let

M =
{{u ′i , si } : m/2 < i ≤ m

}
. (3)
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Let E (1), . . . ,E (l ) be all of the subsets of M ; hence, l = 2m/2. We let

Gm,t = {G (j ) = (Vm,t ,Em,t \E (j ) ) : 1 ≤ j ≤ l }.
The graphs in Gm,t satisfy the following property, which we prove later.

Fact 3.5. If G = (V ,E) ∈ Gm,t , then |V | = (2q + 2t − 1)m and the maximum degree of G is at

most

q − 1 +max
{
t ,
⌈
q/t

⌉}
.

Using Fact 3.4 and ideas similar to those in the proof of Theorem 2.6, we can show that both
structure and equivalent-structure learning are computationally hard in Gm,t (sample complex-
ity is exponential in m). This immediately implies that structure learning is also hard in G (n,d )
provided d is large enough so that Gm,t ⊆ G (n,d ). However, this does not necessarily imply that
equivalent-structure learning is hard for G (n,d ), which is our goal. For this, we introduce instead
a larger graph family Fm,t that contains Gm,t . Suppose d is an integer such that

d ≥ q − 1 +max
{
t ,
⌈
q/t

⌉}
,

the maximum degree of any graph in Gm,t ; see Fact 3.5. The graph family Fm,t contains all graphs
in G (n,d ) that have the same set of colorings as some graph in Gm,t . Namely,

Fm,t = {G ∈ G (n,d ) : ΩG = ΩG′,G
′ ∈ Gm,t },

and Gm,t ⊆ Fm,t ⊆ G (n,d ) by definition.
The next theorem establishes a lower bound for any equivalent-structure learning algorithm

for Fm,t . We will later see that this lower bound applies also to the graph family G (n,d ), which
establishes part (3) of Theorem 1.4.

Theorem 3.6. Let q,m, t ∈ N+ such that q ≥ 3, m is even, and t < q. Any equivalent-structure

learning algorithm for proper vertex q-colorings and the graph family Fm,t that succeeds with prob-

ability at least q · exp
[
−m/(4(q − 1))

]
requires at least exp

[
m/(4(q − 1))

]
samples.

As we shall see, the assumption thatm is even is not essential but makes the calculations in the
proof of Theorem 3.6 clearer. The following generalization of Lemma 2.8 will be used in the proof
of Theorem 3.6.

Lemma 3.7. Let H be an arbitrary constraint graph, and let F1, . . . ,Fr be r families of distinct

H -colorable graphs. Suppose that for all 1 ≤ i ≤ r , every graph in Fi has the same set of H -colorings

ΩFi
. Assume also that ΩFi

� ΩFj
for i � j and that ΩFr

⊆ ΩFi
⊆ ΩF1 for all 1 ≤ i ≤ r . Let F̂ =

F1 ∪ · · · ∪ Fr , and let

η = 1 −
|ΩFr
|

|ΩF1 |
.

If there exists an equivalent-structure learning algorithm forH and F̂ such that for anyG∗ ∈ F̂ , given

L independent samples from πH
G∗ as input, it outputs a graphG satisfying ΩG = ΩG∗ with probability

at least 1/r + α with α > 0, then L ≥ α/η.

We remark that Lemma 2.8 corresponds to the special case where each family Fi contains a
single graph, and thus it follows immediately from Lemma 3.7. We are now ready to prove Theo-
rem 3.6.

Proof of Theorem 3.6. LetG (1) = Gm,t \M = (Vm,t ,Em,t \M ) andG (l ) = Gm,t , where M is as in
(3) and l = 2m/2. Let Fj be the class of graphs that contains all graphs in Fm,t that has the same
set of colorings as G (j ) . (Recall that Fm,t is the set of graphs in G (n,d ) that has the same set of
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colorings as some graph in Gm,t .) Let ΩFj
= ΩG (j ) for all j. Note that ΩFl

⊆ ΩFj
⊆ ΩF1 for all

1 ≤ j ≤ l . Let

η = 1 −
|ΩFl
|

|ΩF1 |
.

We establish an upper bound on η and then apply Lemma 3.7 to prove the theorem.
By Fact 3.4, all q-colorings of G (1) = Gm,t \M can be classified by the colors of the independent

sets I1, I ′1 and of the vertices s1, . . . , sm . Then, the number of q-colorings of G (1) where all vertices
in I1 and I ′1 receive the same color is equal to q(q − 1)m[(q − 1)!]2m , since there are q choices
for the color of I1 and I ′1, q − 1 choices for the color of each si , and (q − 1)! colorings for each
Ci and C ′i . Similarly, the number of colorings where I1 and I ′1 receive distinct colors is equal to
q(q − 1) (q − 2)m/2 (q − 1)m/2[(q − 1)!]2m , since there are q − 2 choices for the color of si for 1 ≤
i ≤ m/2 while q − 1 choices for m/2 < i ≤ m. Thus, the probability that in a uniform random q-
coloring of G (1) the vertices in I1 and I ′1 have the same color is

q(q − 1)m[(q − 1)!]2m

q(q − 1)m[(q − 1)!]2m + q(q − 1) (q − 2)m/2 (q − 1)m/2[(q − 1)!]2m
= 1 − (q − 2)m/2

(q − 1)m/2−1 + (q − 2)m/2

≥ 1 − (q − 1)
(q − 2

q − 1

)m/2
≥ 1 − (q − 1)e−

m
2(q−1) .

Let σ be a q-coloring of G (1) where I1 and I ′1 receive the same color. Then, Fact 3.4 implies that
σ (u ′i ) � σ (si ) for all m/2 < i ≤ m, since Ii and si have distinct colors and Ii and I ′i have the same
color. Therefore, σ is a proper q-coloring of G (l ) = Gm,t ; hence, σ ∈ ΩFl

and

|ΩFl
|

|ΩF1 |
= PrπF1

[σ ∈ ΩFl
] ≥ PrπF1

[σ (I1) = σ (I ′1)] ≥ 1 − (q − 1)e−
m

2(q−1) .

(Note that πF1 = πG (1) = πGm,t \M .) Then,

η = 1 −
|ΩFl
|

|ΩF1 |
≤ (q − 1)e−

m
2(q−1) . (4)

Every graph in Gm,t is a distinct subgraph of Gm,t and |Gm,t | = 2m/2. Moreover, for any G =
(V ,E) ∈ Gm,t and anym/2 < i ≤ m such that {u ′i , si } � E, there are q-colorings of G where u ′i and
si are assigned the same color. Consequently, for any G,G ′ ∈ Gm,t , we have ΩG � ΩG′ whenever
G � G ′. Then, ΩFi

� ΩFj
for any i � j, and by definition, all graphs in Fi are distinct for each

i . Therefore, Lemma 3.7 implies that to equivalently learn any G ∈ Fm,t with probability at least
2−m/2 + α , the number of random samples needed is L ≥ α/η. Setting

α = qe−
m

4(q−1) − 2−m/2 > 0,

we get that to equivalently learn a graph G ∈ Fm,t with success probability at least qe−
m

4(q−1) , we
require

L ≥ qe−
m

4(q−1) − 2−m/2

(q − 1)e−
m

2(q−1)

≥ qe−
m

4(q−1) − e−
m

4(q−1)

(q − 1)e−
m

2(q−1)

≥ e
m

4(q−1)

where the second inequality follows from 2 ≥ e
1

2(q−1) when q ≥ 3. �

The following corollary of Theorem 3.6 corresponds to part (3) of Theorem 1.4.

Corollary 3.8. Let q,n,d ∈ N+ such that q ≥ 3, d ≥ q + �√q� − 1 and n ≥ 4q + 4�√q� − 2.

Then, there exists a constant c > 0 such that any equivalent-structure learning algorithm for q-

colorings and the graph family G (n,d ) that succeeds with probability at least exp(−cn) requires at

least exp(cn) samples.
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Proof. Let t =
⌈√

q
⌉

and k = 2q + 2t − 1. If 2k divides n, then take m = n/k so that m is even.
By Fact 3.5, every graph in Gm,t has n =mk vertices and maximum degree

q − 1 +max
{
t ,
⌈
q/t

⌉}
≤ q − 1 +max

{⌈√
q
⌉
,
⌈
q/
√
q
⌉}
= q +

⌈√
q
⌉
− 1,

and thus Gm,t ⊆ Fm,t ⊆ G (n,d ) provided d ≥ q +
⌈√

q
⌉
− 1. Theorem 3.6 implies that there exists

c = c (q) > 0 such that any equivalent-structure learning algorithm for Fm,t with success probabil-
ity at least exp(−cn) requires exp(cn) samples. By definition, the set of q-colorings of any graph in
G (n,d )\Fm,t is distinct from the set of q-colorings of any graph in Fm,t . Since also Fm,t ⊆ G (n,d ),
equivalent-structure learning in G (n,d ) is strictly harder than in Fm,t . Especially, any equivalent-
structure learning algorithm for G (n,d ) with success probability at least exp(−cn) requires at least

exp(cn) samples. Note that d ≥ q +
⌈√

q
⌉
− 1 is equivalent to q ≤ d −

√
d + Θ(1).

The result follows in similar fashion when 2k does not divide n, but we are required to modify
slightly the graph families Gm,t and Fm,t . Suppose n = km + r , where m is even and 1 ≤ r < 2k,
and let W = {w1, . . . ,wr } be a simple path. For every G ∈ Gm,t , add W and the edge {sm ,w1} to
G to obtain a graph Ĝ. Let Ĝm,t be the resulting graph family. Every graph in Ĝm,t has exactly n

vertices and maximum degree q +
⌈√

q
⌉
− 1. Moreover, every q-coloring of G ∈ Gm,t corresponds

to exactly (q − 1)r colorings of Ĝ ∈ Ĝm,t . Define F̂m,t as before—that is, F̂m,t is the set of all graphs
in G (n,d ) that have the same set of colorings as some graph in Ĝm,t . The argument in the proof of

Theorem 3.6 and Lemma 3.7 implies that any equivalent-structure learning algorithm for F̂m,t with
success probability at least exp(−cn) requires exp(cn) independent samples, where c = c (q) > 0 is

a suitable constant. Since Ĝm,t ⊆ F̂m,t ⊆ G (n,d ) for d ≥ q +
⌈√

q
⌉
− 1, the result follows. �

We conclude this section with the proofs of Fact 3.4, Fact 3.5, and Lemma 3.7.

Proof of Fact 3.4. Letσ be aq-coloring of Γm,t . For 1 ≤ i < m, since every vertex in Ii is adjacent
to every vertex inCi , all vertices in Ii have the same color in σ , which is the one color not used by
Ci . Moreover, every vertex in Ci+1 is adjacent to a vertex of Ii , and thus Ci+1 is colored with the
same set of q − 1 colors as Ci in σ . Then, every clique C1, . . . ,Cm is colored with the same set of
q − 1 colors, and every independent set I1, . . . , Im is colored with the one remaining color in σ . �

Proof of Fact 3.5. The number of vertices inGm,t ism( |C1 | + |C ′1 | + |I1 | + |I ′1 | + 1) = (2q + 2t −
1)m. The degree of the vertices in the cliquesCi orC ′i is at mostq − 2 + t + 1 = q − 1 + t . The degree
of non-port vertices in the independent sets Ii\{ui } or I ′i \{u ′i } is at most q − 1 + �(q − 1)/t�. The
degree of ui or u ′i is at most q − 1 + �(q − 1)/t
 + 1. Thus, the maximum degree ofGm,t is no more
than

q − 1 +max
{
t ,
⌈
(q − 1)/t

⌉
,
⌊
(q − 1)/t

⌋
+ 1

}
≤ q − 1 +max

{
t ,
⌈
q/t

⌉}
,

where we use �a/b� ≤ �a/b
 + 1 = �(a + 1)/b� for any integer a,b ∈ N+. Since every graph in the
family Gm,t is a subgraph of Gm,t , the same upper bound on maximum degree holds. �

Proof of Lemma 3.7. Let A be any (possibly randomized) equivalent-structure learning algo-
rithm that, given L independent samples Γ = (σ (1), . . . ,σ (L) ) ∈ (ΩFi

)L from an unknown distribu-

tion πFi
= πG∗ for some G∗ ∈ Fi , outputs a graph A (Γ) in F̂ . For any G∗, the probability that A

equivalently learns the graph given L independent samples from πFi
is

Pr[A (Γ) ∈ Fi ] =
∑

x ∈(ΩFi
)L

Pr[Γ = x] Pr[A (x ) ∈ Fi ].
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Recall that by assumption, ΩFr
⊆ ΩFi

. Let T be the set of all sample sequences σ (1), . . . ,σ (L) such
that σ (j ) � ΩFr

for at least one j; namely, T = (ΩFi
)L\(ΩFr

)L . Note that

|T | = |ΩFi
|L − |ΩFr

|L .
Then,

Pr[A(Γ) ∈ Fi ] =
∑

x ∈(ΩFr )L

1

|ΩFi
|L
· Pr[A (x ) ∈ Fi ] +

∑
x ∈T

1

|ΩFi
|L
· Pr[A (x ) ∈ Fi ]

≤ 1

|ΩFr
|L

∑
x ∈(ΩFr )L

Pr[A (x ) ∈ Fi ] +
|ΩFi
|L − |ΩFr

|L

|ΩFi
|L

.

Since ΩFi
⊆ ΩF1 , we get

|ΩFi
|L − |ΩFr

|L

|ΩFi
|L

= 1 −
|ΩFr
|L

|ΩFi
|L
≤ 1 −

|ΩFr
|L

|ΩF1 |L
= 1 − (1 − η)L ≤ Lη.

Suppose the equivalent-structure learning algorithm A has success probability at least 1/r + α ,
then

Pr[A (Γ) ∈ Fi ] ≥
1

r
+ α .

Hence,
1

r
+ α ≤ 1

|ΩFr
|L

∑
x ∈(ΩFr )L

Pr[A (x ) ∈ Fi ] + Lη.

Since
∑r

i=1 Pr[A (x ) ∈ Fi ] = 1 for any fixed sample sequence x , summing up over i we get

1 + rα ≤ 1

|ΩFr
|L

∑
x ∈(ΩFr )L

r∑
i=1

Pr[A (x ) ∈ Fi ] + rLη = 1 + rLη.

Hence, L ≥ α/η as claimed. �

Combining the results from Sections 3.2, 3.3, and 3.4, we obtain the proof of Theorem 1.4: part
(1) follows from Lemmas 3.1 and 3.2, part (2) follows from Theorem 3.3, and Corollary 3.8 implies
part (3) of the theorem.

3.5 General Lower Bound for Structure Learning of q-Colorings

When d −
√
d + Θ(1) < q ≤ d (more specifically, q ≤ d < q +

⌈√
q
⌉
− 1), structure learning for q-

colorings is not identifiable, and the strong lower bound from part (3) of Theorem 3.3 (i.e., Corollary
3.8) does not apply either. In this section, we establish a weaker but more general lower bound
for proper colorings that applies in this regime. Specifically, we provide a family of graphs F ⊆
G (n,d ) such that the number of random q-colorings required to learn any graph in F with success
probability at least 1/2 is exp(Ω(d − q)).

Theorem 3.9. Let d,q,n ∈ N+ such that 3 ≤ q ≤ d and n ≥ d + 2. Then, any equivalent-structure

learning algorithm for G (n,d ) with success probability at least 1/2 requires at least exp(Ω(d − q))
samples.

Let d,q,n ∈ N+ such that 3 ≤ q ≤ d and n ≥ d + 2. Let C be a clique of size q − 3, let I be an
independent set of size d − q + 1, and let W = {w1, . . . ,wn−d−1} be a simple path. In addition, let
u,v,w be three additional vertices that are not inC , I , orW . Define the graphG = (V ,E) such that

V = V (C ) ∪V (I ) ∪ {w1, . . . ,wn−d−1} ∪ {u,v,w },
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Fig. 4. The graph G where C = Kq−3 and I is an independent set of size d − q + 1.

whereV (C ) andV (I ) are the vertices inC and I , respectively. In addition to the edges inC andW ,
G has the following edges:

(1) every vertex in C is adjacent to every vertex in I ;
(2) u and v are adjacent to every vertex in C and I ;
(3) w,w1 are adjacent to v ;

see Figure 4.
Let

G = {G1 = G,G2 = (V ,E ∪ {uw }),G3 = (V ,E ∪ {uw1}),G4 = (V ,E ∪ {uw,uw1})}.

Note that every graph in G is an n-vertex graph of maximum degree at most d, and thus G ⊆
G (n,d ). Furthermore, for 1 ≤ i ≤ 4, let Fi be the family of all graphs in G (n,d ) that have the
same set of q-colorings as Gi , and let F = ⋃4

i=1 Fi . The following theorem immediately implies
Theorem 3.9.

Theorem 3.10. Let d,q,n ∈ N+ such that 3 ≤ q ≤ d and n ≥ d + 2. Then the number of in-

dependent random q-colorings required to learn any graph in F with probability at least 1/2 is

exp(Ω(d − q)).

Proof. Ifu andv receive distinct colors in a q-coloring ofG, then the cliqueC will be colored by
q − 3 of the q − 2 colors not used by u andv and the number of available colors for every vertex in
I is only 1. Thus, the number of colorings ofG whereu andv receive distinct colors is q!(q − 1)n−d .
Otherwise, if u and v receive the same color in a coloring of G, then C will use q − 3 of the q − 1
available colors and every vertex in I has 2 available color choices. Hence, the number of such
colorings is q!(q − 1)n−d · 2d−q . Any q-coloring of G where u and v receive the same color is also
a proper q-coloring of G4. Therefore, we get

|ΩF4 |
|ΩF1 |

=
|ΩG4 |
|ΩG |

≥ q!(q − 1)n−d · 2d−q

q!(q − 1)n−d + q!(q − 1)n−d · 2d−q
= 1 − e−Ω(d−q ) .

Thus, it follows from Lemma 3.7 that any equivalent-structure learning algorithm for F that suc-
ceeds with probability at least 1/2 requires

L ≥
( 1

2
− 1

4

) (
1 −
|ΩF4 |
|ΩF1 |

)−1
= eΩ(d−q )

samples. �

Theorem 3.9 follows immediately from Theorem 3.10 and the fact that F ⊆ G (n,d ).
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4 LEARNING H -colorings IN THE UNIQUENESS REGION

As mentioned in Section 1, our results in Section 3 for statistical identifiability, structure learning,
and equivalent-structure learning for proper colorings reveal a tight connection between the com-
putational hardness of these problems and the uniqueness/non-uniqueness phase transition; see
Georgii [25] for the definition of Gibbs uniqueness. In this section, we explore this connection.

Definition 4.1. Let H be an arbitrary constraint graph, and let G = (V ,E) be an H -colorable
graph. For w ∈ V , let

Sw := {(τ ,τw ) : τ ,τw ∈ {1, . . . ,q} |V | andτ (z) = τw (z) ∀z � w }.

For v,w ∈ V , let

Rv,w := max
(τ ,τw )∈Sw

‖πv (· | τ (∂v )) − πv (· | τw (∂v ))‖tv,

where πv (·|τ (∂v )) and πv (·|τw (∂v )) are the conditional distributions at v given the respective
assignments τ and τw on the neighbors of v . Let α := maxw ∈V

∑
v ∈∂w Rv,w .

When α < 1, which is when the total influence of a site is strictly less than 1, the Gibbs distri-
bution πG is known to be unique [16, 48].

Remark 4.2. Dobrushin and Shlosman [16] were the first to consider the maximum total influ-
ence of a site as a criteria for the uniqueness of the Gibbs measure. Their framework is slightly
different: they focus on the infinite integer lattice graph Zd and consider the influence of a site on
constant size regions (not only single vertices). The Dobrushin-Shlosman condition was extended
to general graphs in Weitz [48]. The condition we use here (α < 1), which may be viewed as a
special case of the (generalized) Dobrushin-Shlosman condition in Weitz [48], appeared before in
Dyer et al. [18]. We note that the standard Dobrushin uniqueness condition [15] corresponds to the
maximum row sum of R being strictly less than 1; see Dyer et al. [18] for further discussion.

When α < 1, we deduce the following key property.

Lemma 4.3. LetH � K+q be an arbitrary constraint graph, and suppose {i, j} � E (H ). LetG = (V ,E)
be a graph such that the uniqueness condition α < 1 is satisfied for πG . Then, for all {u,v} � E,

Pr[Xu = i,Xv = j] ≥ (1 − α )2

q2
.

Lemmas 4.3 and 3.1 imply that the structlearn-H algorithm requires L=O (q2 log( n2

ε
)) inde-

pendent samples to succeed with probability at least 1 − ε and has running time is O (Ln2). This
establishes Theorem 1.5 from Section 1.

Proof of Lemma 4.3. Foru ∈ V ,we show first that Pr[Xu = i] ≥ (1 − α )/q. If σ is an H -coloring
of G sampled according to πG , we may update the color of any vertex w ∈ V by choosing a new
color for w uniformly at random among the available colors for w given σ (V \w ). The resulting
H -coloring after this update has distribution πG .

Suppose σ0 is an H -coloring of G sampled according to πG , and let τ0 be the color assignment
that agrees with σ0 everywhere except possibly at u, where we set τ0 (u) = i . (Note that τ0 is not
necessarily a valid H -coloring.)

Let ∂u = {v1, . . . ,vl }. We update the configuration inv1, then inv2 and so on, in both σ0 and τ0;
then we update the color ofu. Let σk and τk be the configuration onV \ u after updatingvk in σk−1

and τk−1, respectively. The color ofvk in both σk−1 and τk−1 is updated using the optimal coupling
νk between the distributions πvk

(·|σk−1) and πvk
(·|τk−1) as follows. Sample (ak ,bk ) from νk , and let
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σk (V \vk ) = σk−1 (V \vk ), σk (vk ) = ak , τk (V \vk ) = τk−1 (V \vk ) and τ (vk ) = bk . After updating
∂u = {v1, . . . ,vl } in this manner, σl has law πG . Moreover,

Pr[σl � τl ] ≤ Prνl
[σl � τl |σl−1 = τl−1] + Pr[σl−1 � τl−1]

≤
l∑

k=1

Prνk
[σk � τk |σk−1 = τk−1]

=

l∑
k=1

‖πvk
(·|τk−1 (V \ {u,vk }),σ0 (u)) − πvk

(·|τk−1 (V \ {u,vk }),τ0 (u))‖tv

≤
l∑

k=1

Rvk ,u ≤ α ,

where the last two inequalities follow from the definitions of Rvk ,u and α (Definition 4.1). Hence,
with probability at least 1 − α , σl = τl . If this is the case, then color i is compatible with σl (V \ u),
and thus when u is updated, it receives color i with probability at least 1/q. Thus, we get

Pr[Xu = i] ≥
(1 − α )

q
.

Finally, let v ∈ V such that v � ∂u. Using the procedure described earlier to update the config-
uration in ∂u ∪ u, and then in ∂v ∪v, we obtain

Pr[Xu = i,Xv = j] ≥ (1 − α )2

q2
. �

5 APPROXIMATE-STRUCTURE LEARNING OF H -COLORINGS

In addition to structure learning (exact recovery of the hidden graph G) and equivalent-structure
learning (learning a graph with the same set of H -colorings), we may consider the correspond-
ing approximation problem of finding a graph Ĝ such that πĜ is close to πG in some notion of
distance, such as total variation distance or Kullback-Leibler divergence. Apparently, this task is
much simpler for hard-constraint systems.

In this section, we consider this approximation variant of structure learning for hard-constraint
systems with respect to total variation distance. In other words, given L independent samples
σ (1), . . . ,σ (L) from πG , we consider the problem of finding a graph Ĝ such that���πG − πĜ

���tv
< γ ,

where γ > 0 is a desired precision.

Theorem 5.1. Suppose H � K+q , and let Ĝ be the output of the structlearn-H algorithm. Then,

for all ε ∈ (0, 1) and γ ∈ (0, 1),

Pr
[���πG − πĜ

���tv
< γ

]
≥ 1 − ε

provided L ≥ (2γ )−1n2 log( n2

2ε
).

Recall that the running time of structlearn-H is O (Ln2), and thus from Theorem 5.1, we get
an algorithm for approximate structure learning with running time O (γ−1n4 log( n

ε
)).

Proof of Theorem 5.1. Let Ĝ = (V (Ĝ ),E (Ĝ)). Recall that {u,v} � E (Ĝ ) if and only ifu,v receive
incompatible colors in one of the samples σ (1), . . . ,σ (L) from πG . Hence, Ĝ is a supergraph of G
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and so ΩĜ ⊆ ΩG . Moreover,

���πG − πĜ
���tv
=

∑
σ ∈ΩG \ΩĜ

1

|ΩG |
=
|ΩG | − |ΩĜ |
|ΩG |

= Pr
[
σ � ΩĜ

]
,

assuming σ is an H -coloring of G chosen uniformly at random (i.e., σ is drawn from πG ). If we let
Γ = E (Ĝ )\E (G ), then

Pr
[
σ � ΩĜ

]
= Pr

[
∃{u,v} ∈ Γ : {σu ,σv } � E (H )

]
≤

∑
{u,v }∈Γ

Pr
[
{σu ,σv } � E (H )

]
(5)

by a union bound.
Now, for γ > 0, let

Mγ =

{
{u,v} � E (G ) : Pr

[
{σu ,σv } � E (H )

]
≥ 2γ

n2

}
.

LetZuv be the number of samplesσ (1), . . . ,σ (L) where verticesu andv receive incompatible colors.
Then for any {u,v} ∈ Mγ ,

Pr[Zuv = 0] ≤
(
1 − 2γ

n2

)L

≤ exp

(
−2γL

n2

)
≤ 2ε

n2
.

A union bound then implies that with probability at least 1 − ε, all edges in Mγ are not in E (Ĝ ).

Hence, with probability at least 1 − ε , all edges in E (Ĝ ) satisfy:

Pr
[
{σu ,σv } � E (H )

]
<

2γ

n2
.

Plugging this bound into (5), we get

Pr
[���πG − πĜ

���tv
< γ

]
≥ 1 − ε

as desired. �

6 LEARNING WEIGHTED H -COLORINGS

In this section, we consider the more general setting of weighted H -colorings. We restrict our
attention to constraint graphs with at least one hard constraint, which corresponds to spin systems
with hard constraints.

6.1 Spin Systems with Hard Constraints

Let G = (V ,E) be an undirected weighted graph with weights given by the function θ : E ∪V →
R+. (For definiteness, we only consider a positive weight function θ .) A spins system on the graph
G consists of a set of spins [q] = {1, . . . ,q}, a symmetric edge potential J : [q] × [q]→ R ∪ {−∞},
and a vertex potential h : [q]→ R. A configuration σ : V → [q] of the system is an assignment of
spins to the vertices of G. Each configuration σ ∈ [q]V is assigned probability

πG,θ (σ ) =
1

ZG,θ
exp ���

∑
{u,v }∈E

θ (u,v ) J (σu ,σv ) +
∑
u ∈V

θ (u)h(σu )��� , (6)

where ZG,θ is the normalizing constant called the partition function. If J (i, j ) = −∞ for some i, j ∈
[q], then {i, j} is a hard constraint; otherwise, i and j are compatible.
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UnweightedH -colorings, which were considered in Sections 2, 3, and 4, correspond to the special
case where θ = 1,h = 0, and

J (i, j ) =

{
1 if (i, j ) ∈ E (H );
−∞ if (i, j ) � E (H ).

In this section, we consider the structure learning problem for a class of models known as per-

missive systems. This is a widely used notion in statistical physics for spin systems with hard
constraints (e.g., see [14, 20, 37]). There are several different notions in the literature, but here
we consider the weakest one (i.e., the easiest to satisfy). Roughly, the condition says that for any
boundary condition there is always a valid configuration for the interior.

Definition 6.1. A spin system is called permissive if for any A ⊆ V and any valid configuration τ
on V \A, there is at least one valid configuration σ on A such that π (σ |τ ) > 0.

Independent sets, and more generally the hard-core model, are examples of permissive models
since we can assign spin 0 (unoccupied) to the vertices in A.

6.2 Structure Learning for Spin Systems with Hard Constraints

We first formalize the notion of structure learning for the setting of weighted constraint graphs.
Suppose we know the number of spins q, the edge potential J ∈ Rq×q , and the vertex potential
h ∈ Rq of a spin system S. Consider the family of graphs

G (n,d, β,γ ) =
{(
G = (V ,E),θ

)
: |V | = n,

Δ(G ) ≤ d,

|θ (u,v ) | ≤ β for all {u,v} ∈ E,

|θ (v ) | ≤ γ for all v ∈ V
}
,

where Δ(G ) denotes the maximum degree of the graph G. Suppose that we are given L indepen-
dent samples σ (1),σ (2), . . . ,σ (L) from the distribution πG,θ where (G,θ ) ∈ G (n,d, β,γ ). A structure

learning algorithm for the spin system S and the family G (n,d, β,γ ) takes as input the sample se-
quence σ (1),σ (2), . . . ,σ (L) and outputs an estimator Ĝ such that Pr[G = Ĝ] ≥ 1 − ε , where ε > 0 is
a prescribed failure probability.

6.3 Learning Permissive Spin Systems

In this section, we analyze the running time and sample complexity of the structlearn-H algo-
rithm for permissive spin systems.

Let γ̂ = γ ·maxi ∈[q] |h(i ) | and β̂ = β ·maxi, j ∈[q] |J (i, j ) |. Recall that for v ∈ V , Xv denotes the
random variable for the color of v under πG . We show that for permissive systems, the running
time of structlearn-H is polynomial in the size of the graph but depends exponentially on γ̂ , β̂
and its maximum degree.

Theorem 6.2. Let (G,θ ) ∈ G (n,d, β,γ ), and suppose that S is a permissive spin system with at

least one hard constraint. Then, for all ε ∈ (0, 1), if the structlearn-H algorithm receives as input

L ≥ q2(d+1) exp
(
4(β̂d + γ̂ ) (d + 1)

)
log

(
n2

2ε

)

independent samples from πG,θ , it outputs the graphG with probability at least 1 − ε and has running

time O (Ln2).

Theorem 6.2 yields a structure learning algorithm for the hard-core model for all λ > 0; thus,
it generalizes the algorithmic result of Bresler et al. [6]. We observe also that the running time of
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our algorithm for permissive systems is comparable to the running time of the optimal structure
learning algorithms for soft-constraint systems in Klivans and Meka [33].

Theorem 6.2 is a direct corollary of the following lemma and Lemma 3.1.

Lemma 6.3. Suppose that S is a permissive spin system with at least one hard constraint {i, j} ∈
[q] × [q] on a weighted graph (G,θ ) ∈ G (n,d, β,γ ). Then, for all {u,v} � E,

Pr[Xu = i,Xv = j] ≥ q−2(d+1) exp
(
−4(β̂d + γ̂ ) (d + 1)

)
.

In the proof of Lemma 6.3, we use the following fact.

Fact 6.4. Let R ⊆ V , and let τ be a configuration on ∂R. If Ωτ (R) � ∅ is the set of valid configu-

rations on R given τ , then for any σ ∈ Ωτ (R),

Pr[XR = σ | X∂R = τ ] ≥ q−|R | exp
(
−2(β̂d + γ̂ ) |R |

)
.

We are now ready to prove Lemma 6.3.

Proof of Lemma 6.3. For any A ⊆ V and any spin configuration σ of A, with a slight abuse of
notation we use {σ } for the event {XA = σ }.

Let u,v ∈ V such that {u,v} � E, and let N1 and N2 be the set of vertices at distances one and
two, respectively, from {u,v} (i.e., N1 = ∂u ∪ ∂v and N2 = {w ∈ ∂N1 : w � u,w � v}). Let Ω1 and
Ω2 be the set of valid configurations for N1 and N2, respectively. Then,

Pr[Xu = i,Xv = j] ≥ min
τ2∈Ω2

Pr[Xu = i,Xv = j | τ2]. (7)

Since the spin system is permissive, for any τ2 ∈ Ω2 there exists τ1 ∈ Ω1 such that

Pr[τ1 | τ2,Xu = i,Xv = j] > 0.

Then,

Pr[Xu = i,Xv = j | τ2] ≥ Pr[Xu = i,Xv = j | τ1] Pr[τ1 | τ2] ≥ q−2e−4(β̂d+γ̂ ) Pr[τ1 | τ2], (8)

by Fact 6.4. Now,

Pr[τ1 | τ2] =
∑

a,b ∈[q]

Pr[τ1 | Xu = a,Xv = b,τ2] Pr[Xu = a,Xv = b | τ2].

Since |N1 | ≤ 2d , by Fact 6.4, Pr[τ1 | Xu = a,Xv = b,τ2] ≥ q−2d exp
(
−4(β̂d + γ̂ )d

)
. Together with

(7) and (8), this implies

Pr[Xu = i,Xv = j] ≥ q−2(d+1) exp
(
−4(β̂d + γ̂ ) (d + 1)

)
. �

Remark 6.5. A simplified version of this argument can be used to show that in a permissive
H -coloring, for any hard constraint {i, j} � E (H ), Pr[Xu = i,Xv = j] ≥ 1/q2d . From this we obtain
a structure learning algorithm for permissive H -colorings with running time O (q2dn2 logn) via
Lemma 3.1.

We conclude this section with the proof of Fact 6.4.

Proof of Fact 6.4. For σ ∈ Ωτ (R), let

w (σ ) = exp
⎡⎢⎢⎢⎢⎣
∑
u ∈R

∑
v ∈∂u∩R

θ (u,v ) J (σu ,σv ) +
∑
u ∈R

∑
v ∈∂u∩∂R

θ (u,v ) J (σu ,τv ) +
∑
u ∈R

θ (u)h(σu )
⎤⎥⎥⎥⎥⎦ .

Then,

Pr[XR = σ | X∂R = τ ] =
w (σ )

Z τ
R

,
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with Z τ
R
=

∑
σ ′ ∈Ωτ (R ) w (σ ′). Observe that for all σ ′ ∈ Ωτ (R), exp

(
−(β̂d + γ̂ ) |R |

)
≤ w (σ ′) ≤

exp
(
(β̂d + γ̂ ) |R |

)
. Hence, Z τ

R
≤ q |R | exp

(
(β̂d + γ̂ ) |R |

)
and

Pr[XR = σ | X∂R = τ ] ≥ q−|R | exp
(
−2(β̂d + γ̂ ) |R |

)
. �

6.4 Identifiability for Weighted H -Colorings

We prove next an analog of our characterization theorem (Theorem 1.2) for identifiability of
weighted H -colorings. The edge potential J corresponds to the weighted adjacency matrix of a
weighted constraint graph H J = (V (H J ),E (H J )), where V (H J ) = {1, . . . ,q}, {i, j} � E (H J ) if and
only if J (i, j ) = −∞, and the weight of {i, j} ∈ E (H J ) is J (i, j ). As before, we say that a graph G is
H J -colorable if there is a valid H J -coloring for G. If {i, j} � E (H J ), we call {i, j} a hard constraint.
The notion of identifiability extends to the weighted setting as follows.

Definition 6.6. A weighted constraint graph H J is said to be identifiable with respect to a family
of H J -colorable graphs G if for any two distinct graphs G1,G2 ∈ G we have πG1 � πG2 . In partic-
ular, when G is the set of all finite H J -colorable graphs, we say that H J is identifiable.

(Definition 1.1 is the analog definition in the unweighted setting.)
In our characterization theorem, we consider the supergraphs Gi j ’s introduced in the un-

weighted setting; see Definition 2.2 and Figure 1.

Theorem 6.7. Let H J be a weighted constraint graph with at least one hard constraint. If H J has

a self-loop, then H J is identifiable. Otherwise, H J is identifiable if and only if for each {i, j} ∈ E (H J )
there exists an H J -coloring σ of Gi j such that

J (σi ,σj ) + J (σi′,σj′ ) � J (σi′,σj ) + J (σi ,σj′ ).

(Recall that i ′ and j ′ are the copies of the vertices i and j in Gi j .)

Proof. For clarity, we shall assume in this proof that the underlying graph G = (V ,E) is un-
weighted and that there is no external field (i.e., θ = 1 and h = 0). The same proof generalizes to
spin systems on weighted graphs with external field.

Henceforth, we use H for H J to simplify the notation. We consider first the case when H has
no self-loops. For the forward direction, we consider the contrapositive. Suppose that there exists
{i, j} ∈ E (H ) such that for every proper H -coloring σ of Gi j we have

J (σi ,σj ) + J (σi′,σj′ ) = J (σi′,σj ) + J (σi ,σj′ ).

Under this assumption, we construct two distinct H -colorable graphs F1, F2 such that πF1 = πF2 ;
this implies that H is not identifiable, which would complete the proof of the forward direction.
For this, for each {i, j} ∈ E (H ), let us define the supergraph G̃i j of H that is the result of creating
two copies i ′, i ′′ of vertex i and two copies j ′, j ′′ of vertex j, with no edges between i ′, i ′′, j ′, j ′′.
Formally, for each {i, j} ∈ E (H ), we define the graph G̃i j = (V (G̃i j ),E (G̃i j )) as follows:

(1) V (Gi j ) = V (H ) ∪ {i ′, i ′′, j ′, j ′′}, where i ′, i ′′, j ′, j ′′ are four new colors;

(2) If {a,b} ∈ E (H ), then the edge {a,b} is also in E (G̃i j );

(3) For each k ∈ V (G̃i j ) \ {i ′, i ′′, j ′, j ′′}, the edges {i ′,k } and {i ′′,k } are in G̃i j if and only if the

edge {i,k } is in H , and similarly {j ′,k }, {j ′′,k } ∈ E (G̃i j ) if and only if {j,k } ∈ E (H );

see Figure 5 for an example.
Let σ be an H -coloring of G̃i j . Since the subgraphs induced by V (G̃i j ) \ {i∗, j∗} with i∗ ∈ {i ′, i ′′}

and j∗ = {j ′, j ′′} are all isomorphic to Gi j , our assumption implies

J (σi ,σj ) + J (σi′,σj′ ) = J (σi′,σj ) + J (σi ,σj′ ), (9)
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Fig. 5. A constraint graph H , its supergraph G̃12, and the graphs F1 and F2.

J (σi ,σj ) + J (σi′′,σj′′ ) = J (σi′′,σj ) + J (σi ,σj′′ ), (10)

J (σi ,σj ) + J (σi′′,σj′ ) = J (σi′′,σj ) + J (σi ,σj′ ), (11)

J (σi ,σj ) + J (σi′,σj′′ ) = J (σi′,σj ) + J (σi ,σj′′ ). (12)

Since the sum of the right-hand sides of (9) and (10) is equal to the sum of the right-hand sides of
(11) and (12), we get

J (σi′,σj′ ) + J (σi′′,σj′′ ) = J (σi′′,σj′ ) + J (σi′,σj′′ ). (13)

Now, let

F1 = (V (G̃i j ),E (G̃i j ) ∪ {{i ′, j ′}, {i ′′, j ′′}}),

F2 = (V (G̃i j ),E (G̃i j ) ∪ {{i ′′, j ′}, {i ′, j ′′}});

see Figure 5. Then, using (6), for any H -coloring σ of G̃i j , we have

πF1 (σ )

πF2 (σ )
=

Z−1
F1

exp
(
J (σi′,σj′ ) + J (σi′′,σj′′ )

)
Z−1

F2
exp

(
J (σi′′,σj′ ) + J (σi′,σj′′ )

) = ZF2

ZF1

,

which is a constant independent of σ . By (13), πF1 and πF2 have the same support. Moreover, any
H -coloring of F1 or F2 is also an H -coloring of G̃i j . Hence, we conclude that πF1 = πF2 , implying H
is not identifiable. This completes the proof of the forward direction.

For the reverse direction, suppose that for all {i, j} ∈ E (H ) there exists an H -coloring σ of Gi j

where

J (σi ,σj ) + J (σi′,σj′ ) � J (σi′,σj ) + J (σi ,σj′ ).

Consider two H -colorable graphs G1 = (V ,E1) and G2 = (V ,E2) such that πG1 = πG2 . We show
that for any u,v ∈ V , {u,v} ∈ E1 if and only if {u,v} ∈ E2, and thusG1 = G2. This implies that H is
identifiable.

Let u,v ∈ V , and let τ be an H -coloring of G1. Since πG1 = πG2 , then τ is also an H -coloring of
G2. Suppose i = τ (u) and j = τ (v ). If i and j are not compatible, then {u,v} � E1 and {u,v} � E2.
Thus, let us assume i and j are compatible. Let σ be an H -coloring of Gi j such that

J (a,b) + J (a′,b ′) � J (a′,b) + J (a,b ′),

where a = σi ,b = σj ,a
′ = σi′,b

′ = σj′ ; we know such an H -coloring exists by assumption.
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Now consider the conditional distribution μ on the verticesu andv ofG1 given the configuration
τ (V \ {u,v}). Then,

p1 (G1) := μ (Xu = a,Xv = b) =
1

Zcond (G1)
exp[ha + hb + 1({u,v} ∈ E1) J (a,b)]

p2 (G1) := μ (Xu = a′,Xv = b
′) =

1

Zcond (G1)
exp[ha′ + hb′ + 1({u,v} ∈ E1) J (a′,b ′)]

p3 (G1) := μ (Xu = a′,Xv = b) =
1

Zcond (G1)
exp[ha′ + hb + 1({u,v} ∈ E1) J (a′,b)]

p4 (G1) := μ (Xu = a,Xv = b
′) =

1

Zcond (G1)
exp[ha + hb′ + 1({u,v} ∈ E1) J (a,b ′)],

where Zcond (G1) is the normalizing factor for μ,

ha =
∑

w ∈∂u

J (a,τ (w )),

hb =
∑

w ∈∂v

J (b,τ (w ))

and ha′,hb′ are defined in similar manner. This gives

p1 (G1)p2 (G1)

p3 (G1)p4 (G1)
= exp

[
1({u,v} ∈ E1) (J (a,b) + J (a′,b ′) − J (a′,b) − J (a,b ′))

]
.

Since by assumption J (a,b) + J (a′,b ′) − J (a′,b) − J (a,b ′) � 0, {u,v} ∈ E (G1) if and only if
p1 (G1)p2 (G1) � p3 (G1)p4 (G1). Moreover, πG1 = πG2 , and thus pk (G1) = pk (G2) for k ∈ {1, 2, 3, 4}.
Hence,

p1 (G1)p2 (G1)

p3 (G1)p4 (G1)
=
p1 (G2)p2 (G2)

p3 (G2)p4 (G2)
.

This implies that {u,v} ∈ E1 if and only if {u,v} ∈ E2, and thus G1 = G2. This completes the proof
of the reverse direction when H does not have self-loops. When H has at least one self-loop, then
using the argument in the proof of Lemma 2.3, which generalizes straightforwardly to the weighted
setting, we get that H is identifiable. �
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