
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

SAMPLING IN UNIQUENESS FROM THE POTTS AND
RANDOM-CLUSTER MODELS ON RANDOM REGULAR GRAPHS\ast 

ANTONIO BLANCA\dagger , ANDREAS GALANIS\ddagger , LESLIE ANN GOLDBERG\ddagger ,

DANIEL \v STEFANKOVI\v C\S , ERIC VIGODA\dagger , AND KUAN YANG\ddagger 

Abstract. We consider the problem of sampling from the Potts model on random regular
graphs. It is conjectured that sampling is possible when the temperature of the model is in the so-
called uniqueness regime of the regular tree, but positive algorithmic results have been for the most
part elusive. In this paper, for all integers q \geq 3 and \Delta \geq 3, we develop algorithms that produce
samples within error o(1) from the q-state Potts model on random \Delta -regular graphs, whenever
the temperature is in uniqueness, for both the ferromagnetic and antiferromagnetic cases. The
algorithm for the antiferromagnetic Potts model is based on iteratively adding the edges of the
graph and resampling a bichromatic class that contains the endpoints of the newly added edge.
Key to the algorithm is how to perform the resampling step efficiently since bichromatic classes
can potentially induce linear-sized components. To this end, we exploit the tree uniqueness to
show that the average growth of bichromatic components is typically small, which allows us to use
correlation decay algorithms for the resampling step. While the precise uniqueness threshold on
the tree is not known for general values of q and \Delta in the antiferromagnetic case, our algorithm
works throughout uniqueness regardless of its value. In the case of the ferromagnetic Potts model,
we are able to simplify the algorithm significantly by utilizing the random-cluster representation of
the model. In particular, we demonstrate that a percolation-type algorithm succeeds in sampling
from the random-cluster model with parameters p, q on random \Delta -regular graphs for all values of
q \geq 1 and p < pc(q,\Delta ), where pc(q,\Delta ) corresponds to a uniqueness threshold for the model on
the \Delta -regular tree. When restricted to integer values of q, this yields a simplified algorithm for the
ferromagnetic Potts model on random \Delta -regular graphs.

Key words. sampling, Potts model, random regular graphs, phase transitions

1. Introduction. Random constraint satisfaction problems have been thor-
oughly studied in computer science in an effort to analyze the limits of satisfiability
algorithms and understand the structure of hard instances. Analogously, understand-
ing spin systems on random graphs [27, 28, 34, 4, 26, 6, 13, 8, 9] gives insights about
the complexity of counting and the efficiency of approximate sampling algorithms.
In this paper, we design approximate sampling algorithms for the Potts model on
random regular graphs.
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SAMPLING THE POTTS MODEL ON RANDOM REGULAR GRAPHS 743

The Potts model is a fundamental spin system studied in statistical physics and
computer science. The model has two parameters: an integer q \geq 3, which represents
the number of states/colors of the model, and a real parameter B > 0, which corre-
sponds to the so-called temperature. We denote the set of colors by [q] := \{ 1, . . . , q\} .
For a graph G = (V,E), configurations of the model are all possible assignments
of colors to the vertices of the graph. Each assignment \sigma : V \rightarrow [q] has a weight
wG(\sigma ) which is determined by the number m(\sigma ) of monochromatic edges under \sigma ,
namely, wG(\sigma ) = Bm(\sigma ). The Gibbs distribution \mu G is defined on the space of all
configurations \sigma and is given by

\mu G(\sigma ) = Bm(\sigma )/ZG, where ZG =
\sum 
\sigma 

Bm(\sigma ).

We also refer to \mu G as the Potts distribution; the quantity ZG is known as the partition
function. Well-known models closely related to the Potts model are the Ising and
colorings models. The Ising model is the special case q = 2 of the Potts model, while
the q-colorings model is the ``zero-temperature"" case B = 0 of the Potts model, where
the distribution is supported on the set of proper q-colorings.

The behavior of the Potts model has significant differences depending on whether
B is less or larger than 1. When B < 1, configurations where most neighboring vertices
have different colors have large weight and the model is called antiferromagnetic;
in contrast, when B > 1, configurations where most neighboring vertices have the
same colors have large weight and the model is called ferromagnetic. One difference
between the two cases that will be relevant later is that the ferromagnetic Potts model
admits a random-cluster representation---the details of this representation are given
in section 2.1.

Sampling from the Potts model is a problem that is frequently encountered in
running simulations in statistical physics or inference tasks in computer science. To
determine the efficiency and accuracy of sampling methods, it is relevant to consider
the underlying phase transitions, which signify abrupt changes in the properties of the
Gibbs distribution when the underlying parameter changes. The so-called uniqueness
phase transition captures the sensitivity of the state of a vertex to fixing far-away
boundary conditions. As an example, in the case of the ferromagnetic Potts model
on the \Delta -regular tree, uniqueness holds when root-to-leaves correlations in the Potts
distribution vanish as the height of the tree goes to infinity; it is known that this holds
iff B < Bc(q,\Delta ), where Bc(q,\Delta ) is the ``uniqueness threshold"" (cf. (2.2) for its value).
Connecting the uniqueness phase transition with the performance of algorithms is a
difficult task that is largely under development. This connection is well-understood
on the grid, where it is known that the mixing time of local Markov chains, such as
the Glauber dynamics, switches from polynomial to exponential at the corresponding
uniqueness threshold; see, for example, [23, 22, 32, 1, 24, 2].

For random \Delta -regular graphs or, more generally, graphs with maximum degree \Delta ,
the uniqueness threshold on the \Delta -regular tree becomes relevant. For certain two-state
models, such as the ferromagnetic Ising model and the hard-core model, it has been
proved that Glauber dynamics mixes rapidly when the underlying parameter is in the
uniqueness regime of the regular tree, and that the dynamics mixes slowly otherwise
(see [27, 28, 9]). The same picture is conjectured to hold for the Potts model as well,
but this remains open. For the ferromagnetic case in particular, Bordewich, Greenhill,
and Patel [4] prove rapid and slow mixing results for Glauber dynamics on random
regular graphs and graphs with maximum degree \Delta when the parameter B is within
a constant factor from the uniqueness threshold on the regular tree. More generally,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

744 BLANCA ET AL.

there has been significant progress in recent years in understanding the complexity of
sampling from the Gibbs distribution in two-state systems, but for multistate systems
progress has been slower, especially on the algorithmic side.

In this paper, for all integers q \geq 3 and \Delta \geq 3, we design approximate sam-
pling algorithms for the q-state Potts model on random \Delta -regular graphs (regular
graphs with n vertices chosen uniformly at random), when the parameter B lies in
the uniqueness regime of the regular tree, for both the ferromagnetic and antifer-
romagnetic cases. Our algorithms are not based on a Markov chain approach but
proceed by iteratively adding the edges of the graph and performing a resampling
step at each stage. As such, our algorithms can produce samples that are within error
1/n\delta from the Potts distribution for some fixed constant \delta > 0 (which depends on
B, q,\Delta ).

Remark 1.1. There are certain ``bad"" \Delta -regular graphs where the algorithms will
fail to produce samples with the desired accuracy; saying that the algorithms work
on random \Delta -regular graphs means that the number of these ``bad"" graphs with n
vertices is a vanishing fraction of all \Delta -regular graphs with n vertices for large n.
Moreover, we can recognize the ``good"" graphs (where our algorithms will successfully
produce samples with the desired accuracy) in polynomial time.

Our approach is inspired by Efthymiou's algorithm [7, 8] for sampling q-colorings
on G(n, d/n); the algorithm there also proceeds by iteratively adding the edges of
the graph and exploits the uniqueness on the tree to show that the sampling error is
small. However, for the antiferromagnetic Potts model, the resampling step turns out
to be significantly more involved and we need a substantial amount of work to ensure
that it can be carried out efficiently, as we explain in detail in section 3. Nevertheless,
for the ferromagnetic case, we manage to give a far simpler algorithm by utilizing the
random-cluster representation of the model (see section 2.1). In particular, we demon-
strate that a percolation-type algorithm succeeds in sampling approximately from the
random-cluster model with parameters p, q on random \Delta -regular graphs for all values
of q \geq 1 and p < pc(q,\Delta ), where pc(q,\Delta ) corresponds to a uniqueness threshold for
the model on the \Delta -regular tree. When restricted to integer values of q, this yields a
simple algorithm for the ferromagnetic Potts model on random \Delta -regular graphs.

To conclude this introductory section, we remark that, for many antiferromag-
netic spin systems on random graphs, typical configurations in the Gibbs distribution
display absence of long-range correlations even beyond the uniqueness threshold, up
to the so-called reconstruction threshold [25, 14]. Note that uniqueness guarantees
the absence of long-range correlations under a ``worst-case"" boundary, while non-
reconstruction only asserts the absence of long-range correlations under ``typical""
boundaries; it is widely open whether this weaker notion is in fact sufficient for sam-
pling on random graphs. On an analogous note, for the ferromagnetic Potts model
on random regular graphs, the structure of typical configurations can be fairly well-
understood using probabilistic arguments for all temperatures (see, e.g., [6, 13]) and it
would be very interesting to exploit this structure for the design of sampling algorithms
beyond the uniqueness threshold. In this direction, Jenssen, Keevash, and Perkins [19]
very recently designed such an algorithm for all sufficiently large B that works more
generally on expander graphs (see also [17] for similar-flavored results on the grid).

2. Definitions and main results. We first review in section 2.1 the definition
of the random-cluster model. In section 2.2, we state results from the literature about
uniqueness on the regular tree for the Potts and random-cluster models. Then, in



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SAMPLING THE POTTS MODEL ON RANDOM REGULAR GRAPHS 745

section 2.3, we state our algorithmic results for the ferromagnetic Potts and random-
cluster models, and, in section 2.4, we state our result for the antiferromagnetic Potts
model.

2.1. The random-cluster model. The random-cluster model has two param-
eters p \in [0, 1] and q > 0; note that q in this case can take noninteger values. For
a graph G = (V,E), we denote the random-cluster distribution on G by \varphi G; this
distribution is supported on the set of all edge subsets. In particular, for S \subseteq E,
let k(S) be the number of connected components in the graph G\prime = (V, S) (isolated
vertices do count). Then, the weight of the configuration S is given by wG(S) =
p| S| (1 - p)| E\setminus S| qk(S) and

\varphi G(S) = wG(S)/Z
rc
G , where Zrc

G =
\sum 
S\subseteq E

wG(S) =
\sum 
S\subseteq E

p| S| (1 - p)| E\setminus S| qk(S).

Following standard terminology, each edge in S will be called open, while each edge
in E\setminus S closed.

For integer values of q, there is a well-known connection between the random-
cluster and ferromagnetic Potts models, as detailed below.

Lemma 2.1 (see, e.g., [15]). Let q \geq 2 be an integer, B > 1, and p = 1  - 1/B.
Then, the following hold for any graph G = (V,E):

\bullet Let S \subseteq E be distributed according to the random-cluster distribution \varphi G

with parameters p, q. Consider the configuration \sigma obtained from S by as-
signing each component in the graph (V, S) a random color from [q] inde-
pendently. Then, \sigma is distributed according to the Potts distribution \mu G with
parameter B.

\bullet Conversely, suppose that \sigma : V \rightarrow [q] is distributed according to the Potts
distribution \mu G with parameter B. Consider S \subseteq E obtained by adding to S
each monochromatic edge under \sigma with probability p independently. Then, S
is distributed according to the random-cluster distribution \varphi G with parameters
p, q.

Lemma 2.1 allows us to translate our sampling algorithm for the random-cluster
model to a sampling algorithm for the ferromagnetic Potts model. The benefit of work-
ing with the random-cluster model (instead of the Potts model) is that the random-
cluster distribution satisfies certain monotonicity properties (cf. Lemma 5.3), which
simplifies significantly the analysis of the algorithm.

2.2. Uniqueness for Potts and random-cluster models on the tree. In
this section, we review uniqueness on the tree for the Potts and random-cluster models.
We start with the Potts model.

For a configuration \sigma and a set U , we denote by \sigma U the restriction of \sigma to the
set U ; in the case of a single vertex u, we simply write \sigma u to denote the color of u.
Denote by \BbbT \Delta the infinite (\Delta  - 1)-ary tree with root vertex \rho and, for an integer
h \geq 0, denote by Th the subtree of \BbbT \Delta induced by the vertices at distance \leq h from
\rho . Let Lh be the set of leaves of Th.

Definition 2.2. Let B > 0 and q,\Delta \geq 3 be integers. The q-state Potts model
with parameter B > 0 has uniqueness on the infinite (\Delta  - 1)-ary tree if, for all colors
c \in [q], it holds that

(2.1) lim sup
h\rightarrow \infty 

max
\tau :Lh\rightarrow [q]

\bigm| \bigm| \bigm| \mu Th

\bigl( 
\sigma \rho = c | \sigma Lh

= \tau 
\bigr) 
 - 1

q

\bigm| \bigm| \bigm| = 0.

It has nonuniqueness otherwise.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

746 BLANCA ET AL.

For the ferromagnetic q-state Potts model (B > 1), it is known that uniqueness
holds on the (\Delta  - 1)-ary tree iff B < Bc(q,\Delta ), where

(2.2) Bc(q,\Delta ) = 1 + inf
y>1

h(y), where h(y) :=
(y  - 1)(y\Delta  - 1 + q  - 1)

y\Delta  - 1  - y
.

For the antiferromagnetic Potts model (B < 1), the uniqueness threshold on the
tree is not yet known in full generality. It is a folklore conjecture that the model has
uniqueness iff q \geq \Delta and B \in (0, 1), or q < \Delta and B \geq \Delta  - q

\Delta . It is known that the

model has nonuniqueness when B < \Delta  - q
\Delta [12]. Establishing the uniqueness side of the

conjecture is more difficult; this has been established recently in [11] for small values
of q and \Delta . In the case q = 3, [11] also established the uniqueness threshold for all \Delta :
for \Delta \geq 4, uniqueness holds iff B \in [(\Delta  - 3)/\Delta , 1), and for \Delta = 3, uniqueness holds
iff B \in (0, 1). For the q-colorings model (B = 0), Jonasson [21], building on work of
Brightwell and Winkler [5], established that the model has uniqueness iff q > \Delta .

Remark 2.3. To summarize the above, a necessary condition for uniqueness on
\BbbT \Delta in the antiferromagnetic q-state Potts model with parameter B \in (0, 1) is that
B \geq (\Delta  - q)/\Delta . It is also conjectured that this condition is sufficient but this has
only been established for q = 3.

Uniqueness for the random-cluster model on the tree is less straightforward to
define. H\"aggstr\"om [16] studied uniqueness of random-cluster measures on the infinite
(\Delta  - 1)-ary tree where all infinite components are connected ``at infinity""---we review
his results in more detail in section 7.1. He showed that, for all q \geq 1, a sufficient
condition for uniqueness is that p < pc(q,\Delta ), where the critical value pc(q,\Delta ) is given
by1

(2.3) pc(q,\Delta ) = 1 - 1

1 + infy>1 h(y)
, where h(y) :=

(y  - 1)(y\Delta  - 1 + q  - 1)

y\Delta  - 1  - y
.

Note that the critical values in (2.2) and (2.3) are connected for integer values of q
via pc(q,\Delta ) = 1  - 1

Bc(q,\Delta ) . H\"aggstr\"om [16] also conjectured that uniqueness for the

random-cluster model holds on \BbbT \Delta when p > q
q+\Delta  - 2 for all q \geq 1; this remains open

but progress has been made in [20].

Remark 2.4. Using that h(y) \rightarrow q
\Delta  - 2 as y \downarrow 1, we obtain that pc(q,\Delta ) \leq q

q+\Delta  - 2

for all q \geq 1. It can further be shown that pc(q,\Delta ) = q
q+\Delta  - 2 iff q \leq 2.

We should note here that the bounds appearing in Remarks 2.3 and 2.4 will be
useful to simplify some of our arguments. However, the stronger assumption that
the parameters are in the uniqueness region of the \Delta -regular tree is crucial for the
analysis of our algorithm and, in particular, the proofs of the upcoming Lemmas 5.2
and 6.6 hinge on this assumption.

2.3. Sampling ferro Potts and random-cluster models on random
regular graphs. We begin by stating our result for the random-cluster model on
random regular graphs.

Theorem 2.5. Let \Delta \geq 3, q \geq 1, and p < pc(q,\Delta ). Then, there exists a constant
\delta > 0 such that, as n \rightarrow \infty , the following holds with probability 1  - o(1) over the
choice of a random \Delta -regular graph G = (V,E) with n vertices.

1In [16], pc(q,\Delta ) is defined in a different way, but the two definitions are equivalent for all q \geq 1.
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There is a polynomial-time algorithm which, on input the graph G, outputs a
random set S \subseteq E whose distribution \nu S is within total variation distance O(1/n\delta )
from the random-cluster distribution \varphi G with parameters p, q, i.e., \| \nu S  - \varphi G\| TV =
O(1/n\delta ).

We remark that a simple implementation of the algorithm in Theorem 2.5 runs in
time O\ast (n6/5); see Figure 1 in section 5 for details. The constant \delta > 0 that controls
the error of the algorithm depends on p, q,\Delta and gets smaller as p approaches pc(q,\Delta ).

For integer values of q, Theorem 2.5 combined with the translation between the
random-cluster and Potts models (cf. Lemma 2.1) yields a sampling algorithm for
the ferromagnetic q-state Potts model on random regular graphs. Since uniqueness
for the ferromagnetic Potts model holds iff B < Bc(q,\Delta ) and pc(q,\Delta ) = 1 - 1

Bc(q,\Delta ) ,

we therefore have the following corollary of Theorem 2.5.

Corollary 2.6. Let \Delta \geq 3, q \geq 3 and B > 1 be in the uniqueness regime of
the (\Delta  - 1)-ary tree. Then, there exists a constant \delta > 0 such that, as n \rightarrow \infty , the
following holds with probability 1 - o(1) over the choice of a random \Delta -regular graph
G = (V,E) with n vertices.

There is a polynomial-time algorithm which, on input the graph G, outputs a
random assignment \sigma : V \rightarrow [q] whose distribution \nu \sigma is within total variation dis-
tance O(1/n\delta ) from the Potts distribution \mu G with parameter B, i.e., \| \nu \sigma  - \mu G\| TV =
O(1/n\delta ).

2.4. Sampling antiferro Potts on random \Delta -regular graphs. The algo-
rithm of Corollary 2.6 for the ferromagnetic Potts model does not extend to the an-
tiferromagnetic case since there is no analogous connection with the random-cluster
model in this case. Nevertheless, we are able to design a sampling algorithm on ran-
dom regular graphs when the parameter B is in uniqueness via a far more elaborate
approach which consists of recoloring (large) bichromatic color classes.

Theorem 2.7. Let \Delta \geq 3, q \geq 3, and B \in (0, 1) be in the uniqueness regime of
the (\Delta  - 1)-ary tree with B \not = (\Delta  - q)/\Delta . Then, there exists a constant \delta > 0 such
that, as n \rightarrow \infty , the following holds with probability 1  - o(1) over the choice of a
random \Delta -regular graph G = (V,E) with n vertices.

There is a polynomial-time algorithm which, on input the graph G, outputs a
random assignment \sigma : V \rightarrow [q] whose distribution \nu \sigma is within total variation distance
O(1/n\delta ) from the Potts distribution \mu G with parameter B, i.e.,

\| \nu \sigma  - \mu G\| TV = O(1/n\delta ).

Note that the sampling algorithm in the antiferromagnetic case works throughout
uniqueness apart from the point (\Delta  - q)/\Delta , where uniqueness on the tree is expected
to hold but the model is conjectured to be at criticality. In particular, for all B \not =
(\Delta  - q)/\Delta which are in the uniqueness regime of \BbbT \Delta , it can be shown that the decay
on the tree is exponentially small in its height. In contrast, even if uniqueness on the
tree holds for B = (\Delta  - q)/\Delta , it can be shown that the decay on the tree is only
polynomial in its height.

We remark here that the algorithm for the antiferromagnetic case uses as a black-
box a subroutine for sampling from the antiferromagnetic Ising model. The running
time of this subroutine, which is based on correlation decay methods, is nc for some
constant c = c(q,B,\Delta ) > 0; it is an open question whether there is a faster algorithm
for the Ising model. Finally, the constant \delta that controls the error of the algorithm
depends on B, q,\Delta and gets smaller as B decreases.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

748 BLANCA ET AL.

3. Proof approach. In this section, we outline the main idea behind the algo-
rithms of Theorems 2.5 and 2.7 and the key obstacles that we have to address. We
focus on the antiferromagnetic Potts model where the details are much more com-
plex and discuss how we get the simplification for the ferromagnetic case via the
random-cluster model later.

Definition 3.1. For an n-vertex graph G = (V,E) with maximum degree \Delta , a
cycle is short if its length is at most 1

5 log\Delta  - 1 n and is long otherwise.

Let G be a random \Delta -regular graph with n vertices. Following the approach of
Efthymiou [8], our algorithm starts from the subgraph of G consisting of all short
cycles, which we denote by G\prime . It is fairly standard to show that, with probability
1 - o(1) over the choice of G, the subgraph G\prime is a disjoint union of short cycles; see
Lemma 4.1. It is therefore possible to sample a configuration \sigma \prime on G\prime which is dis-
tributed according to the Potts distribution \mu G\prime (exactly). This can be accomplished
in several ways; in fact, since the cycles are disjoint and each cycle has logarithmic
length, this initial sampling step can even be done via brute force in polynomial time
(though it is not hard to come up with much faster algorithms).

After this initial preprocessing, the algorithm then proceeds by adding sequen-
tially the edges that do not belong to short cycles. At each step, the current configura-
tion is updated with the aim to preserve its distribution close to the Potts distribution
of the new graph (with the edge that we just added). Key to this update procedure is
a resampling step which is performed only when the endpoints of a newly added edge
\{ u, v\} happen to have the same colors under the current configuration; intuitively,
some action is required in this case because the weight of the current configuration
reduces by a factor of B < 1 in the new graph (because of the added edge). The
resampling step consists of recoloring a bichromatic class, where the latter is defined
as follows.

Definition 3.2. Let G = (V,E) be a graph and \sigma : V \rightarrow [q] be a configuration.
For colors c1, c2 \in [q], let \sigma  - 1(c1, c2) be the set of vertices that have either color c1 or
color c2 under \sigma .

For distinct colors c1, c2 \in [q], we say that U = \sigma  - 1(c1, c2) is the (c1, c2)-color-
class of \sigma and that U is a bichromatic class under \sigma . We refer to a connected com-
ponent of G[U ] as a bichromatic component.

In the proper colorings case (B = 0), Efthymiou [8] demonstrated that the resam-
pling step when adding an edge e = \{ u, v\} can be done by just flipping the colors of
a bichromatic component chosen uniformly at random among those containing one of
the vertices u and v (say, u). The rough idea there is that when the colorings model
is in uniqueness, the bichromatic components on a random graph are typically small
in size. At the same time, by the initial preprocessing step, the edge e = \{ u, v\} does
not belong to a short cycle and therefore u and v are far away in the graph without
e. Hence, u and v are unlikely to belong to the same bichromatic component and the
flipping step will succeed in giving u and v different colors with good probability.

Unfortunately, this flipping method does not work for the antiferromagnetic Potts
model. It turns out that when q < \Delta and even when the Potts model is in uniqueness,
bichromatic components can be large and therefore u and v potentially belong to the
same bichromatic component. To make matters worse, these bichromatic components
can be quite complicated (with many short/long cycles). This necessitates a more
elaborate approach in our setting to succeed in giving u and v different colors without
introducing significant bias to the sampler.
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The key to overcoming these obstacles lies in the observation that the assign-
ment of the two colors in a bichromatic component follows the Ising distribution;
see Observation 6.1 for the precise formulation. Hence we can hope to use an approx-
imate sampling algorithm for the Ising model in the resampling step. The natural
implementation of this idea, however, fails: known algorithms for the antiferromag-
netic Ising model, based on correlation decay, work as long as B > \Delta  - 2

\Delta , where \Delta is
the maximum degree of the graph [30, 35]. In general, this inequality is not satisfied
for us, i.e., there exist B in the uniqueness regime for Potts such that B < \Delta  - 2

\Delta .
Fortunately, we can employ fairly recent technology for two-state models [27, 31,

29] which demonstrates that the graph parameter that matters is not actually the
maximum degree of the graph but rather the ``average growth"" of the graph. While
we cannot apply any of the existing results in the literature directly, adapting these
ideas to the antiferromagnetic Ising model is fairly straightforward, using results from
Mossel and Sly [27]. The more difficult part in our setting is proving that the average
growth of the bichromatic components that we consider for resampling is indeed small
for ``typical"" configurations \sigma (note that in the worst case, the whole graph can be a
bichromatic class which has large average growth for our purposes, so a probability
estimate over \sigma is indeed due). Let us first formalize the notion of average growth
that we use.

Definition 3.3. Let M, b be positive constants and G = (V,E) be a graph with
n vertices. We say that G has average growth b up to depth L = \lceil M log n\rceil if for
all vertices v \in V the total number of paths with L vertices starting from v is less
than bL.

The notion of average growth is similar to the notion of connective constant for
finite graphs used in [31, 29]; the reason for the slightly different definition is that
we will need an explicit handle on the constant M controlling the depth. Note that,
since we only consider paths with a fixed logarithmic length, this places a lower bound
on the accuracy of the sampling algorithm. Nevertheless, by choosing the constant
M sufficiently large, this will still be sufficient to make the error of our sampler
polynomially small. In particular, as long as the inequality b 1 - B

1+B < 1 is satisfied, using
results from [27], we obtain an approximate sampler for the antiferromagnetic Ising
model with parameter B on graphs of average growth b up to depth L = \lceil M log n\rceil ;
see Theorem 6.3 for details.

We give a few more technical details on how we bound the average growth of
bichromatic classes. Here, we utilize the tree uniqueness and the tree-like structure of
random \Delta -regular graphs (cf. Lemma 4.4) to provide an upper bound on the number
of bichromatic paths. For paths of logarithmic length L, we show in Lemma 6.6 that
the probability that a path is bichromatic is \leq KL, where K is roughly (1+B)/(B+
q - 1). Since there are at most \Delta (\Delta  - 1)L - 2 paths with L vertices, we therefore obtain
that the average growth b of bichromatic components is bounded above by (\Delta  - 1)K.
When B is in uniqueness, we have that B > (\Delta  - q)/\Delta , and therefore the inequality
b 1 - B
1+B < 1 that is required for the Ising sampler is satisfied.

The final technical piece is to bound the error that is introduced by the resampling
steps. The placement of a new edge \{ u, v\} reweights the probability that u and v have
different colors and introduces an error in our sampling algorithm that is captured by
the correlation between the colors of u and v (see Lemma 6.9). The main idea at this
point is that, in the graph without the edge \{ u, v\} , u and v are far apart (since the
edge \{ u, v\} does not belong to a short cycle of G) which can be used to show that the
correlation between the colors of u and v is relatively small. In Lemma 6.4, we show
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that the correlation between u and v can in fact be upper bounded as a weighted sum
over paths connecting u and v. This allows us to bound the aggregate sampling error
of the algorithm as a weighted sum over short cycles of the random graph G, which
can in turn be bounded using a simple expectation argument.

The algorithm that we described for the antiferromagnetic Potts model can actu-
ally be adapted to the ferromagnetic case as well. However, as mentioned earlier, we
follow a different (and surprisingly simpler) route using the random-cluster represen-
tation of the model. At a very rough level, the reason behind the simplification is that
the components in the random-cluster model provide a much better grip on capturing
the properties of the Potts distribution than the bichromatic-component proxy we
used earlier. Indeed, just as we described in the antiferromagnetic case, bichromatic
components for the ferromagnetic Potts model can also be linear-sized. However,
once we translate the Potts configuration to its random-cluster representation (cf.
Lemma 2.1), the components in the latter are small in size (when the model is in the
uniqueness region p < pc(q,\Delta )) and therefore vertices that are far away do not belong
to the same component. This allows us to perform the resampling step in the random-
cluster model by a simple percolation procedure. The details can be found in section 5.

3.1. Organization. In section 4, we give the properties of random regular
graphs that we are going to use in the analysis of our sampling algorithms. In section
5, we give the algorithm for the random-cluster model and conclude Theorem 2.5
(assuming the upcoming Lemma 5.2). In section 6, we give the algorithm for the
antiferromagnetic Potts model and conclude Theorem 2.7 (assuming the upcoming
Theorem 6.3 and Lemmas 6.4 and 6.6). In sections 7 and 8, we analyze the random-
cluster and antiferromagnetic Potts models on ``tree-like"" graphs and give the proofs
of Lemmas 5.2 and 6.6. Finally, in section 9, we prove Theorem 6.3 and Lemma 6.4,
which are about correlation decay and sampling for the antiferromagnetic Ising model
on graphs of small average growth.

4. Properties of random regular graphs. In this section, we state and prove
structural properties of random \Delta -regular graphs which ensure that our algorithms
for the random-cluster and Potts models have the desired accuracy (cf. Remark 1.1).
While the exact statements of the properties that we need do not seem to appear in
the literature, their proofs follow fairly standard techniques in the area.

We will work in the configuration model; see [18, Chapter 9] for more details.
Precisely, for \Delta n even, let \scrG := \scrG n,\Delta denote the uniform distribution on \Delta -regular
graphs which is obtained by taking a perfect matching of the set [n]\times [\Delta ] and collaps-
ing for each u \in [n] the elements (u, 1), . . . , (u,\Delta ) into a single vertex u; the elements
of the set [n] \times [\Delta ] are called points. Technically, the distribution \scrG is supported on
multigraphs but it can be shown that the probability that G \sim \scrG is simple is asymp-
totically a positive constant as n \rightarrow \infty ; conditioned on that event, G is uniformly
distributed over \Delta -regular graphs with n vertices, and therefore any event that holds
with probability 1 - o(1) in \scrG n,\Delta also holds with probability 1 - o(1) over the uniform
distribution on \Delta -regular graphs with n vertices.

The following lemma guarantees that short cycles are disjoint in a random \Delta -
regular graph.

Lemma 4.1. Let \Delta \geq 3 be an integer. Then, with probability 1  - o(1) over the
choice of a uniformly random \Delta -regular graph with n vertices, any two distinct cycles
of length \leq 1

5 log\Delta  - 1 n are disjoint, i.e., they do not share any common vertices or
edges.
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Proof. For convenience, let \ell :=
\bigl\lfloor 
1
5 log\Delta  - 1 n

\bigr\rfloor 
and \scrG := \scrG n,\Delta . Let G \sim \scrG and \scrE 

be the event that G contains two distinct cycles of length \leq \ell which are not disjoint.
Let also \scrF be the event that, for some integer k \in [1, 2\ell ], G contains a subgraph with
k vertices and k + 1 edges such that each vertex has at least two incident multiedges
(in the subgraph); we call such a subgraph bad. When \scrE occurs, we obtain that \scrF 
also occurs, so it suffices to upper bound the probability of the latter.

To bound Pr\scrG (\scrF ), we will use a union over all possible bad subgraphs with
k vertices with k \in [1, 2\ell ]. Consider an arbitrary integer k \in [1, 2\ell ]. There are\bigl( 
n
k

\bigr) 
\leq ( enk )k ways to choose the vertices in the subgraph, at most

\bigl( 
\Delta 
2

\bigr) k
(\Delta k)2 ways

to choose the points that are going to be paired, and then (2(k+1))!
(k+1)!2k+1 \leq 10(2k/e)k+1

ways to pair the points. The probability of a particular pairing of 2(k + 1) points
occuring is equal to 1

(\Delta n - 1)\cdot \cdot \cdot (\Delta n - (2k+1)) \leq 
2

(\Delta n)k+1 (using that k \leq 2\ell = o(n1/2)). We

therefore obtain that

Pr\scrG (\scrF ) \leq 20
2\ell \sum 

k=1

\biggl( 
n

k

\biggr) 
(\Delta k)2

\bigl( 
\Delta 
2

\bigr) k
(2k/e)k+1

(\Delta n)k+1
\leq 60\Delta 

n

2\ell \sum 
k=1

k2(\Delta  - 1)k

\leq 500\Delta \ell 3

n
(\Delta  - 1)2\ell = o(1),

as needed. This finishes the proof.

The following lemma guarantees that certain weighted sums over cycles are small;
this bound will be used to show that the aggregate error of our samplers is small (cf.
section 3).

Lemma 4.2. Let \Delta \geq 3. Then, for any constant W > \Delta  - 1 and any constant
\ell 0 > 0, there exists a constant \delta > 0 such that the following holds with probability
1  - O(1/n\delta ) over the choice of G \sim \scrG n,\Delta . Let C\ell denote the number of cycles of
length \ell . Then, \sum 

\ell \geq \ell 0 logn

\ell C\ell 

W \ell 
\leq 1/(2n\delta ).

Proof. Let w := (\Delta  - 1)/W < 1 and \delta := 1
2\ell 0 log(1/w) > 0. We will show that,

for all sufficiently large n, it holds that

(4.1) E\scrG [X] \leq 1

(1 - w)n2\delta 
, where X :=

\sum 
\ell \geq \ell 0 logn

\ell C\ell 

W \ell 
.

Once we show (4.1), the result follows from Markov's inequality.
Fix an arbitrary integer \ell \in [n]; we will calculate E\scrG [C\ell ]. In the configura-

tion model, a cycle with \ell vertices corresponds to an ordered 2\ell -tuple of points
(u1, i1), (u1, i2), . . . , (u\ell , i2\ell  - 1), (u\ell , i2\ell ) where u1, . . . , u\ell are distinct elements of [n]
and i1, . . . , i2\ell \in [\Delta ] such that (uj , i2j) is paired to (uj+1, i2j+1) for all j \in [\ell ] (with
the convention that u\ell +1 = u1 and i2l+1 = i1).

There are \ell !
\bigl( 
n
\ell 

\bigr) 
ways to choose and order u1, . . . , u\ell and (\Delta (\Delta  - 1))\ell ways to

choose i1, . . . , i2\ell for a total of \ell !
\bigl( 
n
\ell 

\bigr) 
(\Delta (\Delta  - 1))\ell possible tuples; this overcounts the

number of tuples corresponding to distinct cycles by a factor of 2\ell (the number of
ways to root and orient the 2\ell -tuple). Now, the pairing corresponding to a tuple
occurs with probability 1

(\Delta n - 1)(\Delta n - 3)\cdot \cdot \cdot (\Delta n - (2\ell  - 1)) . Since

2(\Delta n - 1)(\Delta n - 3) \cdot \cdot \cdot (\Delta n - (2\ell  - 1)) \geq \Delta \ell n(n - 1) \cdot \cdot \cdot (n - \ell + 1)
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for all \ell \in [1, n] and \Delta \geq 3, it follows that E\scrG [C\ell ] \leq (\Delta  - 1)\ell /\ell and hence

E\scrG [X] =
\sum 

\ell \geq \ell 0 logn

w\ell \leq w\ell 0 logn/(1 - w),

which proves (4.1) and therefore concludes the proof.

Our next lemma captures the tree-like structure of random \Delta -regular graphs that
will be relevant for us. In particular, we give a description of the neighborhood
structure around a path. To do this accurately, we will need a few definitions. Let
G = (V,E) be a graph. For a vertex v \in V and integer h \geq 0, we denote by \Gamma h(G, v)
the set of vertices at distance \leq h from v.

Definition 4.3. Let G be a graph and P be a path in G with vertices u1, . . . , u\ell .
Let G\setminus P be the graph obtained from G by removing the edges of the path P . Then,
for an integer h \geq 0, the h-graph-neighborhood of the path P is the subgraph of G\setminus P
induced by the vertex set

\bigcup 
i\in [\ell ] \Gamma h(G\setminus P, ui).

A connected component of the h-graph-neighborhood will be called isolated if it
contains exactly one of the vertices u1, . . . , u\ell .

Lemma 4.4. Let \Delta \geq 3. Then, for any constant integer h \geq 0 and any \epsilon > 0,
there exists a constant \ell 1 > 0 such that the following holds.

With probability 1  - O(1/n2) over the choice of G \sim \scrG n,\Delta , every path P in G
with \ell vertices with \ell 1 \leq \ell \leq n9/10 has an h-graph-neighborhood with at least (1 - \epsilon )\ell 
isolated tree components.

We will use the following version of the well-known Chernoff/Hoeffding inequality.

Lemma 4.5 (see, e.g., [10, Theorem 21.6 and Corollary 21.9]). Suppose that
Sn = X1 + \cdot \cdot \cdot +Xn, where \{ Xi\} i\in [n] is a collection of independent random variables
such that 0 \leq Xi \leq 1 and \BbbE [Xi] = \mu i for i = 1, . . . , n. Let \mu = \mu 1 + \cdot \cdot \cdot + \mu n. Then,
for any c > 1,

Pr(Sn \geq c\mu ) \leq exp
\bigl( 
 - c\mu log(c/e)

\bigr) 
.

Proof of Lemma 4.4. Fix an arbitrary integer h \geq 0 and constant \epsilon > 0. We will
show that the lemma holds with \ell 1 := 200/\epsilon .

In the configuration model, a path P with \ell vertices corresponds to an or-
dered 2(\ell  - 1)-tuple of points (u1, i1), (u2, i2), (u2, i3), . . . , (u\ell  - 1, i2(\ell  - 2)), (u\ell  - 1, i2\ell  - 3),
(u\ell , i2(\ell  - 1)) where u1, . . . , u\ell are distinct elements of [n] and i1, . . . , i2(\ell  - 1) \in [\Delta ] such
that (uj , i2j - 1) is paired to (uj+1, i2j) for all j \in [\ell  - 1]. Fix any such path P with
\ell vertices u1, . . . , u\ell and condition on the event that P appears in G. We will next
reveal the h-graph-neighborhood of P in a breadth-first search manner, as follows:

1. Let U0 = \{ u1, . . . , u\ell \} . Initialize U1, . . . , Uh, Uh+1 to be empty sets of vertices.
2. For t = 0, 1, . . . , h:
3. Order the vertices in Ut in lexicographic order.
4. For k = 1, . . . , \ell \Delta t:
5. Pick the kth vertex in Ut, say, u (if k > | Ut| , set u = 0).
6. For i = 1, . . . ,\Delta :
7. If u \not = 0 and the point (u, i) is not already paired,
8. Pair (u, i) with a point not already paired chosen uniformly, say,
(v, j).
9. If v /\in U1 \cup \cdot \cdot \cdot \cup Ut \cup Ut+1, add v to Ut+1.
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By induction, we have that, for all t \geq 0, Ut consists of the set of vertices at
distance t from a vertex in \{ u1, . . . , u\ell \} . Note also that | Ut| \leq \ell \Delta t. Now, fix arbitrary
t \in \{ 0, 1, . . . , h\} , k \in [\ell \Delta t], and i \in [\Delta ]. Let \scrF t,k,i be the pairings that we have
revealed about the graph G just before executing lines 7--9. Similarly, let St,k,i be the
set of vertices we have encountered just before executing lines 7--9 (i.e., the union of
U1, . . . , Ut together with the current set Ut+1). Let also Qt,k,i be the event that in
lines 7--8 all of the following happen: (i) in line 7, u \not = 0 and the point (u, i) is not
paired, and (ii) in line 8, (u, i) gets paired to a point in St,k,i\times [\Delta ]. There are at least
\Delta (n - | St,k,i| ) points that have not been paired, so

(4.2) Pr(Qt,k,i | \scrF t,k,i) \leq 
| St,k,i| 

n - | St,k,i| 
\leq 2\ell \Delta h+2

n
,

where in the last inequality we used that

| St,k,i| \leq | U0| + \cdot \cdot \cdot + | Ut+1| \leq \ell \Delta t+2 \leq \ell \Delta h+2 and n - \ell \Delta h+2 \geq n/2

for all sufficiently large n (using that \ell 1 \leq \ell \leq n9/10). Using (4.2), we obtain that
the number of events \{ Qt,k,i\} that occur is dominated above by a binomial random

variable (r.v.) X\ell \sim Bin(\ell \Delta h+2, 2\ell \Delta h+2

n ). By Lemma 4.5, we have that

Pr[X\ell \geq \epsilon \ell /2] \leq e - 
1
2 \epsilon \ell log(c\ell /e), where c\ell =

\epsilon n

4\ell \Delta 2h+4
.

Since \ell \leq n9/10, we have c\ell \geq en1/20 for all sufficiently large n and hence

Pr[X\ell \geq \epsilon \ell ] \leq e - 
1
40 \epsilon \ell logn.

It follows that for any path P with \ell vertices, with probability \geq 1  - e - 
1
40 \epsilon \ell logn, at

most \epsilon \ell /2 of the events \{ Qt,k,i\} occur, i.e., the h-graph-neighborhood of P contains
at least (1  - \epsilon )\ell isolated tree components (every event Qt,k,i that occurs decreases
the number of isolated tree components by at most two---on the other hand, if Qt,i,k

does not occur, then the number of isolated tree components stays the same). Since
there are at most n\Delta \ell paths with \ell vertices, we obtain by a union bound that the
probability that there exists a path whose h-graph-neighborhood contains less than
(1 - \epsilon )\ell isolated tree components is upper bounded by

n9/10\sum 
\ell =\lceil 200/\epsilon \rceil 

elogn+\ell log\Delta  - 1
40 \epsilon \ell logn = O(1/n2),

where the last bound follows by observing that, for all sufficiently large n, the
summands are decreasing functions of \ell and that for \ell = \lceil 200/\epsilon \rceil we have

elogn+\ell log\Delta  - 1
40 \epsilon \ell logn = O(1/n3).

This concludes the proof of Lemma 4.4.

To conclude this section, we clarify a small point relevant to Remark 1.1. We will
only utilize Lemma 4.4 for paths of logarithmic length (although the lemma is stated
for convenience for much longer paths) and therefore the property can be checked
in polynomial time. Analogously, the sum in Lemma 4.2 will only be considered
for cycles of logarithmic length and therefore the (restricted) inequality can also be
checked in polynomial time.
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5. Algorithm for the random-cluster model. In this section, we prove The-
orem 2.5. In section 5.1, we first describe the algorithm and analyze how to update a
random-cluster configuration when we add a new edge. In section 5.2, we show how
to control the aggregate error of our sampling algorithm on random regular graphs.
Finally, in section 5.3, we combine these pieces to conclude Theorem 2.5.

5.1. The algorithm. To prove Theorem 2.5, we will consider a simple percola-
tion algorithm for sampling an random-cluster configuration on a random \Delta -regular
graph G. The algorithm is given in Figure 1 and in section 5.3 we will detail its
performance when the input is a random regular graph.

Prior to that, let us first motivate the algorithm SampleRC, by demonstrating
how to update an random-cluster configuration when we add a single edge \{ u, v\} . To
control the effect of adding an edge, it will be relevant to consider the event that
there is an open path between u and v (for a path P in G and an random-cluster
configuration S \subseteq E, we say that P is open in S if all of its edges belong to S); we
denote this event by u \updownarrow v.

Lemma 5.1. Let p \in (0, 1) and q \geq 1, and consider arbitrary \epsilon \in (0, 1/q).
Let G = (V,E) be a graph and u, v be two vertices such that \{ u, v\} \not \in E and

\varphi G(u \updownarrow v) \leq \epsilon . Consider the graph G\prime = (V,E\prime ) obtained from G by adding the
edge \{ u, v\} . Sample a random subset of edges Y \subseteq E\prime as follows: first, sample a
subset of edges X \subseteq E according to the random-cluster distribution \varphi G and, then, set
Y = X \cup \{ e\} with probability p/(p+ (1 - p)q), and Y = X otherwise.

Then, the distribution of Y , denoted by \nu Y , is within total variation distance 2q\epsilon 
from the random-cluster distribution \varphi G\prime on G\prime with parameters p, q, i.e.,

\| \nu Y  - \varphi G\prime \| TV \leq 2q\epsilon .

Proof. Fix an arbitrary \epsilon \in (0, 1/q).
Let \Omega op be the set of subsets S \subseteq E such that in the graph (V, S), u and v are

connected by an open path and let \Omega cl = 2E\setminus \Omega op. For S \subseteq E, denote for convenience
by Se the set S \cup \{ e\} . Observe that

Algorithm SampleRC(G)

parameters: reals p \in (0, 1) and q \geq 1

Input: Graph G = (V,E)
Output: Either Fail or a set S \subseteq E

E\prime := \{ e \in E | e belongs to a short cycle\} 

if G\prime = (V,E\prime ) has a component which is neither a cycle nor an isolated vertex

then Fail
else

Sample an random-cluster configuration S\prime \subseteq E\prime on G\prime (according to \varphi G\prime );

Add to S\prime each edge in E\setminus E\prime independently with probability p/(p+(1 - p)q);

Output the resulting set S \subseteq E.

Fig. 1. Algorithm for sampling a random-cluster configuration. Note that since G\prime is a disjoint
union of short cycles, the initial configuration S\prime in the algorithm can be obtained quickly in various
ways (e.g., even brute force takes time O\ast (n6/5) since each cycle has length \leq 1

5
log\Delta  - 1 n and there

are at most n cycles).
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\forall S \in \Omega cl : wG\prime (Se) =
p

q
wG(S), wG\prime (S) = (1 - p)wG(S),(5.1)

\forall S \in \Omega op : wG\prime (Se) = pwG(S), wG\prime (S) = (1 - p)wG(S).(5.2)

Note also that for any S \subseteq E, we have

\nu Y (Se) =
p\varphi G(S)

p+ q(1 - p)
=

p
qwG(S)

(pq + 1 - p)ZG
, \nu Y (S) =

q(1 - p)\varphi G(S)

p+ q(1 - p)
=

(1 - p)wG(S)

(pq + 1 - p)ZG
.

Using (5.1), (5.2), and the assumption \varphi G(u \updownarrow v) \leq \epsilon , we will also show the following
for the partition functions ZG, Z

\prime 
G:

(5.3) | M | \leq q\epsilon , where M :=
(pq + 1 - p)ZG

ZG\prime 
 - 1.

Let us conclude the proof assuming, for now, (5.3). To do this, we decompose
\| \nu Y  - \varphi G\prime \| TV as

(5.4) \| \nu Y  - \varphi G\prime \| TV =
1

2

\sum 
S\subseteq E

| \nu Y (S) - \varphi G\prime (S)| + 1

2

\sum 
S\subseteq E

| \nu Y (Se) - \varphi G\prime (Se)| .

For S \subseteq E, we have

| \nu Y (S) - \varphi G\prime (S)| =
\bigm| \bigm| \bigm| \bigm| (1 - p)wG(S)

(pq + 1 - p)ZG
 - (1 - p)wG(S)

ZG\prime 

\bigm| \bigm| \bigm| \bigm| = (1 - p)wG(S)

(pq + 1 - p)ZG
| M | 

\leq | M | \varphi G(S),

and therefore we can bound the first sum in (5.4) as

(5.5)
\sum 
S\subseteq E

| \nu Y (S) - \varphi G\prime (S)| \leq | M | \leq q\epsilon .

To bound the second sum in (5.4), we consider whether S \in \Omega cl or S \in \Omega op. For
S \in \Omega cl, we have

| \nu Y (Se) - \varphi G\prime (Se)| =
\bigm| \bigm| \bigm| \bigm| p

qwG(S)

(pq + 1 - p)ZG
 - 

p
qwG(S)

ZG\prime 

\bigm| \bigm| \bigm| \bigm| = p
qwG(S)

(pq + 1 - p)ZG
| M | \leq | M | \varphi G(S),

while for S \in \Omega op, we have

| \nu Y (Se) - \varphi G\prime (Se)| =
\bigm| \bigm| \bigm| \bigm| p

qwG(S)

(pq + 1 - p)ZG
 - pwG(S)

ZG\prime 

\bigm| \bigm| \bigm| \bigm| = p
qwG(S)

(pq + 1 - p)ZG
| qM + (q  - 1)| 

\leq 2q \varphi G(S),

where the last inequality follows from | qM + (q  - 1)| \leq q(| M | + 1) \leq 2q (using that
| M | \leq q\epsilon \leq 1 from (5.3)). Hence

(5.6)
\sum 
S\subseteq E

| \nu Y (Se) - \varphi G\prime (Se)| \leq | M | \varphi G(\Omega cl) + 2q \varphi G(\Omega op) \leq | M | + 2q\epsilon \leq 3q\epsilon .

Plugging (5.5) and (5.6) into (5.4), we obtain that \| \nu Y  - \varphi G\prime \| TV \leq 2q\epsilon as wanted.
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To complete the proof, it only remains to show (5.3). Let

ZG,op =
\sum 

S\in \Omega op

wG(S), ZG,cl =
\sum 

S\in \Omega cl

wG(S),

so that ZG = ZG,op + ZG,cl. By assumption, we have that

\varphi G(u \updownarrow v) =
ZG,op

ZG
\leq \epsilon , so that

ZG,op

ZG,cl
\leq \epsilon 

1 - \epsilon 
.

Let also

ZG\prime ,op =
\sum 

S\in \Omega op

wG\prime (S) + wG\prime (Se), ZG\prime ,cl =
\sum 

S\in \Omega cl

wG\prime (S) + wG\prime (Se),

so that ZG\prime = ZG\prime ,op + ZG\prime ,cl. Using (5.1) and (5.2), we obtain that

ZG\prime ,op = ZG,op, ZG\prime ,cl =
\Bigl( p
q
+ 1 - p

\Bigr) 
ZG,cl

and therefore

ZG

ZG\prime 
=

ZG,op + ZG,cl

ZG\prime ,op + ZG\prime ,cl
=

ZG,op

ZG,cl
+ 1

ZG,op

ZG,cl
+
\bigl( 
p
q + 1 - p

\bigr) .
Since

ZG,op

ZG,cl
\in (0, \epsilon 

1 - \epsilon ] and the function f(x) := x+1
x+( p

q+1 - p) is decreasing in x, we

obtain that f( \epsilon 
1 - \epsilon ) \leq 

ZG

ZG\prime 
\leq f(0) and hence the bounds

p
q + 1 - p

\epsilon + (1 - \epsilon )(pq + 1 - p)
\leq 

(pq + 1 - p)ZG

ZG\prime 
\leq 1.

The left-hand side (l.h.s.), is \geq 1  - q\epsilon for all p \in (0, 1), q \geq 1, and \epsilon \in (0, 1), and
hence (5.3) follows.

This concludes the proof of Lemma 5.1.

5.2. Aggregating the error. To utilize Lemma 5.1, we need to upper bound
the probability that two vertices belong to the same component in an random-cluster
configuration. In turn, it suffices to bound the probability that there is an open path
between the vertices. To this end, we utilize the fact that the parameters p, q are in
the uniqueness region of the (\Delta  - 1)-ary tree and the tree-like structure around paths
(cf. Definition 4.3) to show the following. The proof of the lemma is given in section 7.

Lemma 5.2. Let \Delta \geq 3 be an integer, q \geq 1, and p < pc(q,\Delta ). There exist
constants K < 1/(\Delta  - 1) and \epsilon > 0 such that the following holds for all sufficiently
large integers \ell and h.

Let G be a \Delta -regular graph and P be a path with \ell vertices whose h-graph-
neighborhood contains (1 - \epsilon )\ell isolated tree components. Let \varphi G be the random-cluster
distribution on G with parameters p, q. Then,

\varphi G(path P is open) \leq K\ell .

Using monotonicity properties of the random-cluster distribution, we can extend
Lemma 5.2 to arbitrary subgraphs of a target graph G. In particular, suppose that
G,P are as in Lemma 5.2 and that G\prime is a subgraph of G which contains the path
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P . Then it also holds that \varphi G\prime (P is open) \leq K\ell . We will not define the notion
of monotonic distributions in its full generality, but instead we will just state the
following property of random-cluster distributions which will be sufficient for our
purposes; see [15, sections 2.1 and 2.2] for a detailed exposition.

Lemma 5.3 (see, e.g., [15, Chapter 2]). Let G = (V,E) be a graph and consider
the random-cluster distribution on G with parameters p \in (0, 1) and q \geq 1. Then for
any subsets S, S\prime \subseteq E such that S \subseteq S\prime , it holds that

\varphi G(\scrF | S open) \leq \varphi G(\scrF | S\prime open) and \varphi G(\scrF | S closed) \geq \varphi G(\scrF | S\prime closed)

for any increasing event \scrF .2

Combining Lemmas 4.2, 4.4, and 5.2, we can now conclude the following.

Lemma 5.4. Let \Delta \geq 3 be an integer, q \geq 1, and p < pc(q,\Delta ). Then, there exists
a constant \delta > 0 such that, as n \rightarrow \infty , the following holds with probability 1  - o(1)
over the choice of a uniformly random \Delta -regular graph G = (V,E) with n vertices.

Let e1, . . . , et be the edges of G that do not belong to short cycles. For j \in [t], let
ej = \{ uj , vj\} and Gj be the subgraph G\setminus \{ e1, . . . , ej\} . Then, it holds that

(5.7)

t\sum 
j=1

\varphi Gj
(uj \updownarrow vj) \leq 1/n\delta .

Proof. Let K < 1/(\Delta  - 1) and \epsilon > 0 be the constants in Lemma 5.2, and let
\ell \prime , h\prime > 0 be constants so that Lemma 5.2 applies for all \ell \geq \ell \prime and h \geq h\prime . Fix h to be
any integer greater than h\prime . Let \delta > 0 be the constant in Lemma 4.2 corresponding
to \ell 0 := 1/(5 log(\Delta  - 1)) and W = 1/K (note that W > \Delta  - 1). Let \ell 1 > 0
be the constant in Lemma 4.4 corresponding to our choice of \epsilon . Finally, let \ell 2 :=
max\{ 4 log(W/(\Delta  - 1)), 2\ell 0\} .

Taking a union bound over Lemmas 4.2 and 4.4, we have that a uniformly random
\Delta -regular graph G = (V,E) with n vertices satisfies the following with probability
1 - o(1) over the choice of the graph:

1.
\sum L2

\ell =L0

\ell C\ell 

W \ell \leq 1/(2n\delta ), where L0 := \lceil \ell 0 log n\rceil = \lceil 1
5 log\Delta  - 1 n\rceil , L2 := \lfloor \ell 2 log n\rfloor 

and C\ell is the number of cycles of length \ell in G.
2. Every path P in G with \ell vertices where \ell 1 \leq \ell \leq L2 + 1 has an h-graph-

neighborhood with at least (1 - \epsilon )\ell isolated tree components.
We will show that for any \Delta -regular graph G which satisfies items 1 and 2, it holds
that

t\sum 
j=1

\varphi Gj
(uj \updownarrow vj) \leq 1/n\delta ,(5.7)

where e1 = \{ u1, v1\} , . . . , et = \{ ut, vt\} are the edges of G that do not belong to short
cycles (i.e., cycles of length \leq \ell 0 log n), Gj is the subgraph G\setminus \{ e1, . . . , ej\} , and \varphi Gj

is the random-cluster distribution on Gj with parameters p, q. Decreasing the value
of \delta does not affect the validity of item 1, and hence we will assume that \delta \in (0, 1).

2An event \scrF \subseteq 2E is increasing if, for all T \subseteq T \prime \subseteq E, T \in \scrF implies that T \prime \in \scrF as well. Note
also that S\prime open means that every edge in S\prime is open, and S\prime closed means that every edge in S\prime is
closed.
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For j \in [t], consider the edge ej = \{ uj , vj\} and let P\ell ,j denote the number of
paths with \ell vertices in G whose endpoints are uj and vj . Using the fact that G
satisfies item 2, we will show shortly that, for all j \in [t], it holds that

(5.8) \varphi Gj (uj \updownarrow vj) \leq 
1

n3
+

L2\sum 
\ell =L0

P\ell ,j

W \ell 
.

Let us assume (5.8) for now and conclude the proof of (5.7). Summing (5.8) over
j \in [t] (and using the trivial bound t \leq | E| \leq \Delta n/2), we obtain that

(5.9)

t\sum 
j=1

\varphi Gj
(uj \updownarrow vj) \leq 

\Delta 

n2
+

L2\sum 
\ell =L0

\sum t
j=1 P\ell ,j

W \ell 
\leq \Delta 

n2
+

L2\sum 
\ell =L0

\ell C\ell 

W \ell 
,

where in the last inequality we used that
\sum t

j=1 P\ell ,j \leq \ell C\ell , which follows from the ob-
servation that every path with \ell vertices connecting the endpoints of an edge \{ uj , vj\} 
maps to a cycle of length \ell (by adding the edge \{ uj , vj\} ) and each cycle of length \ell 
can potentially arise at most \ell times under this mapping. Using (5.9) and the fact
that G satisfies item 1, we obtain (5.7), as wanted.

To finish the proof, it only remains to prove (5.8). Since G satisfies item 2 and
W = 1/K, by Lemma 5.2, we have that for any path P in G with \ell vertices and
\ell \in [L0, L2 + 1], it holds that

(5.10) \varphi G(P is open) \leq 1/W \ell .

Since Gj is a subgraph of G, any path in Gj is also present in G. Moreover, we have
that \varphi Gj

is obtained by conditioning some edges of G to be closed (namely, e1, . . . , ej).
Therefore, by Lemma 5.3, we conclude from (5.10) that, for any path P in Gj with \ell 
vertices and \ell \in [L0, L2 + 1], it holds that

(5.11) \varphi Gj (path P is open) \leq 1/W \ell .

Since the edge \{ uj , vj\} does not belong to a short cycle, we have that any path P
in Gj connecting uj and vj has length at least \ell 0 log n. We can therefore bound the
probability of an open path between uj and vj by

(5.12) \varphi Gj
(uj \updownarrow vj) \leq \varphi Gj

(\scrE j) + \varphi Gj
(\scrF j),

where \scrE j is the event that there exists an open path P with \ell vertices with L0 \leq \ell \leq L2

connecting uj and vj , whereas \scrF j is the event that there exists an open path P with
\ell = L2+1 vertices starting from uj (the other endpoint can be vj or any other vertex
of the graph). Using (5.11), we have by a union bound over paths that

(5.13) \varphi Gj
(\scrE j) \leq 

L2\sum 
\ell =L0

P\ell ,j

W \ell 
, \varphi Gj

(\scrF j) \leq 
\Delta (\Delta  - 1)\ell 2 logn

W \ell 2 logn
\leq 1/n3,

where in the bound for \varphi Gj
(\scrE j) we used that there are P\ell ,j paths with \ell vertices

connecting uj and vj , while in the bound for \varphi Gj
(\scrF j) we used that there are at most

\Delta (\Delta  - 1)L2 - 1 paths in G with L2 + 1 vertices starting with uj (since G has max
degree \Delta ), the trivial inequalities \ell 2 log n  - 1 \leq L2 \leq \ell 2 log n, and the choice of \ell 2
which guarantees that \ell 2 \geq 4 log(W/(\Delta  - 1)).

Combining (5.12) and (5.13) yields (5.8) (since \delta \in (0, 1)), thus completing the
proof of Lemma 5.4.
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5.3. Combining the pieces---Proof of Theorem 2.5. We are now able
to prove the following theorem, which details the performance of the algorithm
SampleRC on random \Delta -regular graphs and yields as an immediate corollary
Theorem 2.5.

Theorem 5.5. Let \Delta \geq 3, q \geq 1, and p < pc(q,\Delta ). Then, there exists a constant
\delta > 0 such that, as n \rightarrow \infty , the following holds with probability 1  - o(1) over the
choice of a random \Delta -regular graph G = (V,E) with n vertices.

The output of algorithm SampleRC(G) (cf. Figure 1) is a set S \subseteq E whose
distribution \nu S is within total variation distance O(1/n\delta ) from the random-cluster
distribution \varphi G with parameters p, q, i.e.,

\| \nu S  - \varphi G\| TV = O(1/n\delta ).

Proof. By Lemmas 4.1 and 5.4, we have by a union bound that a uniformly
random \Delta -regular graph G with n vertices satisfies the following with probability
1 - o(1):

1. any two distinct cycles of length \leq 1
5 log\Delta  - 1 n are disjoint,

2.
\sum t

j=1 \varphi Gj
(uj \updownarrow vj) \leq 1/n\delta , where e1 = \{ u1, v1\} , . . . , et = \{ ut, vt\} are

the edges of G that do not belong to short cycles, and Gj is the subgraph
G\setminus \{ e1, . . . , ej\} (for j \in [t]).

We will show that for any graph G = (V,E) that satisfies items 1 and 2, the output of
the algorithm SampleRC is a random set S \subseteq E whose distribution \nu S is within total
variation distance 1/n\delta from the random-cluster distribution \varphi G with parameters p, q,
therefore proving the result.

Let Gt = (V,Et), . . . , G1 = (V,E1) be the sequence of subgraphs as in item 2
above and, for convenience, set E0 = E and let G0 = (V,E0) (so that G0 = G). Note
that Gt = G\prime (where G\prime is the graph considered in the algorithm SampleRC), i.e.,
Gt is the subgraph of G where only the edges that belong to short cycles appear. By
item 1, we have that Gt consists of isolated vertices and disjoint cycles and hence
we can conclude that the output of the algorithm SampleRC is not Fail, i.e., on
input a graph G satifying items 1 and 2, SampleRC outputs a random set S \subseteq E.
It therefore remains to show that the distribution \nu S of S satisfies

(5.14) \| \nu S  - \varphi G\| TV = O(1/n\delta ).

For j = t, t - 1, . . . , 0, let Sj = S \cap Ej and let \nu Sj denote the distribution of Sj . Note
that S0 = S and St = S\prime (where S\prime is the subset of edges considered in the algorithm
SampleRC). We have that

(5.15) \| \nu S  - \varphi G\| TV = \| \nu S0  - \varphi G0\| TV , \| \nu St  - \varphi Gt\| TV = \| \nu S\prime  - \varphi G\prime \| TV = 0.

For j \in [t], we have that Sj - 1 is obtained from Sj by adding the edge ej with

probability p/(q + (1  - p)q). Let \^Sj - 1 \subseteq Ej - 1 be a subset of edges obtained by
sampling an random-cluster configuration from Gj (according to \varphi Gj

) and adding the

edge ej with probability p/(q + (1  - p)q); denote by \nu \^Sj - 1
the distribution of \^Sj - 1.

By Lemma 5.1 we have that3\bigm\| \bigm\| \nu \^Sj - 1
 - \varphi Gj - 1

\bigm\| \bigm\| 
TV

\leq 2q \varphi Gj
(uj \updownarrow vj).

3Note that, to apply Lemma 5.1, we need to ensure that \varphi Gj
(uj \updownarrow vj) < 1/q, which is guaranteed

by item 2.
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Moreover, since in each of Sj - 1 and \^Sj - 1 the edge ej appears independently with the
same probability p/(q + (1 - p)q), we have that\bigm\| \bigm\| \nu Sj - 1  - \nu \^Sj - 1

\bigm\| \bigm\| 
TV

=
\bigm\| \bigm\| \nu Sj  - \varphi Gj

\bigm\| \bigm\| 
TV

.

Using the triangle inequality and induction, we obtain that for all j = 0, 1, . . . , t it
holds that \bigm\| \bigm\| \nu Sj  - \varphi Gj

\bigm\| \bigm\| 
TV

\leq \| \nu St  - \varphi Gt\| TV + 2q

t - 1\sum 
j\prime =j

\varphi Gj\prime (uj\prime \updownarrow vj\prime ).

Writing this out for j = 0 and using (5.15), we obtain that

\| \nu S  - \varphi G\| TV \leq 2q

t - 1\sum 
j=0

\varphi Gj
(uj \updownarrow vj) \leq 2q/n\delta ,

where in the last inequality we used that the graph G satisfies item 2. This finishes
the proof of (5.14) and therefore the proof of Theorem 5.5 as well.

6. Algorithm for the antiferromagnetic Potts model. In this section, we
give the details of our sampling algorithm for the antiferromagnetic Potts model
(outlined in section 3). The section is organized as follows. First, in section 6.1, we
formalize the connection between the Potts model on bichromatic classes and the Ising
model. Then, in section 6.2, we state the sampling algorithm for the Ising model on
graphs with small average growth that we are going to use for resampling bichromatic
classes in the Potts model; moreover, we state certain correlation decay properties for
the Ising model that will be relevant for analyzing the error of our Potts sampler. In
section 6.3, we state the key lemma that allows us to bound the average growth of
bichromatic classes in the Potts model on random regular graphs. In section 6.4, we
show an ``idealized"" subroutine that updates a Potts configuration when we add a new
edge \{ u, v\} ; the subroutine works by resampling an appropriately chosen bichromatic
class and it is ``idealized"" in the sense that it assumes that certain steps can be carried
out efficiently. In section 6.5, we modify the subroutine to make it computationally
efficient by considering the average growth of bichromatic classes that get resampled;
there, we give the complete description of the actual resampling subroutine used in
our Potts sampler. With these pieces in place, we are in position to complete the
description and analysis of the Potts sampler in section 6.6.

6.1. Connection between Potts on bichromatic classes and the Ising
model. In this section, we describe the connection between the Potts model on
bichromatic classes and the Ising model. Recall that the Ising model is the spe-
cial case q = 2 of the Potts model; to distinguish between the models, we will use
\pi G to denote the Ising distribution on G with parameter B. Sometimes, we will need
to replace the binary set of states \{ 1, 2\} in the Ising model by other binary sets to
facilitate the arguments; we use \pi c1,c2

G to denote the Ising distribution with binary set
of states \{ c1, c2\} (we will have that c1, c2 \in [q]).

For a configuration \sigma : V \rightarrow [q], we will denote by \sigma U the restriction of \sigma to the
set U . Our sampling algorithm is based on the following simple observation.

Observation 6.1. Let q \geq 3 and B > 0. Let G = (V,E) be a graph, U be a subset
of V , and c, c\prime be distinct colors in [q]. Then, for any configuration \eta : U \rightarrow \{ c, c\prime \} , it
holds that

\mu G

\bigl( 
\sigma U = \eta | \sigma  - 1(c, c\prime ) = U

\bigr) 
= \pi c,c\prime 

G[U ](\eta ),
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i.e., conditioned on U being the (c, c\prime )-color-class in the Potts distribution \mu G, the
marginal distribution on U is the Ising distribution \pi G[U ] (with set of states \{ c, c\prime \} ).

The following definition will be notationally convenient.

Definition 6.2. Let G be a graph, u, v be vertices in G, and c, c\prime be distinct colors

in [q]. We write \pi c,c\prime 

G,u,v to denote the Ising distribution on G (with set of states \{ c, c\prime \} )
conditioned on u taking the state c and v the state c\prime .

6.2. Sampling the Ising model on graphs with small average growth.
Recall from section 3 that our algorithm for sampling the antiferromagnetic Potts
model with parameter B will use as a subroutine a sampling algorithm for the Ising
model with parameter B to recolor bichromatic classes. In general, these classes may
consist of large bichromatic components (with a linear number of vertices), so to carry
out this subroutine efficiently, we need to use an approximate sampling algorithm;
our leverage point will be that we can bound the average growth of bichromatic
components (cf. Definition 3.3). Adapting results of [27], we show the following in
section 9.2.

Theorem 6.3. Let B \in (0, 1) and b > 0 be constants such that b 1 - B
1+B < 1, and

let \Delta \geq 3 be an integer. Then, there exists M0 > 0 such that the following holds for
all M > M0.

There is a polynomial-time algorithm that, on input an n-vertex graph G with
maximum degree at most \Delta and average growth b up to depth L = \lceil M log n\rceil , outputs
a configuration \tau : V \rightarrow \{ 1, 2\} whose distribution \nu \tau is within total variation distance
1/n10 from the Ising distribution on G with parameter B, i.e.,\bigm\| \bigm\| \nu \tau  - \pi G

\bigm\| \bigm\| 
TV

\leq 1/n10.

Moreover, the algorithm, when given as additional input two vertices u and v in G,
outputs a configuration \tau : V \rightarrow \{ 1, 2\} such that \tau u = 1 and \tau v = 2, and whose
distribution \nu \tau satisfies \bigm\| \bigm\| \nu \tau  - \pi 1,2

G,u,v(\cdot )
\bigm\| \bigm\| 
TV

\leq 1/n10,

where \pi 1,2
G,u,v is the Ising distribution on G conditioned on u having state 1 and v

having state 2.

In addition, we will use the following spatial mixing result to analyze the accu-
racy of our algorithm for the antiferromagnetic Potts model. The proof is given in
section 9.3.

Lemma 6.4. Let B \in (0, 1) and b > 0 be constants such that b 1 - B
1+B < 1. Then,

there exists M \prime 
0 > 0 such that the following holds for all M > M \prime 

0.
Let G be an n-vertex graph with average growth b up to depth L = \lceil M log n\rceil , and

let u, v be distinct vertices in G. Then

\bigm| \bigm| \bigm| \pi G(\sigma u = 1 | \sigma v = 1) - \pi G(\sigma u = 1 | \sigma v = 2)
\bigm| \bigm| \bigm| \leq 1

n10
+

L\sum 
\ell =1

P\ell (G, u, v)

\biggl( 
1 - B

1 +B

\biggr) \ell 

,

where P\ell (G, u, v) is the number of paths with \ell vertices in G that connect u and v.

We will also need the following crude bound.
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Lemma 6.5. Let B \in (0, 1) and \Delta \geq 3 be an integer. Suppose that G is a graph
of maximum degree at most \Delta and let u be a vertex and \Lambda be a set of vertices in G
such that u \not \in \Lambda . Then, for every configuration \tau : \Lambda \rightarrow \{ 1, 2\} and s \in \{ 1, 2\} 

B\Delta 

1 +B\Delta 
\leq \pi G(\sigma u = s | \sigma \Lambda = \tau ).

Proof. Without loss of generality, we assume that s = 1. Let D be the number
of neighbors of u and u1, . . . , ud be the neighbors of u in G \setminus \Lambda and note that d \leq 
D \leq \Delta . Let d0 be the number of v \in \Lambda such that v is u's neighbor and \tau v = 1. Let
s1, . . . , sd \in \{ 1, 2\} be arbitrary and let d1 be the number of the si's that are equal to
1. Then we have that

\pi G(\sigma u = 1 | \sigma u1
= s1, . . . , \sigma ud

= sd, \sigma \Lambda = \tau ) =
Bd2

Bd2 +BD - d2
,

where d2 = d0 + d1 \leq d0 + d \leq D. Since u1, . . . , ud \not \in \Lambda we have that \pi G(\sigma u1
=

s1, . . . , \sigma ud
= sd | \sigma \Lambda = \tau ) \not = 0 for any choice of s1, . . . sd and therefore by the law of

total probability we obtain

min
d2\in \{ d0,...,d0+d\} 

\Bigl\{ Bd2

Bd2 +BD - d2

\Bigr\} 
\leq \pi G(\sigma u = 1 | \sigma \Lambda = \tau ).

The function Bx

Bx+BD - x is decreasing for x \in [0, D] (since B \in (0, 1)) and hence

min
d2\in \{ d0,...,d0+d\} 

\Bigl\{ Bd2

Bd2 +BD - d2

\Bigr\} 
=

BD

1 +BD
.

Using that B \in (0, 1) and D \leq \Delta , we obtain the inequalities in the statement of the
lemma.

6.3. Average growth of bichromatic components in the Potts distribu-
tion. To utilize Theorem 6.3 and Lemma 6.4 for our sampling algorithms, we will
need to bound the average growth of bichromatic components in a typical Potts con-
figuration on a random regular graph. Our key lemma to achieve this will bound the
probability that a path is bichromatic4 in uniqueness, provided that the local neigh-
borhood around the path (in the sense of Definition 4.3) has a tree-like structure.
The following lemma quantifies this probability bound and is proved in section 8.2.
The proof uses the fact that the parameter B lies in the uniqueness regime of the
(\Delta  - 1)-ary tree.

Lemma 6.6. Let \Delta , q \geq 3 be integers, and let B \in (0, 1) be in the uniqueness
regime of the (\Delta  - 1)-ary tree with B \not = (\Delta  - q)/\Delta . Then, for any \epsilon \prime > 0, there exists
a positive constant K < 1+B

B+q - 1 + \epsilon \prime and \epsilon > 0 such that the following holds for all
sufficiently large integers \ell and h.

Let G be a graph of maximum degree \Delta and P be a path with \ell vertices whose
h-graph-neighborhood contains (1 - \epsilon )\ell isolated tree components. Let \mu G be the Potts
measure on G with parameter B. Then,

\mu G(path P is bichromatic) \leq K\ell .

4Let G = (V,E) be a graph and \sigma : V \rightarrow [q]. We call a path P bichromatic under \sigma if there exist
colors c1, c2 \in [q] such that every vertex u of P satisfies \sigma u \in \{ c1, c2\} .
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For a random \Delta -regular graph G, paths do have the tree-like structure of
Lemma 6.6 (cf. Lemma 4.4), and hence we can aggregate over all paths emanat-
ing from an arbitrary vertex (roughly (\Delta  - 1)\ell of them) and get a bound of roughly

(\Delta  - 1)K < (\Delta  - 1)(1+B)
B+q - 1 for the average growth of bichromatic components in a typical

configuration \sigma . This will allow us to use the upcoming ReSample subroutine for
updating a bichromatic class using the Ising sampler of section 6.2.

6.4. Analyzing an ideal R\bfE S\bfA \bfM \bfP \bfL \bfE subroutine. In this section, we give
a preliminary description and analysis of the ReSample subroutine that updates a
Potts configuration when we add a new edge \{ u, v\} . The ReSample subroutine is
inspired by the approach of Efthymiou [8] for colorings.

In fact, for the moment, we will only study an ``idealized"" version of ReSample
which we call IdealReSample; the subroutine is idealized in the sense that it assumes
that certain steps can be carried out efficiently. Later, we will modify the subroutine
to obtain the actual ReSample subroutine whose running time will be polynomial
with respect to the size of the input graph.

The point of analyzing first IdealReSample is to give the key ideas behind the
underlying resampling step without bothering for the moment to make the subroutine
computationally efficient. Moreover, the detour is going to be smaller than it might
appear since the analysis of the actual ReSample subroutine will follow from the
analysis of IdealReSample.

The IdealReSample subroutine takes as inputs a graph G, two vertices u and
v of G, and a configuration \sigma on G such that \sigma u = \sigma v; it outputs a configuration
\sigma \prime on G by updating the configuration on an appropriately chosen bichromatic class
containing the vertices u and v. The details of the subroutine can be found in Figure 2.

Algorithm IdealReSample(G, u, v, \sigma )

parameters: real B \in (0, 1), integer q \geq 3

Input: Graph G = (V,E), vertices u, v \in V with \{ u, v\} /\in E,
configuration \sigma : V \rightarrow [q] with \sigma u = \sigma v.

Output: A configuration \sigma \prime : V \rightarrow [q].

Flip a coin with heads probability qB
B+q - 1 .

if heads then \sigma \prime = \sigma 

else

Pick u.a.r. a colour c\prime from [q]/\{ c\} , where c = \sigma u = \sigma v.

Let U = \sigma  - 1(c, c\prime ) and set H = G[U ].

Sample Ising configuration \tau on H conditioned on \tau u = c and \tau v = c\prime , i.e.:

Sample \tau : U \rightarrow \{ c, c\prime \} with \tau u = c and \tau v = c\prime so that \tau \sim \pi c,c\prime 

H,u,v

Set: \sigma \prime 
w = \tau w for w \in U ; set \sigma \prime 

w = \sigma w for w /\in U .

return \sigma \prime : V \rightarrow [q].

Fig. 2. The IdealReSample subroutine; we will later modify this to obtain the actual
ReSample subroutine used in Algorithm SampleAntiPotts (cf. Figure 4).
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The subroutine will be used to update a Potts configuration when we add a new edge
\{ u, v\} ; see the upcoming Lemma 6.9.

To control the output distribution of the IdealReSample subroutine, the fol-
lowing definition will be crucial.

Definition 6.7. Let B > 0. Suppose that G = (V,E) is a graph and that u, v
are vertices in G. For a set U \subseteq V such that u, v \in U , let

\sansC \sanso \sansr \sansr G(U, u, v) =

\bigm| \bigm| \bigm| \bigm| \pi G[U ]

\bigl( 
\eta u = 1, \eta v = 1

\bigr) 
\pi G[U ]

\bigl( 
\eta u = 1, \eta v = 2

\bigr)  - 1

\bigm| \bigm| \bigm| \bigm| ,
where \eta denotes a configuration U \rightarrow \{ 1, 2\} sampled according to \pi G[U ]. Note that
\sansC \sanso \sansr \sansr G(U, u, v) measures the correlation between u and v in the Ising distribution with
parameter B on the subgraph G[U ].

To state the main lemma of this section, we will also need the following definition
of a ``random bichromatic class"" containing two specific vertices u and v under a
configuration \sigma .

Definition 6.8. Let G = (V,E) be a graph, u, v be vertices in G, and \sigma : V \rightarrow [q]
be a configuration on G. We let U\sigma \subseteq V be a bichromatic class under \sigma which contains
u and v, chosen uniformly at random among the set of all such classes if there is more
than one.

More precisely, if \sigma u \not = \sigma v, then U\sigma is the (c1, c2)-color-class in \sigma where c1, c2
are the colors of u and v under \sigma . If \sigma u = \sigma v, then U\sigma is the (c, c\prime )-color-class in \sigma ,
where c is the common color of u and v under \sigma and c\prime is a uniformly random color
from [q]\setminus \{ c\} .

The following lemma will be critical for our Potts sampler. It shows how to update
a Potts configuration when we add a new edge \{ u, v\} , based on the IdealReSample
subroutine. It also controls the error introduced based on the ``average correlation""
between u and v in a random bichromatic class that contains them.

Lemma 6.9. Let B \in (0, 1) and q \geq 3 be an integer, and consider arbitrary
\epsilon \in (0, 1).

Let G = (V,E) be a graph and \mu G be the Potts distribution on G with parameter
B. Suppose that u, v are vertices in G such that \{ u, v\} \not \in E and

E
\bigl[ 
\sansC \sanso \sansr \sansr G(U\sigma , u, v)

\bigr] 
\leq \epsilon ,

where the expectation is over the choice of a random configuration \sigma \sim \mu G and the
choice of a random bichromatic class U\sigma \subseteq V containing u and v under \sigma (cf. Defi-
nition 6.8).

Consider the graph G\prime = (V,E\prime ) obtained from G by adding the edge \{ u, v\} .
Sample a configuration \sigma \prime : V \rightarrow [q] as follows. First, sample \sigma : V \rightarrow [q] according to
\mu G. Then, if \sigma u \not = \sigma v, set \sigma 

\prime = \sigma ; otherwise, set \sigma \prime = IdealReSample(G, u, v, \sigma ).
Then, the distribution of \sigma \prime , denoted by \nu \sigma \prime , is within total variation distance 2\epsilon /B
from the Potts distribution \mu G\prime on G\prime with parameter B, i.e.,

\| \nu \sigma \prime  - \mu G\prime \| TV \leq 2\epsilon /B.

Proof. We begin with a few definitions that will be used throughout the proof.
Fix distinct colors c1, c2 \in [q] and a set U \subseteq V such that u, v \in U . Let \Omega (U, c1, c2) be
the set of configurations such that U is the (c1, c2)-color-class, i.e.,

\Omega (U, c1, c2) =
\bigl\{ 
\eta : V \rightarrow [q] | U = \eta  - 1(c1, c2)

\bigr\} 
.
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We will be interested in two particular types of configurations in \Omega (U, c1, c2), those
where u, v take the colors c1, c2 and those where u, v take the colors c1, c1. Namely,
let

\Omega \sansn \sanse \sansq (U, c1, c2) =
\bigl\{ 
\eta \in \Omega (U, c1, c2) | \eta u = c1, \eta v = c2

\bigr\} 
,

\Omega \sanse \sansq (U, c1, c2) =
\bigl\{ 
\eta \in \Omega (U, c1, c2) | \eta u = c1, \eta v = c1

\bigr\} 
.

Note the asymmetry in the above definitions with respect to c1, c2, e.g., for \eta \in 
\Omega \sanse \sansq (U, c1, c2), we have that \eta u, \eta v \not = c2. For a configuration \eta \in \Omega (U, c1, c2), we also
denote by

\Omega \eta (U, c1, c2) =
\bigl\{ 
\tau \in \Omega (U, c1, c2) | \tau V \setminus U = \eta V \setminus U

\bigr\} 
the set of configurations in \Omega (U, c1, c2) that agree with \eta on V \setminus U ; we define anal-
ogously the sets \Omega \eta 

\sansn \sanse \sansq (U, c1, c2),\Omega 
\eta 
\sanse \sansq (U, c1, c2). Using Observation 6.1 and the Ising

distribution \pi c1,c2
G[U ] (cf. section 6.1), we have that for any \eta \in \Omega (U, c1, c2) it holds that

(6.1) \mu G(\eta ) = \mu G

\bigl( 
\Omega \eta (U, c1, c2)

\bigr) 
\pi c1,c2
G[U ] (\eta U )

and

(6.2)

\mu G

\bigl( 
\Omega \eta 

\sanse \sansq (U, c1, c2)
\bigr) 

\mu G

\bigl( 
\Omega \eta (U, c1, c2)

\bigr) = \pi c1,c2
G[U ] (\tau u = \tau v = c1),

\mu G

\bigl( 
\Omega \eta 

\sansn \sanse \sansq (U, c1, c2)
\bigr) 

\mu G

\bigl( 
\Omega \eta (U, c1, c2)

\bigr) = \pi c1,c2
G[U ] (\tau u = c1, \tau v = c2).

Also, the assumption E
\bigl[ 
\sansC \sanso \sansr \sansr G(U\sigma , u, v)

\bigr] 
\leq \epsilon translates into

\sum 
c1,c2\in [q];
c1 \not =c2

\sum 
U\subseteq V ;
u,v\in U

\biggl( 
\mu G

\bigl( 
\Omega \sansn \sanse \sansq (U, c1, c2)

\bigr) 
+

1

q  - 1
\mu G

\bigl( 
\Omega \sanse \sansq (U, c1, c2)

\bigr) \biggr) 
\sansC \sanso \sansr \sansr G(U, u, v) \leq \epsilon .

(6.3)

To see this, for a set U \subseteq V such that u, v \in U , we find how much \sansC \sanso \sansr \sansr G(U, u, v)
contributes to E

\bigl[ 
\sansC \sanso \sansr \sansr G(U\sigma , u, v)]. Note that for a configuration \sigma to have U\sigma = U (cf.

Definition 6.8), there must exist distinct colors c1, c2 \in [q] such that U = \sigma  - 1(c1, c2)
and either (i) \sigma (u) = c1, \sigma (v) = c2, or (ii) \sigma (u) = c1, \sigma (v) = c1. In case (i), we have
that \sigma \in \Omega \sansn \sanse \sansq (U, c1, c2) and U\sigma = U with probability 1. In case (ii), we have that
\sigma \in \Omega \sanse \sansq (U, c1, c2) and U\sigma = U with probability 1/(q  - 1). By aggregating over the
relevant \sigma , we therefore obtain (6.3).

We next proceed to the proof. Recalling that \nu \sigma \prime is the distribution of \sigma \prime , our
goal is to show that

(6.4) \| \nu \sigma \prime  - \mu G\prime \| TV \leq 2\epsilon /B.

Weight of configurations in \bfitnu \bfitsigma \prime . For distinct colors c1, c2 \in [q] and a set
U \subseteq V such that u, v \in U , we first show that

\forall \eta \in \Omega \sanse \sansq (U, c1, c2) : \nu \sigma \prime (\eta ) =
qB

B + q  - 1
\mu G(\eta ),

(6.5)

\forall \eta \in \Omega \sansn \sanse \sansq (U, c1, c2) : \nu \sigma \prime (\eta ) = \mu G(\eta ) +
(1 - B)\pi c1,c2

G[U ],u,v(\eta U )

B + q  - 1
\mu G

\bigl( 
\Omega \eta 

\sanse \sansq (U, c1, c2)
\bigr) 
.

(6.6)
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(Recall from Definition 6.2 that \pi c1,c2
G[U ],u,v is the conditional Ising distribution on G[U ]

where u,v take the colors c1, c2, respectively.) To see the expression for \nu \sigma \prime (\eta ) in (6.5),
note that we can obtain \eta \in \Omega \sanse \sansq (U, c1, c2) via the subroutine IdealReSample only
if \sigma = \eta and the coin flip came up heads (because \eta u = \eta v = c1). Analogously, to see
the expression for \nu \sigma \prime (\eta ) in (6.6), note that we can obtain \eta \in \Omega \sansn \sanse \sansq (U, c1, c2) if one of
the following happens (using that \eta u = c1 and \eta v = c2):

\bullet We started with the configuration \sigma = \eta ; this happens with probability \mu G(\eta ).
Then, we obtain \eta with probability 1.

\bullet We started with a configuration \sigma such that \sigma u = \sigma v = c1, \sigma 
 - 1(c1, c2) = U ,

and \sigma V \setminus U = \eta V \setminus U , i.e., \sigma \in \Omega \eta 
\sanse \sansq (U, c1, c2); this happens with probability

\mu G

\bigl( 
\Omega \eta 

\sanse \sansq (U, c1, c2)
\bigr) 
. Then the coin flip came tails, the color c\prime selected was

c\prime = c2, and the Ising configuration \tau sampled was \eta U . All that happens with

probability
(1 - B)\pi 

c1,c2
G[U],u,v

(\eta U )

B+q - 1 .

Using the assumption E
\bigl[ 
\sansC \sanso \sansr \sansr G(U\sigma , u, v)

\bigr] 
\leq \epsilon (cf. (6.3)), we will later show the fol-

lowing bound for the ratio of the partition functions ZG, ZG\prime :

(6.7) | M | \leq \epsilon /B, where M :=
(B + q  - 1)ZG

qZG\prime 
 - 1.

Let us conclude the proof assuming, for now, (6.7). Then, we will prove (6.7) in Step
II below.

Step I: Proof of (6.4) (assuming (6.7)). We will decompose \| \nu \sigma \prime  - \mu G\prime \| TV

as

\| \nu \sigma \prime  - \mu G\prime \| TV =
1

2

\sum 
\eta :V\rightarrow [q]

| \nu \sigma \prime (\eta ) - \mu G\prime (\eta )| = 1

2

\sum 
U ;u,v\in U

\sum 
c1,c2\in [q]; c1 \not =c2

D(U, c1, c2),

(6.8)

where

D(U, c1, c2) :=
\sum 

\eta \in \Omega \sansn \sanse \sansq (U,c1,c2)

| \nu \sigma \prime (\eta ) - \mu G\prime (\eta )| + 1

q  - 1

\sum 
\eta \in \Omega \sanse \sansq (U,c1,c2)

| \nu \sigma \prime (\eta ) - \mu G\prime (\eta )| .

(6.9)

To see the second equality in (6.8), fix any configuration \eta : V \rightarrow [q]. If \eta u = c1 and
\eta v = c2 for distinct colors c1, c2 \in [q], then | \nu \sigma \prime (\eta ) - \mu G\prime (\eta )| appears only in one term
D(U, c1, c2) in the summation of (6.8), namely for U = \eta  - 1(c1, c2). If \eta u = \eta v = c1 for
some color c1 \in [q], then | \nu \sigma \prime (\eta ) - \mu G\prime (\eta )| appears in exactly q  - 1 terms D(U, c1, c2)
in the summation of (6.8), once for each color c2 \not = c1 and U = \eta  - 1(c1, c2).

For \eta \in \Omega \sanse \sansq (U, c1, c2), we have \mu G\prime (\eta ) = wG\prime (\eta )
ZG\prime 

= BwG(\eta )
ZG\prime 

= qB(M+1)\mu G(\eta )
B+q - 1 , where

the last equality follows from the definition of M in (6.7). Hence, by (6.5),

(6.10) | \nu \sigma \prime (\eta ) - \mu G\prime (\eta )| = qB

B + q  - 1

\bigm| \bigm| \bigm| \mu G(\eta ) - (M + 1)\mu G(\eta )
\bigm| \bigm| \bigm| \leq | M | \mu G(\eta ),

where the last inequality follows from qB
B+q - 1 \leq 1 which holds for all B \in (0, 1).

For \eta \in \Omega \sansn \sanse \sansq (U, c1, c2), we have \mu G\prime (\eta ) = wG\prime (\eta )
ZG\prime 

= wG(\eta )
ZG\prime 

= q(M+1)
B+q - 1 \mu G(\eta ) using

again the definition of M in (6.7). Hence, by (6.6),
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| \nu \sigma \prime (\eta ) - \mu G\prime (\eta )| =
\bigm| \bigm| \bigm| \bigm| 1 - B

B + q  - 1

\Bigl( 
\mu G(\eta ) - \pi c1,c2

G[U ],u,v(\eta U )\mu G

\bigl( 
\Omega \eta 

\sanse \sansq (U, c1, c2)
\bigr) \Bigr) 

+
qM

B + q  - 1
\mu G(\eta )

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \mu G(\eta ) - \pi c1,c2

G[U ],u,v(\eta U )\mu G

\bigl( 
\Omega \eta 

\sanse \sansq (U, c1, c2)
\bigr) \bigm| \bigm| \bigm| + 2| M | \mu G(\eta ),(6.11)

where the last inequality follows from the triangle inequality and the inequalities
1 - B

B+q - 1 \leq 1, q
B+q - 1 \leq 2. Note that, by the definition of \pi c1,c2

G[U ],u,v(\cdot ), for \eta \in 
\Omega \sansn \sanse \sansq (U, c1, c2) it holds that

\pi c1,c2
G[U ],u,v(\eta U ) =

\pi c1,c2
G[U ] (\eta U )

\pi c1,c2
G[U ] (\tau u = c1, \tau v = c2)

and therefore, using (6.1) and (6.2), we have that

(6.12)
\bigm| \bigm| \bigm| \mu G(\eta ) - \pi c1,c2

G[U ],u,v(\eta U )\mu G

\bigl( 
\Omega \eta 

\sanse \sansq (U, c1, c2)
\bigr) \bigm| \bigm| \bigm| = \mu G(\eta )\sansC \sanso \sansr \sansr G(U, u, v),

and hence (6.11) gives that, for all \eta \in \Omega \sansn \sanse \sansq (U, c1, c2), it holds that

(6.13) | \nu \sigma \prime (\eta ) - \mu G\prime (\eta )| \leq 
\bigl( 
2| M | + \sansC \sanso \sansr \sansr G(U, u, v)

\bigr) 
\mu G(\eta ).

Summing (6.10) and (6.13) over the relevant configurations \eta , we obtain that, for
all U \subseteq V with u, v \in U and distinct colors c1, c2 \in [q], it holds that

D(U, c1, c2) \leq 
\bigl( 
2| M | + \sansC \sanso \sansr \sansr G(U, u, v)

\bigr) \biggl( 
\mu G

\bigl( 
\Omega \sansn \sanse \sansq (U, c1, c2)

\bigr) 
+

\mu G

\bigl( 
\Omega \sanse \sansq (U, c1, c2)

\bigr) 
q  - 1

\biggr) 
.

(6.14)

To conclude the proof of (6.4), note that analogously to (6.8) we have that

(6.15)
\sum 

U ;u,v\in U

\sum 
c1,c2\in [q]; c1 \not =c2

\Biggl( 
\mu G

\bigl( 
\Omega \sansn \sanse \sansq (U, c1, c2)

\bigr) 
+

\mu G

\bigl( 
\Omega \sanse \sansq (U, c1, c2)

\bigr) 
q  - 1

\Biggr) 
= 1.

Now consider the expression for \| \nu \sigma \prime  - \mu G\prime \| TV from (6.8). We bound each term
D(U, c1, c2) using (6.14) and then apply (6.3) and (6.15) to obtain that

\| \nu \sigma \prime  - \mu G\prime \| TV \leq 1

2
(2| M | + \epsilon ) \leq 3

2B \epsilon \leq 2\epsilon /B,

where the last inequality follows from | M | \leq \epsilon /B (cf. (6.7)). This finishes the proof
of (6.4), modulo the proof of (6.7), which is given below.

Step II: Proof of (6.7). To prove (6.7), it will be useful to define

X(U, c1, c2) :=
\sum 

\eta \in \Omega \sansn \sanse \sansq (U,c1,c2)

wG(\eta ),

Y (U, c1, c2) :=
\sum 

\eta \in \Omega \sanse \sansq (U,c1,c2)

wG(\eta ),

Z(U, c1, c2) := X(U, c1, c2) +
1

q  - 1
Y (U, c1, c2).(6.16)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

768 BLANCA ET AL.

Analogously to (6.8) (and (6.15)), we have that

(6.17) ZG =
\sum 
c1 \not =c2

\sum 
U ;u,v\in U

Z(U, c1, c2).

Using that wG\prime (\eta ) = wG(\eta ) for \eta \in \Omega \sansn \sanse \sansq (U, c1, c2) and wG\prime (\eta ) = BwG(\eta ) for \eta \in 
\Omega \sanse \sansq (U, c1, c2), we obtain that

(6.18) ZG\prime =
\sum 
c1 \not =c2

\sum 
U ;u,v\in U

Z \prime (U, c1, c2),

where Z \prime (U, c1, c2) := X(U, c1, c2) +
B

q - 1Y (U, c1, c2).

We first show that, for all U \subseteq V with u, v \in U and distinct colors c1, c2 \in [q], it
holds that

(6.19)
\bigm| \bigm| \bigm| (B + q  - 1)Z(U, c1, c2)

qZ \prime (U, c1, c2)
 - 1
\bigm| \bigm| \bigm| \leq 1

q
\sansC \sanso \sansr \sansr G(U, u, v).

Observe that

(6.20)
(B + q  - 1)Z(U, c1, c2)

qZ \prime (U, c1, c2)
 - 1 =

1 - B

q

Y (U, c1, c2) - X(U, c1, c2)

X(U, c1, c2) +
B

q - 1Y (U, c1, c2)
.

Observe also that (cf. (6.2))
\bigm| \bigm| Y (U,c1,c2)
X(U,c1,c2)

 - 1
\bigm| \bigm| = \sansC \sanso \sansr \sansr G(U, u, v), which combined with

(6.20) (and ignoring the positive term B
q - 1Y (U, c1, c2) in the denominator of the r.h.s.

in the latter) gives (6.19), using also that B \in (0, 1).
Using (6.17) and (6.18), we have that

(B + q  - 1)ZG

qZG\prime 
 - 1 =

\sum 
c1 \not =c2

\sum 
U ;u,v\in U

qZ \prime (U, c1, c2)

ZG\prime 

\biggl( 
(B + q  - 1)Z(U, c1, c2)

qZ \prime (U, c1, c2)
 - 1

\biggr) 
.

(6.21)

Since B \in (0, 1), we have for all U \subseteq V with u, v \in U and distinct colors c1, c2 \in [q]
that Z \prime (U, c1, c2) \leq Z(U, c1, c2) and ZG\prime \geq BZG; therefore

(6.22)
Z \prime (U, c1, c2)

ZG\prime 
\leq Z(U, c1, c2)

BZG
=

1

B

\biggl( 
\mu G

\bigl( 
\Omega \sansn \sanse \sansq (U, c1, c2)

\bigr) 
+

\mu G

\bigl( 
\Omega \sanse \sansq (U, c1, c2)

\bigr) 
q  - 1

\biggr) 
.

Combining (6.19), (6.21), and (6.22), we obtain by the triangle inequality that (cf. (6.3))\bigm| \bigm| \bigm| \bigm| (B + q  - 1)ZG

qZG\prime 
 - 1

\bigm| \bigm| \bigm| \bigm| \leq E
\bigl[ 
\sansC \sanso \sansr \sansr G(U\sigma , u, v)

\bigr] 
/B \leq \epsilon /B,

thus completing the proof of (6.7) and therefore the proof of Lemma 6.9.

6.5. The R\bfE S\bfA \bfM \bfP \bfL \bfE subroutine. In this section, we modify the subroutine
IdealReSample of section 6.4 to make it computationally efficient; this will give
us the actual ReSample subroutine that we will use in our sampling algorithm for
the Potts model. To describe the ReSample subroutine, we will need the following
definition.

Definition 6.10. Let b,M > 0 be constants. Let G = (V,E) be an n-vertex
graph and let \sigma be a configuration on G. We say that a bichromatic component in \sigma 
is (b,M)-good if it has average growth b up to depth L = \lceil M log n\rceil ; we say that it is
(b,M)-bad otherwise. Analogously, we say that \sigma is (b,M)-good if all bichromatic
components in \sigma are good; otherwise, we say that \sigma is (b,M)-bad.
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Algorithm ReSampleb,M (G, u, v, \sigma )

parameters: real B \in (0, 1), b,M > 0 satisfying Theorem 6.3, integer q \geq 3

Input: Graph G = (V,E), vertices u, v \in V with \{ u, v\} /\in E,
configuration \sigma : V \rightarrow [q] with \sigma (u) = \sigma (v).

Output: A configuration \sigma \prime : V \rightarrow [q].

Does \sigma contain a bichromatic component which is (b,M)-bad?

if yes then return \sigma \prime : V \rightarrow [q] selected uniformly at random.

else

Flip a coin with heads probability qB
B+q - 1 .

if heads then return \sigma \prime = \sigma 

else

Pick u.a.r. a colour c\prime from [q]/\{ c\} , where c = \sigma (u) = \sigma (v).

Let U = \sigma  - 1(c, c\prime ) and set H = G[U ].

Use algorithm of Theorem 6.3 to sample Ising distribution on H, i.e.:

sample \tau : U \rightarrow \{ c, c\prime \} with \tau (u) = c and \tau (v) = c\prime s.t. \| \nu \tau  - \pi c,c\prime 

H,u,v\| \leq 
n - 10

Set: \sigma \prime (w) = \tau (w) for w \in U ; set \sigma \prime (w) = \sigma (w) for w /\in U .

return \sigma \prime : V \rightarrow [q].

Fig. 3. The ReSample subroutine used in Algorithm SampleAntiPotts (given in Figure 4).

We are now able to describe the ReSample subroutine, which takes as inputs a
graph G, two vertices u and v of G, and a configuration \sigma on G such that \sigma (u) = \sigma (v).
The subroutine is given in Figure 3.

6.6. Analysis of the Potts algorithm. We now have all the pieces to give our
algorithm for sampling from the antiferromagnetic Potts model; see the algorithm
SampleAntiPotts in Figure 4. We next prove the following theorem, which details
the performance of the algorithm SampleAntiPotts on random \Delta -regular graphs
and yields as an immediate corollary, Theorem 2.7.

Theorem 6.11. Let \Delta \geq 3, q \geq 3, and B \in (0, 1) be in the uniqueness regime of
the (\Delta  - 1)-ary tree. Then, there exist constants b,M, \delta > 0 such that, as n \rightarrow \infty , the
following holds with probability 1 - o(1) over the choice of a random \Delta -regular graph
G = (V,E) with n vertices.

The output of the algorithm SampleAntiPotts(G) (cf. Figure 4) is an assign-
ment \sigma : V \rightarrow [q] whose distribution \nu \sigma is within total variation distance O(1/n\delta )
from the Potts distribution \mu G with parameter B, i.e.,

\| \nu \sigma  - \mu G\| TV = O(1/n\delta ).

Proof. Since B is in the uniqueness regime of the (\Delta  - 1)-ary tree and B \not = \Delta  - q
\Delta ,

we have that B > \Delta  - q
\Delta (cf. Remark 2.3). It follows that 1 - B

B+q - 1 < 1
\Delta  - 1 and therefore

there exists \epsilon \prime > 0 such that
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Algorithm SampleAntiPotts(G)

parameters: real B \in (0, 1), b,M > 0 satisfying Theorem 6.3, integers q,\Delta \geq 3

Input: Graph G = (V,E)
Output: Either Fail or an assignment \sigma : V \rightarrow [q]

E\prime := \{ e \in E | e belongs to a short cycle\} 

if G\prime = (V,E\prime ) has a component which is neither a cycle nor an isolated vertex

then return Fail
else

Sample a configuration \sigma \prime : V \rightarrow [q] on G\prime (according to \mu G\prime );

Let e1, e2, . . . , et be the edges in E\setminus E\prime ; set Gt = G\prime and \sigma t = \sigma \prime .

for j = t downto 1:

Suppose that ej = (uj , vj);

if \sigma j(uj) = \sigma j(vj) then \sigma j - 1 = ReSampleb,M (Gj , uj , vj , \sigma j) else \sigma j - 1 = \sigma j ;

Obtain the graph Gj - 1 by adding the edge \{ uj , vj\} in Gj

end

return \sigma = \sigma 0.

Fig. 4. Algorithm for sampling a Potts configuration in the antiferromagnetic case B \in (0, 1).
The details of the ReSample subroutine are given in Figure 3. While the algorithm can also be mod-
ified to work for the ferromagnetic case B > 1, we will instead use a simpler percolation algorithm
via the random-cluster representation.

(6.23)

\biggl( 
1 +B

B + q  - 1
+ 3\epsilon \prime 

\biggr) 
1 - B

1 +B
<

1

\Delta  - 1
.

Let K < 1+B
B+q - 1 + \epsilon \prime and \epsilon > 0 be the constants in Lemma 6.6 corresponding to \epsilon \prime ,

and let h\prime , \ell \prime be positive constants such that Lemma 6.6 applies for all integers h \geq h\prime 

and \ell \geq \ell \prime . Fix h to be any integer greater than h\prime . Let \ell 1 > 0 be the constant
in Lemma 4.4 corresponding to the values of \epsilon and h. Let \delta > 0 be the constant in
Lemma 4.2 corresponding to \ell 0 := 1/(5 log(\Delta  - 1)) and W := 1/(K 1 - B

1+B ) (note that
(6.23) guarantees that W > \Delta  - 1). Let also

b\prime := (\Delta  - 1)

\biggl( 
1 +B

B + q  - 1
+ 2\epsilon \prime 

\biggr) 
, and b := (\Delta  - 1)

\biggl( 
1 +B

B + q  - 1
+ 3\epsilon \prime 

\biggr) 
.

Let M0,M
\prime 
0 be the constants in Theorem 6.3 and Lemma 6.4, respectively. Let M

be sufficiently large so that M > max\{ 2\ell 0, 2M0, 2M
\prime 
0\} and the following inequalities

hold (for all sufficiently large n):

(6.24) \Delta 
\bigl( 
(\Delta  - 1)K

\bigr) \lceil M logn\rceil \leq (b\prime )\lceil M logn\rceil and (b\prime /b)\lceil M logn\rceil \leq 1/n11.

Note that such an M exists since (\Delta  - 1)K < b\prime < b. Finally, set

L0 := \lceil \ell 0 log n\rceil = \lceil 1
5 log\Delta  - 1 n\rceil , L := \lceil M log n\rceil .
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Taking a union bound over Lemmas 4.2 and 4.4, we have that, for all sufficiently
large n, a uniformly random \Delta -regular graph G = (V,E) with n vertices satisfies the
following with probability 1 - o(1) over the choice of the graph:

1.
\sum L

\ell =L0
\ell C\ell 

\Bigl( 
K 1 - B

1+B

\Bigr) \ell 
\leq 1/(2n\delta ), where C\ell is the number of cycles of length \ell 

in G.
2. Every path P in G with \ell vertices where \ell 1 \leq \ell \leq L has an h-graph-

neighborhood with at least (1 - \epsilon )\ell isolated tree components.
Fix any \Delta -regular graph G which satisfies items 1 and 2. The theorem will follow

by showing that the output of SampleAntiPotts(G) (cf. Figure 4) is an assignment
\sigma : V \rightarrow [q] whose distribution \nu \sigma is within total variation distance O(1/n\delta ) from the
Potts measure \mu G with parameter B, i.e.,

\| \nu \sigma  - \mu G\| TV = O(1/n\delta ).

To do this, as in the algorithm SampleAntiPotts(G), let e1 = \{ u1, v1\} , . . . , et =
\{ ut, vt\} be the edges of G that do not belong to short cycles (i.e., cycles of length
\leq \ell 0 log n). For j \in \{ 0, 1, . . . , t\} , let Gj be the subgraph G\setminus \{ e1, . . . , ej\} and \mu j be
the Potts distribution on Gj with parameter B; note that the graphs Gj are defined
exactly as in the algorithm SampleAntiPotts(G). We will use \^\sigma j to denote a
random configuration distributed according to \mu j ; note that \sigma j is used to denote the
configuration considered by the algorithm at the beginning of step j of the algorithm
and, as we shall see soon, its distribution is close to that of \^\sigma j on Gj .

For an integer \ell \geq 1, denote by \scrP \ell ,j the set of paths of length \ell that connect uj

and vj in Gj and by P\ell ,j = | \scrP \ell ,j | the number of all such paths. Note that

(6.25)
\sum t

j=1 P\ell ,j \leq \ell C\ell ,

since every path with \ell vertices connecting the endpoints of an edge \{ uj , vj\} in Gj

maps to a cycle with \ell vertices in the initial graph G (by adding the edge \{ uj , vj\} ),
and each cycle with \ell vertices in G can potentially arise at most \ell times under this
mapping. Let also

(6.26) \epsilon j :=
6

n10
+

L\sum 
\ell =L0

P\ell ,j

\biggl( 
K

1 - B

1 +B

\biggr) \ell 

.

Let also \Omega j(b,M) be the set of all (b,M)-bad configurations on Gj . Using the fact
that G satisfies item 2, we will show that for all j = 1, . . . , t it holds that

\mu Gj

\bigl( 
\Omega j(b,M)) \leq 1/n10,(6.27)

Ej

\bigl[ 
\sansC \sanso \sansr \sansr Gj

(U\^\sigma j
, uj , vj)

\bigr] 
\leq 2\epsilon j/B

\Delta ,(6.28)

where the expectation in (6.28) is over the choice of a random configuration \^\sigma j dis-
tributed according to \mu j and over the choice of the random bichromatic class U\^\sigma j

containing uj and vj under \^\sigma j .
We will prove (6.27) and (6.28) shortly, but let us assume them for now and

conclude the proof of the theorem. We will prove by induction that for all j \in 
\{ 0, 1, . . . , t\} it holds that

(6.29)
\bigm\| \bigm\| \nu \sigma j  - \mu Gj

\bigm\| \bigm\| 
TV

\leq 6(t - j)

n10
+

4

B\Delta +1

t\sum 
j\prime =j+1

\epsilon j\prime .
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For j = t, the result holds trivially since \sigma t is distributed as \mu Gt
(exactly). Assume

that (6.29) holds for j, where j \in \{ 1, . . . , t\} ; we will also show that it holds for j  - 1.
To do this, let us consider the configuration \sigma \prime 

j - 1 defined as follows:

if \^\sigma j(uj) \not = \^\sigma j(vj), then \sigma \prime 
j - 1 = \^\sigma j else \sigma \prime 

j - 1 = IdealReSample(Gj , uj , vj , \^\sigma j),

i.e., \sigma \prime 
j - 1 is obtained using at the jth step of the algorithm the random configuration

\^\sigma j distributed according to \mu Gj
(exactly). In contrast, note that

if \sigma j(uj) \not = \sigma j(vj), then \sigma j - 1 = \sigma j else \sigma j - 1 = ReSampleb,M (Gj , uj , vj , \sigma j).

Let \nu \sigma \prime 
j - 1

denote the distribution of \sigma \prime 
j - 1. Then, by Lemma 6.9 applied to the graph

Gj and the inequality in (6.28) we have that

(6.30)
\bigm\| \bigm\| \nu \sigma \prime 

j - 1
 - \mu Gj - 1

\bigm\| \bigm\| 
TV

\leq 2

B
Ej [\sansC \sanso \sansr \sansr Gj (U\^\sigma j , uj , vj)] \leq 

4

B\Delta +1
\epsilon j .

Since \^\sigma j is distributed according to \mu Gj , by the coupling lemma, there exists a coupling
Pr(\cdot ) of \sigma j and \^\sigma j such that

(6.31) Pr(\sigma j \not = \^\sigma j) =
\bigm\| \bigm\| \nu \sigma j

 - \mu Gj

\bigm\| \bigm\| 
TV

.

Note also that, for a configuration \eta /\in \Omega j(b,M), conditioned on \sigma j = \eta and \^\sigma j =
\eta , we can couple \sigma j - 1 and \sigma \prime 

j - 1 so that \sigma j - 1 \not = \sigma \prime 
j - 1 with probability at most

1/n10. To see this, if \eta (uj) = \eta (vj), then we trivially have \sigma \prime 
j - 1 = \sigma j - 1 = \eta .

Otherwise, \sigma j - 1 and \sigma \prime 
j - 1 are produced by first choosing a random bichromatic

class containing uj and vj under \eta , which we can couple so that it is the same
in both ReSampleb,M (Gj , uj , vj , \eta ) and IdealReSample(Gj , uj , vj , \eta ). Denote
this class by U and let c1 = \eta (uj), c2 = \eta (vj). Then, from the definition of
IdealReSample(Gj , uj , vj , \eta ) we have that the distribution of \sigma \prime 

j - 1(U) is given by
\pi c1,c2
Gj [U ],uj ,vj

, while from ReSampleb,M (Gj , uj , vj , \eta ) we have that the distribution of

\sigma j - 1(U) is 1/n10-close to \pi c1,c2
Gj [U ],uj ,vj

. We therefore have that

(6.32) Pr
\bigl( 
\sigma j - 1 \not = \sigma \prime 

j - 1 | \sigma j = \^\sigma j /\in \Omega j(b,M)
\bigr) 
\leq 1/n10.

Invoking the coupling lemma again, we therefore obtain that\bigm\| \bigm\| \nu \sigma j - 1  - \nu \sigma \prime 
j - 1

\bigm\| \bigm\| 
TV

\leq Pr(\sigma j \not = \^\sigma j) + Pr
\bigl( 
\sigma j = \^\sigma j \in \Omega j(b,M)

\bigr) 
+ Pr

\bigl( 
\sigma j - 1 \not = \sigma \prime 

j - 1 | \sigma j = \^\sigma j /\in \Omega j(b,M)
\bigr) 

\leq 
\bigm\| \bigm\| \nu \sigma j  - \mu Gj

\bigm\| \bigm\| 
TV

+ \mu Gj (\Omega j(b,M)) + 1/n10,(6.33)

where in the last inequality we used (6.31), (6.32), and

Pr
\bigl( 
\sigma j = \^\sigma j \in \Omega j(b,M)

\bigr) 
\leq Pr

\bigl( 
\^\sigma j \in \Omega j(b,M)

\bigr) 
= \mu Gj

(\Omega j(b,M)).

Combining (6.33) with the inductive hypothesis (6.29) and (6.27), we obtain

\bigm\| \bigm\| \nu \sigma j - 1
 - \nu \sigma \prime 

j - 1

\bigm\| \bigm\| 
TV

\leq 6(t - j + 1)

n10
+

4

B\Delta +1

t\sum 
j\prime =j+1

\epsilon j\prime .

Using this and (6.30) completes (via the triangle inequality) the inductive step, there-
fore completing the proof of (6.29) for all j \in \{ 0, 1, . . . , t\} as wanted.
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We have G0 = G and \sigma 0 = \sigma , so (6.29) for j = 0 gives

\bigm\| \bigm\| \nu \sigma  - \mu G

\bigm\| \bigm\| 
TV

\leq 6t

n10
+

4

B\Delta +1

t\sum 
j=1

\epsilon j \leq 
1

n8
+

4

B\Delta +1

t\sum 
j=1

L\sum 
\ell =L0

P\ell ,j

\biggl( 
K

1 - B

1 +B

\biggr) \ell 

,

where the last inequality holds for all sufficiently large n using the values of \epsilon j from
(6.26) (and the crude bound t \leq | E| \leq \Delta n). Using (6.25), we therefore have that

\bigm\| \bigm\| \nu \sigma  - \mu G

\bigm\| \bigm\| 
TV

\leq 1

n8
+

4

B\Delta +1

L\sum 
\ell =L0

\ell C\ell 

\biggl( 
K

1 - B

1 +B

\biggr) \ell 

\leq 10

B\Delta +1n\delta 
,

where the last inequality follows from our assumption that G satisfies item 1 (and
by assuming that n is sufficiently large). This completes the proof of Theorem 6.11,
modulo the proofs of (6.27) and (6.28), which are given below.

To prove (6.27) and (6.28), fix any value j \in \{ 1, . . . , t\} . Since Gj is a subgraph of
G and G satisfies item 2 every path P in Gj with \ell vertices where \ell \in [\ell 1, L] has an
h-graph-neighborhood with at least (1 - \epsilon )\ell isolated tree components. By Lemma 6.6,
which, recall, applies for all \ell \geq \ell \prime , we therefore have that for any path P in Gj with
\ell vertices and \ell \in [max\{ \ell 1, \ell \prime \} , L] it holds that

(6.34) \mu Gj
(P is bichromatic) \leq K\ell .

We are now ready to prove (6.27). For a vertex v, let Xv be the r.v. that counts
the number of bichromatic paths with L vertices that start from v in a random
configuration \sigma \sim \mu Gj . Since Gj has maximum degree \leq \Delta , there are at most
\Delta (\Delta  - 1)L - 2 paths starting from v with L vertices and each of them is bichromatic
with probability at most KL from (6.34). Hence, the expectation of Xv is at most

\Delta (\Delta  - 1)L - 2KL \leq (b\prime )L,

where the last inequality follows from the choice of M (cf. (6.24)). By Markov's
inequality we therefore have that for all v \in V it holds that

\mu Gj
(Xv > bL) \leq (b\prime /b)L \leq 1/n11,

where the last inequality also follows from the choice of M (cf. (6.24)). Note that for
(b,M)-bad configurations, i.e., configurations in \Omega j(b,M), at least one of the events
Xv > bL occurs for some v \in V , and therefore by a union bound over v \in V we have
that

\mu Gj

\bigl( 
\Omega j(b,M)

\bigr) 
\leq 
\sum 
v\in V

\mu Gj

\bigl( 
Xv > bL

\bigr) 
\leq 1/n10.

This finishes the proof of (6.27).
To prove (6.28), for a set U \subseteq V such that uj , vj \in U , let

\widehat \sansC \sanso \sansr \sansr Gj
(U, uj , vj) :=

\bigm| \bigm| \pi Gj [U ](\eta uj
= 1 | \eta vj

= 1) - \pi Gj [U ](\eta uj
= 1 | \eta vj = 2)

\bigm| \bigm| .
Note that by the symmetry of the states in the Ising model, we have that \pi G[U ]\bigl( 
\tau vj = 1

\bigr) 
= \pi G[U ]

\bigl( 
\tau vj = 2

\bigr) 
= 1/2 and therefore

\sansC \sanso \sansr \sansr Gj
(U, uj , vj) =

\bigm| \bigm| \bigm| \bigm| \pi G[U ]

\bigl( 
\tau uj = 1, \tau vj = 1

\bigr) 
\pi G[U ]

\bigl( 
\tau uj = 1, \tau vj = 2

\bigr)  - 1

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \pi G[U ]

\bigl( 
\tau uj

= 1 | \tau vj = 1
\bigr) 

\pi G[U ]

\bigl( 
\tau uj = 1 | \tau vj = 2

\bigr)  - 1

\bigm| \bigm| \bigm| \bigm| .
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By Lemma 6.5 and since Gj has maximum degree \leq \Delta , we obtain that

\sansC \sanso \sansr \sansr Gj (U, uj , vj) \leq 
2

B\Delta 
\widehat \sansC \sanso \sansr \sansr Gj (U, uj , vj),

and therefore to prove (6.28) we only need to show that

(6.35) Ej

\bigl[ \widehat \sansC \sanso \sansr \sansr Gj
(U\^\sigma j

, uj , vj)
\bigr] 
\leq \epsilon j .

For convenience, let \scrF j be the event that the Potts configuration \^\sigma j is (b,M)-bad,
i.e., \scrF j = \{ \^\sigma j \in \Omega j(b,M)\} , and denote by \scrF j the event that \^\sigma j /\in \Omega j(b,M).

Ej

\bigl[ \widehat \sansC \sanso \sansr \sansr Gj (U\^\sigma j , uj , vj)
\bigr] 
= Ej

\bigl[ \widehat \sansC \sanso \sansr \sansr Gj (U\^\sigma j , uj , vj) | \scrF j

\bigr] 
\mu j

\bigl( 
\scrF j

\bigr) 
+Ej

\bigl[ \widehat \sansC \sanso \sansr \sansr Gj
(U\^\sigma j

, uj , vj) | \scrF j

\bigr] 
\mu j

\bigl( 
\scrF j

\bigr) 
\leq 1

n10
+Ej

\bigl[ \widehat \sansC \sanso \sansr \sansr Gj (U\^\sigma j , uj , vj) | \scrF j

\bigr] 
,(6.36)

where the inequality follows from the bounds \widehat \sansC \sanso \sansr \sansr Gj (U\^\sigma j , uj , vj) \leq 1 and \mu j

\bigl( 
\scrF j

\bigr) 
\leq 

1/n10 from (6.27). Recall that \scrP \ell ,j denotes the set of paths of length \ell that connect
uj and vj in Gj . Consider also the r.v.

Yj =
1

n10
+

L\sum 
\ell =L0

\sum 
P\in \scrP \ell ,j

1\{ P is bichromatic\} \times 
\biggl( 
1 - B

1 +B

\biggr) \ell 

.

Recall that U\^\sigma j
is a bichromatic class under \^\sigma j which contains uj and vj (chosen

uniformly at random from among the set of all such classes if there is more than one).
Conditioned on the event \^\sigma j /\in \Omega j(b,M), we have that every bichromatic component
under \^\sigma j has average growth b up to depth L = \lceil M log n\rceil and therefore, irrespective

of the random choice of U\^\sigma j
, we obtain by Lemma 6.4 that \widehat \sansC \sanso \sansr \sansr Gj

(U\^\sigma j
, uj , vj) \leq Yj .

Note that in applying Lemma 6.4, we used that P\ell ,j = 0 for all \ell \in [1, L0]; this holds
because the edge \{ uj , vj\} does not belong to a short cycle in G (and therefore in Gj - 1

as well). We thus have that

(6.37) Ej

\bigl[ \widehat \sansC \sanso \sansr \sansr Gj
(U\^\sigma j

, uj , vj) | \scrF j

\bigr] 
\leq Ej

\bigl[ 
Yj | \scrF j

\bigr] 
\leq Ej [Yj ]

\mu Gj

\bigl( 
\scrF j

\bigr) \leq 
\Bigl( 
1 +

2

n10

\Bigr) 
Ej [Yj ],

where the last inequality follows from 1/\mu Gj

\bigl( 
\scrF j

\bigr) 
\leq 1/(1  - 1/n10) \leq 1 + 2/n10 (cf.

(6.27)). Using (6.34) and the fact that L0 \geq max\{ \ell 1, \ell \prime \} for all sufficiently large n,
we have that

(6.38) Ej [Yj ] \leq 
1

n10
+

L\sum 
\ell =L0

P\ell ,j

\biggl( 
K

| B  - 1| 
B + 1

\biggr) \ell 

.

Since G satisfies item 1, we have that the sum in (6.38) is less than 1/n\delta and hence
(6.37) and (6.38) give that for all sufficiently large n it holds that

Ej

\bigl[ \widehat \sansC \sanso \sansr \sansr Gj (U\^\sigma j , uj , vj) | \scrF j

\bigr] 
\leq 1

n10
+

L\sum 
\ell =L0

P\ell ,j

\biggl( 
K

| B  - 1| 
B + 1

\biggr) \ell 

+
2

n10

\biggl( 
1

n10
+

1

n\delta 

\biggr) 
.

Combining this with (6.36) yields (6.35), therefore concluding the proof of (6.28).
This finishes the proof of Theorem 6.11.
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7. Analyzing random-cluster on graphs with tree-like structure. In this
section, we give the proof of Lemma 5.2. We begin by revisiting the uniqueness
results of H\"aggstr\"om [16] on the (\Delta  - 1)-ary tree; then, we use these results to obtain
Lemma 5.2 in section 7.2.

7.1. Uniqueness on the (\Delta  - 1)-ary tree. Fix an integer \Delta \geq 3. In this
section, we review the results of H\"aggstr\"om [16] about uniqueness of random-cluster
measures on the infinite (\Delta  - 1)-ary tree. In fact, it will be more relevant for us to
consider the case of finite trees of large depth (rather than the infinite tree itself);
this approach has also been followed in [15, Chapter 10] for the case \Delta = 3.

As in section 2.2, let \BbbT \Delta denote the infinite (\Delta  - 1)-ary tree with root vertex
\rho . For integer h \geq 0, let Th = (Vh, Eh) denote the subtree of \BbbT \Delta induced by the
vertices at distance \leq h from \rho and let Lh denote the leaves of Th. We will consider
the random-cluster distribution on Th with the so-called wired boundary condition
where all the leaves are identified into a single vertex or, equivalently, all the leaves
are connected to a vertex ``at infinity.""5 In particular, for S \subseteq Eh, let k

\ast (S) denote
the number of connected components in the graph with vertex set Vh\cup \{ \infty \} and edge
set S \cup (Lh \times \{ \infty \} ); the purpose of the extra vertex \infty and the edges Lh \times \{ \infty \} 
connecting the leaves to \infty is to capture the wired boundary condition that all leaves
are in the same cluster. The ``wired"" random-cluster distribution on Th is given by

(7.1) \varphi \ast 
h(S) =

p| S| (1 - p)| Eh\setminus S| qk
\ast (S)

Z\ast 
h

, where Z\ast 
h =

\sum 
S\subseteq Eh

p| S| (1 - p)| Eh\setminus S| qk
\ast (S).

Denote by \rho \updownarrow \infty the event that there exists an open path connecting the root \rho to
infinity (or, equivalently, that the root is connected via an open path to some leaf).
The following lemma is implicitly proved in [16] in the context of the infinite tree; we
give an alternative proof following the approach in [15, Chapter 10] which is carried
out for the case \Delta = 3. (The proof is for the sake of completeness, and the reader
might want to skip this.)

Lemma 7.1 (see [16, Theorems 1.5 and 1.6]). Let \Delta \geq 3, q \geq 1 and p \in [0, 1].
Then, in the wired random-cluster distribution on Th, the probability of the event
\rho \updownarrow \infty converges as h grows, i.e.,

lim
h\rightarrow \infty 

\varphi \ast 
h(\rho \updownarrow \infty ) = \varphi \ast , where \varphi \ast \in [0, 1].

For pc(q,\Delta ) as in (2.3), it holds that \varphi \ast = 0 if p < pc(q,\Delta ) and \varphi \ast > 0 if p > pc(q,\Delta ).

Remark 7.2. For the sake of completeness, we remark that at criticality, i.e., when
p = pc(q,\Delta ), it holds that \varphi \ast = 0 iff 1 \leq q \leq 2.

Proof of Lemma 7.1. For convenience, let d := \Delta  - 1. Let Z\ast 
h,\infty denote the

contribution to Z\ast 
h from S \subseteq Eh such that \rho is connected to infinity and Z\ast 

h,\neg \infty from

S \subseteq Eh such that \rho is not connected to infinity. Note that \varphi \ast 
h(\rho \updownarrow \infty ) =

Z\ast 
h,\infty 

Z\ast 
h,\infty +Z\ast 

h,\neg \infty 

for all h \geq 0. Moreover, with t := p
q + 1 - p, we have that

5To motivate the wired boundary condition, consider the case where we have a connected graph
G and we want to upper bound the probability that a vertex v belongs to a large cluster in an
random-cluster configuration. Using the monotonicity of random-cluster (cf. Lemma 5.3), we can
restrict our attention to the graph induced by the ball of radius h around the vertex v, by conditioning
all edges outside the ball to be open. This conditioning has exactly the same effect as the wiring we
describe here.
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Z\ast 
h+1,\infty =q

d\sum 
k=1

\biggl( 
d

k

\biggr) \biggl( 
Z\ast 
h,\infty 

q

\biggr) k \biggl( 
t
Z\ast 
h,\neg \infty 

q

\biggr) d - k \bigl( 
1 - (1 - p)k

\bigr) 

=q

\biggl( 
Z\ast 
h,\infty + tZ\ast 

h,\neg \infty 

q

\biggr) d

 - q

\biggl( 
(1 - p)Z\ast 

h,\infty + tZ\ast 
h,\neg \infty 

q

\biggr) d

,

Z\ast 
h+1,\neg \infty =q2

d\sum 
k=0

\biggl( 
d

k

\biggr) \biggl( 
(1 - p)Z\ast 

h,\infty 

q

\biggr) k\biggl( 
t
Z\ast 
h,\neg \infty 

q

\biggr) d - k

=q2
\biggl( 
(1 - p)Z\ast 

h,\infty + tZ\ast 
h,\neg \infty 

q

\biggr) d

.

It follows that \varphi \ast 
h+1(\rho \updownarrow \infty ) = f

\bigl( 
\varphi \ast 
h(\rho \updownarrow \infty )

\bigr) 
, where

f(x) :=

\Bigl( 
t+ p(1 - 1

q )x
\Bigr) d

 - 
\Bigl( 
t - p

qx
\Bigr) d

\Bigl( 
t+ p(1 - 1

q )x
\Bigr) d

+ (q  - 1)
\Bigl( 
t - p

qx
\Bigr) d .

Note that6 \varphi \ast 
h+1(\rho \updownarrow \infty ) \leq \varphi \ast 

h(\rho \updownarrow \infty ) for all h \geq 0 and therefore, as h goes to
infinity, \varphi \ast 

h(\rho \updownarrow \infty ) converges to a limit \varphi \ast which is the largest root in the interval
[0, 1] of the equation

\varphi \ast = f(\varphi \ast ).

Consider the transformation u = t+p(1 - 1/q)\varphi \ast 

t - p
q\varphi 

\ast , whose inverse transformation is given

by \varphi \ast = (p+q(1 - p))(u - 1)
p(u+q - 1) . It follows that u is the largest root in the interval [1, 1

1 - p ] of

the equation

(7.2)

\bigl( 
p+ q(1 - p)

\bigr) 
(u - 1)

p(u+ q  - 1)
=

ud  - 1

ud + (q  - 1)
or equivalently p = 1 - 1

1 + h(u)
,

where h(y) = (y - 1)(yd+q - 1)
(yd - y)

is the same function as in (2.3).

We next examine for which values of p it holds that the root u of (7.2) is strictly
larger than 1 (note that \varphi \ast > 0 iff u > 1). Recall from (2.3) that the value of pc(q,\Delta )
is given by

pc(q,\Delta ) = 1 - 1

1 + infy>1 h(y)
, where h(y) :=

(y  - 1)(yd + q  - 1)

(yd  - y)
.(2.3)

First, consider the case p < pc(q,\Delta ). For the sake of contradiction, assume that
u > 1. Then, we obtain from (7.2) that

p = 1 - 1

1 + h(u)
> 1 - 1

1 + infy>1 h(y)
= pc(q,\Delta ),

a contradiction. Thus, \varphi \ast = 0 for all p < pc(q,\Delta ).
Next, consider the case p > pc(q,\Delta ). Using the continuity of the function h in

the interval (1,\infty ), we obtain that there exists y > 1 such that p = 1 - 1
1+h(y) . Note

that

1 + h(y) =
1

1 - p

and we have that y \leq 1 + h(y) for all y > 1, so in fact y \in (1, 1
1 - p ]. It follows that

u, the largest root in the interval [1, 1
1 - p ] of (7.2), satisfies u \geq y > 1, and therefore

\varphi \ast > 0.

6This follows from Lemma 5.3: the event \rho \updownarrow \infty is increasing and \varphi \ast 
h can be obtained from

\varphi \ast 
h+1 by conditioning the edges incident to the leaves of Th+1 to be open.
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We will need the following corollary of Lemma 7.1 for a slightly modified tree
where the root has degree \Delta  - 2. In particular, for an integer h \geq 1, let \^Th =

\bigl( 
\^Vh, \^Eh

\bigr) 
be the tree obtained by taking \Delta  - 2 disjoint copies of Th - 1 and joining their root
vertices into a new vertex \rho (for h = 0, we let \^Th to be the single-vertex graph).
Analogously to (7.1), we use \^Lh to denote the leaves of the tree and \^\varphi \ast 

h to denote the

wired measure on \^Th where all the leaves are wired to infinity, i.e.,

(7.3) \^\varphi \ast 
h(S) =

p| S| (1 - p)| 
\^Eh\setminus S| qk

\ast (S)

\^Z\ast 
h

, where \^Z\ast 
h =

\sum 
S\subseteq \^Eh

p| S| (1 - p)| 
\^Eh\setminus S| qk

\ast (S),

and k\ast (S) denotes the number of connected components in the graph
\bigl( 
\^Vh \cup \{ \infty \} , S \cup 

(\^Lh \times \infty )
\bigr) 
.

Corollary 7.3. Let \Delta \geq 3, q \geq 1, and p < pc(q,\Delta ). Then, in the wired
random-cluster distribution on \^Th, the probability of the event \rho \updownarrow \infty converges to 0
as h grows, i.e.,

lim
h\rightarrow \infty 

\^\varphi \ast 
h(\rho \updownarrow \infty ) = 0.

Proof. Let Th = (Vh, Eh) and \^Th = (\^Vh, \^Eh). Since \^Th is a subgraph of Th, we
may assume that \^Vh \subseteq Vh and \^Eh \subseteq Eh. Observe that

\^\varphi \ast 
h(\cdot ) = \varphi \ast 

h( \cdot | Eh\setminus \^Eh closed).

Since the event \rho \updownarrow \infty is increasing, we have that

\varphi \ast 
h(\rho \updownarrow \infty | Eh\setminus \^Eh closed) \leq \varphi \ast 

h(\rho \updownarrow \infty ).

It follows that \^\varphi \ast 
h(\rho \updownarrow \infty ) \leq \varphi \ast 

h(\rho \updownarrow \infty ). Using Lemma 7.1 for p < pc(q,\Delta ), we
obtain the corollary.

7.2. Analyzing random-cluster on disjoint trees whose roots are con-
nected via a path. We are now in position to prove Lemma 5.2, which we restate
here for convenience.

Lemma 5.2. Let \Delta \geq 3 be an integer, q \geq 1, and p < pc(q,\Delta ). There exist
constants K < 1/(\Delta  - 1) and \epsilon > 0 such that the following holds for all sufficiently
large integers \ell and h.

Let G be a \Delta -regular graph and P be a path with \ell vertices whose h-graph-
neighborhood contains (1 - \epsilon )\ell isolated tree components. Let \varphi G be the random-cluster
distribution on G with parameters p, q. Then,

\varphi G(path P is open) \leq K\ell .

Let us first give the rough idea of the proof. For simplicity, we will consider
the somewhat special case where \epsilon = 0, but the argument can be easily adapted to
account for small positive \epsilon > 0. In particular, let H be the graph induced by the
h-graph-neighborhood of the path P , together with the edges of P . For \epsilon = 0, the
assumptions of the lemma imply that H is a union of \ell disjoint trees, each7 isomorphic

7A technical detail, which is not important for this rough outline, is that we have to be a
bit careful with the endpoints of the path, since the degree regularity of G implies that the trees
``hanging"" from the endpoints of the P have to be copies of (\Delta  - 1)-ary tree Th (where the root has

degree \Delta  - 1 instead of \Delta  - 2, which is the case for \^Th).
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to \^Th, whose roots are connected by a path. Using the monotonicity of the random-
cluster distribution (cf. Lemma 5.3) to upper bound the probability that P is open in
\varphi G, we can condition all the edges outside H to be open; let \varphi \ast 

H be the conditioned
probability distribution (note the analogy with the wired measure we considered in
the previous section).

Consider first the graph F which is the disjoint union of the \ell trees (i.e., F is
obtained from H by removing the edges of the path P ) and let \varphi \ast 

F be the analogue
of \varphi \ast 

H (i.e., the random-cluster distribution on G\setminus P where all edges outside F are
assumed to be open). Crucially, since p < pc(q,\Delta ), we have by Lemma 7.1 that only
\epsilon \prime \ell roots are connected via an open path to infinity, where \epsilon \prime > 0 is a constant that
can be made arbitrarily small by taking the depth h of the trees sufficiently large.
Denote by R this (random) set of root vertices, so that | R| \leq \epsilon \prime \ell with high probability.

Now, we add the edges of the path P and consider how this reweights the random-
cluster configuration. In particular, we focus on edges of the path which are not
incident to a root in R, letting e be such an edge. If e is open, we get a factor of
p/q in the weight of the random-cluster configuration (p because e is open and 1/q
because the total number of connected components decreases by 1); if e is closed, we
get a factor of 1  - p in the weight of the random-cluster configuration (because e is
closed---note that the number of connected components stays the same in this case).
Since | R| \leq \epsilon \prime \ell , there are at least \ell  - 2\epsilon \prime \ell edges of the path P that are not incident to
a vertex in R. Therefore the probability that all of them are open is roughly \tau \ell (1 - 2\epsilon ),

where \tau := p/q
p/q+(1 - p) . For p < pc(q,\Delta ) it holds that \tau < 1/(\Delta  - 1) and hence the

lemma follows by taking \epsilon \prime > 0 to be a sufficiently small constant (to account also for
the roughly 2\epsilon 

\prime \ell choices of the set R).

Proof of Lemma 5.2. For convenience, let d := \Delta  - 1. We begin first by specifying
the constant K and how large \ell and h need to be.

Let \tau := p
p+q(1 - p) and note that for all p < pc(q,\Delta ) we have that \tau < 1/d (since

pc(q,\Delta ) < q
q+d - 1 ). Let K be any constant satisfying \tau < K < 1/d and \epsilon > 0 be

a small constant such that for \epsilon \prime := 10q3\epsilon it holds that \tau 1 - \epsilon \prime q10\epsilon 
\prime 
< K (note that

such an \epsilon exists by considering the limit \epsilon \downarrow 0). Let \ell be sufficiently large so that
\epsilon \prime \ell \geq \epsilon \ell \geq 2.

As in section 7.1, for an integer h \geq 0, let \^Th = (\^Vh, \^Eh) denote the subtree of
the (\Delta  - 1)-ary tree with height h where the root \rho has degree \Delta  - 2 (and every other
nonleaf vertex has degree \Delta ). Let \^Z\ast 

h denote the partition function of the random-

cluster model where all the leaves are connected to infinity (cf. (7.3)). Let \^Z\ast 
h,\infty be

the contribution to \^Z\ast 
h from S \subseteq \^Eh such that \rho is connected to infinity and \^Z\ast 

h,\neg \infty 
from S \subseteq Eh such that \rho is not connected to infinity. Since p < pc(q,\Delta ), we have by
Corollary 7.3 that for all sufficiently large h it holds that

(7.4) \^Z\ast 
h,\infty / \^Z\ast 

h \leq \epsilon .

We are now ready to proceed to the proof of the lemma. Consider a path P with
vertices u1, . . . , u\ell whose h-graph neighborhood contains at least (1 - \epsilon )\ell isolated tree
components. By definition, an isolated tree component contains exactly one of the
vertices u1, . . . , u\ell and therefore the set

U =
\bigl\{ 
ui

\bigm| \bigm| ui belongs to an isolated tree component and ui \not = u1, u\ell 

\bigr\} 
satisfies | U | \geq (1 - \epsilon )\ell  - 2 \geq (1 - 2\epsilon )\ell . Observe also that

for u \in U , \Gamma h(G\setminus P, u) induces a subgraph in G which is isomorphic to \^Th.
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Indeed, for u \in U , denote by \scrC u the component of the h-graph-neighborhood of the
path P that the vertex u belongs to. Since u \in U , \scrC u is isolated and therefore the
vertex set of \scrC u is precisely \Gamma h(G\setminus P, u) and \scrC u is an induced subgraph of G. It remains
to observe that \scrC u is a tree (since u \in U), every nonleaf vertex in \scrC u different than u
has degree \Delta (since the graph G is \Delta -regular), and u itself has degree \Delta  - 2 (since
u \not = u1, u\ell ).

Let F be the subgraph of G induced by the vertex set
\bigcup 

u\in U \Gamma h(G\setminus P, u). Note

that F is a disjoint union of copies of \^Th. For convenience, denote by VF , EF the
vertex and edge sets of F and similarly denote VP , EP for the corresponding sets of
the path P . Note that EF is disjoint from EP (though VP and VF intersect at the
roots of the trees). By Lemma 5.3, we have that

\varphi G(P is open) \leq \varphi G(P is open | all edges in E\setminus (EP \cup EF ) are open).

The conditioning in the r.h.s. has the same effect as ``wiring."" In particular, let
H = (VH , EH) be the subgraph of G with vertex set VP \cup VF and edge set EP \cup EF .
Note that H is a path with (disjoint) copies of the tree \^Th ``hanging"" from most
vertices of the path (in particular, the vertices in U). Let L be the set of leaves of all
the trees and let W = (VP \setminus U)\cup L. Let \varphi \ast 

H be the random-cluster distribution on H,
where we wire all vertices in W to infinity, i.e., \varphi \ast 

H is given by

(7.5) \varphi \ast 
H(S) =

p| S| (1 - p)| EH\setminus S| qk
\ast (S)

Z\ast 
H

, where Z\ast 
H :=

\sum 
S\subseteq EH

p| S| (1 - p)| EH\setminus S| qk
\ast (S),

where k\ast (S) is the number of connected components in the graph with vertex set
VH \cup \{ \infty \} and edge set S \cup (W \times \infty ). With this definition, we have that

\varphi G

\bigl( 
P is open | all edges in E\setminus (EF \cup EP ) are open

\bigr) 
= \varphi \ast 

H(P is open).

Let Q be the contribution to Z\ast 
H from configurations S \subseteq EH such that the path P

is open, i.e.,

Q :=
\sum 

S\subseteq EH ;EP\subseteq S

p| S| (1 - p)| EH\setminus S| qk
\ast (S).

We will show that for all sufficiently large h (so that (7.4) holds) and all sufficiently
large \ell it holds that

(7.6) Z\ast 
H \geq 

\Bigl( p
q
+ (1 - p)

\Bigr) \ell  - 1\bigl( 
\^Zh/q

\bigr) | U | 
, Q \leq 

\Bigl( p
q

\Bigr) \ell  - 1

q10\epsilon 
\prime \ell 
\bigl( 
\^Zh/q

\bigr) | U | 
.

Assuming (7.6) for the moment, note that

\varphi \ast (P is open) =
Q

Z\ast 
H

\leq \tau \ell  - 1q10\epsilon 
\prime \ell \leq K\ell ,

where in the last inequality we used that for all sufficiently large \ell , we have \tau \ell  - 1q10\epsilon 
\prime \ell \leq 

(\tau 1 - \epsilon \prime q10\epsilon 
\prime 
)\ell \leq K\ell . This proves the lemma. We therefore focus on proving (7.6).

To prove the first inequality in (7.6), note that for any S \subseteq EH , we have

(7.7)
| S| = | S \cap EF | + | S \cap EP | , | EH\setminus S| = | EF \setminus S| + (\ell  - 1 - | S \cap EP | ),

k\ast (S) + | S \cap EP | \geq k\ast (S \cap EF ).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

780 BLANCA ET AL.

The equalities follow from the fact that \{ EF , EP \} is a partition of EH , while the
inequality follows by noting that deleting an edge in S \cap EP increases the number of
connected components by at most 1. Using (7.7) and q \geq 1, we therefore obtain that
(with m = | S \cap EP | and S\prime = S \cap EF )

Z\ast 
H \geq 

\sum 
S\subseteq EH

p| S| (1 - p)| EH\setminus S| qk
\ast (S\cap EF ) - | S\cap EP | 

=

\ell  - 1\sum 
m=0

\biggl( 
\ell  - 1

m

\biggr) \Bigl( p
q

\Bigr) m
(1 - p)\ell  - 1 - m

\sum 
S\prime \subseteq EF

p| S
\prime | (1 - p)| EF \setminus S\prime | qk

\ast (S\prime ).(7.8)

In the following, we focus on lower bounding the inner sum in (7.8). Recall that the
graph F consists of | U | disjoint copies of the tree \^Th, each rooted at a vertex in U .
For an integer r = 0, . . . , | U | , let

\Omega F (r) =

\biggl\{ 
S\prime \subseteq EF

\bigm| \bigm| \bigm| exactly r vertices in U are connected to \infty in the graph
with vertex set VF \cup \{ \infty \} and edge set S\prime \cup (L\times \infty )

\biggr\} 
.

Then, we have that

(7.9) q| U |  - r
\sum 

S\prime \in \Omega F (r)

p| S
\prime | (1 - p)| EF \setminus S\prime | qk

\ast (S\prime ) =

\biggl( 
| U | 
r

\biggr) \bigl( 
\^Zh,\infty 

\bigr) r\bigl( \^Zh,\neg \infty 
\bigr) | U |  - r

.

(Note that the r.h.s. in (7.9) counts | U |  - r + 1 times the component containing \infty ,
while k\ast (S\prime ) counts only once for all S\prime \subseteq EF , which explains the need for the factor
q| U |  - r on the l.h.s.). We therefore have that (using q \geq 1)
(7.10)\sum 
S\prime \subseteq EF

p| S
\prime | (1 - p)| EF \setminus S\prime | qk

\ast (S\prime ) =
1

q| U | 

| U | \sum 
r=0

qr
\biggl( 
| U | 
r

\biggr) \bigl( 
\^Zh,\infty 

\bigr) r\bigl( \^Zh,\neg \infty 
\bigr) | U |  - r \geq 

\Biggl( 
\^Zh

q

\Biggr) | U | 

.

Plugging (7.10) into (7.8) and using the binomial expansion yields the first inequality
in (7.6), as wanted.

To prove the second inequality in (7.6), consider as before the set of configurations
\Omega F (r) where exactly r roots of the trees are connected to infinity and let \Omega H(r) =
\{ S\prime \cup EP | S\prime \in \Omega F (r)\} . For S \in \Omega H(r), we will show

(7.11)
| S| = | S \cap EF | + (\ell  - 1), | EH\setminus S| = | EF \setminus S| ,
k\ast (S) + 2(| U |  - r) - (\ell  - 1) \leq k\ast (S \cap EF ),

The equalities are an immediate consequence of the equalities in (7.7) and the fact
that, by the definition of \Omega H(r), we have that EP \subseteq S for all S \in \Omega H(r). To justify the
inequality, note that there are exactly M = r+\ell  - | U | vertices of the path P which are
connected to infinity. It follows that there are at least \ell  - 1 - 2M = 2(| U |  - r) - (\ell +1)
edges in S \cap EP = EP whose endpoints are not connected to infinity; deleting any of
these edges causes the number of components to increase by one. Using (7.11) and
the fact that q \geq 1, we can bound Q by

Q \leq 
| U | \sum 
r=0

\sum 
S\in \Omega H(r)

p| S| (1 - p)| EH\setminus S| qk
\ast (S\cap EF )+(\ell +1) - 2(| U |  - r) =

\Bigl( p
q

\Bigr) \ell  - 1
| U | \sum 
r=0

Ar,

(7.12)
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where
Ar :=

\sum 
S\prime \in \Omega F (r)

p| S
\prime | (1 - p)| EF \setminus S\prime | qk

\ast (S\prime )+2(\ell  - | U |  - r).

Using (7.9) again, we obtain that

Ar

( \^Zh/q)| U | 
= q2(l - | U | )+3r

\biggl( 
| U | 
r

\biggr) \Biggl( \^Zh,\infty 
\^Zh

\Biggr) r \Biggl( 
\^Zh,\neg \infty 
\^Zh

\Biggr) | U |  - r

.

Recall that \epsilon \prime = 10q3\epsilon ; using (7.4), note that for all r \geq \epsilon \prime \ell we have\biggl( 
| U | 
r

\biggr) \Biggl( \^Zh,\infty 
\^Zh

\Biggr) r \Biggl( 
\^Zh,\neg \infty 
\^Zh

\Biggr) \ell  - r

\leq 
\biggl( 
e| U | 
r

\biggr) r

\epsilon r \leq 
\biggl( 
e\ell 

r

\biggr) r

\epsilon r \leq 1

(4q3)r
.

We also have that | U | \geq (1 - 2\epsilon )\ell , so \ell  - | U | \leq 2\epsilon \ell . Therefore, for all sufficiently large
\ell we have the bound

1

( \^Zh/q)| U | 

| U | \sum 
r=0

Ar \leq q4\epsilon \ell 
| U | \sum 
r=0

q3r
\biggl( 
| U | 
r

\biggr) \Biggl( \^Zh,\infty 
\^Zh

\Biggr) r \Biggl( 
\^Zh,\neg \infty 
\^Zh

\Biggr) \ell  - r

\leq q4\epsilon \ell 

\left(   1 +

\lfloor \epsilon \prime \ell \rfloor \sum 
r=0

q3\epsilon 
\prime \ell 

\right)   \leq q10\epsilon 
\prime \ell .

Plugging this into (7.12) yields the second inequality in (7.6), as needed.

8. Analyzing the Potts model on graphs with tree-like structure. The
goal of this section is to prove Lemma 6.6.

8.1. Analyzing Potts on trees. Fix an integer \Delta \geq 3. As in section 7.1, we
use \BbbT \Delta denote the infinite (\Delta  - 1)-ary tree with root vertex \rho . For integer h \geq 0, let
Th = (Vh, Eh) denote the subtree of \BbbT \Delta induced by the vertices at distance \leq h from
\rho and let Lh denote the leaves of Th.

Recall that uniqueness on \BbbT \Delta implies that root-to-leaves correlations on Th tend
to 0 as h \rightarrow \infty ; cf. Definition 2.2. The following lemma extends these decay properties
to arbitrary subtrees of Th; this was proved in [8] in the case of the colorings model
and the proof for the Potts model is analogous.

Lemma 8.1. Let \Delta , q \geq 3 be integers, and let B > 0 be in the uniqueness regime
of the (\Delta  - 1)-ary tree. There exists a function \vargamma : \BbbN \rightarrow \BbbR \geq 0 with \vargamma (h) \rightarrow 0 as h \rightarrow \infty 
such that the following holds for any integer h \geq 0.

Let T \prime 
h be an arbitrary subtree of Th containing the root \rho and let L\prime 

h be the set
of vertices in T \prime 

h at distance exactly h from \rho . Then, for any color c \in [q] and any
configuration \tau : L\prime 

h \rightarrow [q], it holds that\bigm| \bigm| \bigm| \mu T \prime 
h
(\sigma \rho = c | \sigma L\prime 

h
= \tau ) - 1

q

\bigm| \bigm| \bigm| \leq \vargamma (h).

Proof. We will show that the statement of the lemma holds with the function \vargamma (\cdot )
given by \vargamma (0) = 1 and

\vargamma (h) := max
c\in [q], \tau :Lh\rightarrow [q]

\bigm| \bigm| \bigm| \mu Th
[\sigma (\rho ) = c | \sigma Lh

= \tau ] - 1

q

\bigm| \bigm| \bigm| .
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Note that since B is assumed to be in the uniqueness regime of the (\Delta  - 1)-ary tree,
we have by definition that \vargamma (h) \rightarrow 0 as h \rightarrow \infty .

We first show by induction on h that, for all h \geq 0, for all subtrees T \prime 
h of Th

containing the root \rho , for all configurations \tau : L\prime 
h \rightarrow [q] and any color c \in [q], it holds

that

(8.1) \mu T \prime 
h
(\sigma \rho = c | \sigma L\prime 

h
= \tau ) = \mu Th

(\sigma \rho = c | \sigma L\prime 
h
= \tau ).

For h = 0 the result is trivial. Supposing that h \geq 1 and that the result holds for all
integers less than h, we prove the result for h as well. Let U = \{ u1, . . . , u\Delta  - 1\} be the
children of \rho in Th and let U \prime \subseteq U be the children of \rho in T \prime 

h. For a vertex u \in U ,
denote by Th(u) the subtree of Th rooted at u and by Lh(u) the vertices in Lh that
belong to the tree Th(u). Similarly, for a vertex u \in U \prime , denote by T \prime 

h(u) the subtree
of T \prime 

h rooted at u and by L\prime 
h(u) the vertices in L\prime 

h that belong to the tree T \prime 
h(u). Using

standard tree recursions (see, for example, [11, Lemma 19]), we have that

\mu Th
(\sigma \rho = c | \sigma L\prime 

h
= \tau ) =

\prod 
u\in U

\bigl( 
1 - (1 - B)\mu Th(u)(\sigma u = c | \sigma L\prime 

h(u)
= \tau L\prime 

h(u)
)
\bigr) \sum q

c\prime =1

\prod 
u\in U

\bigl( 
1 - (1 - B)\mu Th(u)(\sigma u = c\prime | \sigma L\prime 

h(u)
= \tau L\prime 

h(u)
)
\bigr) 

(8.2)

and

\mu T \prime 
h
(\sigma \rho = c | \sigma L\prime 

h
= \tau ) =

\prod 
u\in U \prime 

\bigl( 
1 - (1 - B)\mu T \prime 

h(u)
(\sigma u = c | \sigma L\prime 

h(u)
= \tau L\prime 

h(u)
)
\bigr) \sum q

c\prime =1

\prod 
u\in U \prime 

\bigl( 
1 - (1 - B)\mu T \prime 

h(u)
(\sigma u = c\prime | \sigma L\prime 

h(u)
= \tau L\prime 

h(u)
)
\bigr) .

(8.3)

For every u \in U\setminus U \prime we have that L\prime 
h(u

\prime ) = \emptyset and therefore, using the symmetry
among the colors, we have that for every c\prime \in [q] it holds that

(8.4) \mu Th(u)(\sigma u = c\prime | \sigma L\prime 
h(u)

= \tau L\prime 
h(u)

) = \mu Th(u)(\sigma u = c\prime ) = 1/q.

For u \in U \prime , we have that Th(u) is isomorphic to Th - 1 and T \prime 
h(u) is a subtree of Th(u),

so by the induction hypothesis we have that for any color c \in [q] it holds that

(8.5) \mu T \prime 
h(u)

(\sigma u = c\prime | \sigma L\prime 
h(u)

= \tau L\prime 
h(u)

) = \mu Th(u)(\sigma u = c\prime | \sigma Lh(u) = \tau Lh(u)).

Combining (8.2), (8.3), (8.4), and (8.5) yields (8.1), thus completing the induction.
To complete the proof it remains to observe that for any color c \in [q], it holds

that

\mu Th
(\sigma \rho = c | \sigma L\prime 

h
= \tau )

=
\sum 

\eta :Lh\setminus L\prime 
h\rightarrow [q]

\mu Th
(\sigma \rho = c | \sigma L\prime 

h
= \tau , \sigma Lh\setminus L\prime 

h
= \eta )\times \mu Th

(\sigma Lh\setminus L\prime 
h
= \eta | \sigma L\prime 

h
= \tau ).

Note that by the definition of the function \vargamma (\cdot ), for any \eta : Lh\setminus L\prime 
h \rightarrow [q] we have that\bigm| \bigm| \bigm| \mu Th

(\sigma \rho = c | \sigma L\prime 
h
= \tau , \sigma Lh\setminus L\prime 

h
= \eta ) - 1

q

\bigm| \bigm| \bigm| \leq \vargamma (h)

and
\sum 

\eta :Lh\setminus L\prime 
h\rightarrow [q] \mu Th

(\sigma Lh\setminus L\prime 
h
= \eta | \sigma L\prime 

h
= \tau ) = 1, which gives that\bigm| \bigm| \bigm| \mu Th

(\sigma \rho = c | \sigma L\prime 
h
= \tau ) - 1

q

\bigm| \bigm| \bigm| \leq \vargamma (h),

Combining this with (8.1) yields the lemma.
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8.2. Analyzing Potts on disjoint trees whose roots are connected via a
path. To prove Lemma 6.6, we will need the following lemmas.

Lemma 8.2. Let q \geq 3 and B \in (0, 1), and set \chi := 1+B
B+q - 1 . Let P be a path with

\ell \geq 2 vertices and endpoints u, v. Then, for arbitrary colors c, c\prime \in [q], it holds that

\mu P (P is bichromatic | \sigma u = c, \sigma v = c\prime ) \leq (4q/B)\chi \ell  - 2.

Proof. Let z be the neighbor of v (note that if \ell = 2, then z = u). We have that

\mu P (\sigma v = c\prime | \sigma u = c) =
\sum 

c\prime \prime \in [q]

\mu P (\sigma v = c\prime | \sigma z = c\prime \prime , \sigma u = c)\times \mu P (\sigma z = c\prime \prime | \sigma u = c).

(8.6)

Note also that for arbitrary colors c, c\prime , c\prime \prime \in [q] we have that

\mu P (\sigma v = c\prime | \sigma z = c\prime \prime , \sigma u = c) = \mu P (\sigma v = c\prime | \sigma z = c\prime \prime ) \geq B\bfone \{ c\prime =c\prime \prime \} 

B + q  - 1
\geq B/(B + q  - 1).

Combining this with (8.6), we obtain that \mu P (\sigma v = c\prime | \sigma u = c) \geq B/(B + q  - 1) and
hence

(8.7) \mu P (\sigma u = c, \sigma v = c\prime ) =
1

q
\mu P (\sigma v = c\prime | \sigma u = c) \geq B

q(B + q  - 1)
.

Let c1, c2 \in [q] be distinct colors in [q] and \scrE (c1, c2) be the event that every vertex
in P is colored with c1, c2. The lemma will follow by showing that

(8.8) \mu P (\scrE (c1, c2)) = 2\chi \ell  - 1/q.

Let us briefly conclude the lemma assuming (8.8). Indeed, if c \not = c\prime , then applying
(8.8) for c1 = c and c2 = c\prime and using the lower bound in (8.7) we obtain that

\mu P (P is bichromatic | \sigma u = c, \sigma v = c\prime ) \leq (4/B)\chi \ell  - 2,

while, if c = c\prime , we obtain by summing (8.8) for c1 = c and the q  - 1 possible values
of c2 that

\mu P (P is bichromatic | \sigma u = c, \sigma v = c\prime ) \leq (4q/B)\chi \ell  - 2.

It remains to prove (8.8). For convenience, denote by w1, . . . , w\ell the vertices of P in
order so that u = w1 and v = w\ell and let C = \{ c1, c2\} . Note that

\mu P (\scrE (c1, c2)) = \mu P (\sigma w1
\in C)

\ell \prod 
i=2

\mu P

\bigl( 
\sigma wi

\in C | \sigma wi - 1
\in C, . . . , \sigma w1

\in C
\bigr) 
.

We have \mu P (\sigma w1
\in C) = 2/q. For i = 2, . . . , n, let Pi be the path induced by the

vertices wi - 1, . . . , wn. We have that

\mu P

\bigl( 
\sigma wi \in C | \sigma wi - 1 \in C, . . . , \sigma w1 \in C

\bigr) 
= \mu Pi

\bigl( 
\sigma wi \in C | \sigma wi - 1 \in C

\bigr) 
.

Since \mu Pi
(\sigma wi

\in C) = \mu Pi
(\sigma wi - 1

\in C) = 2/q, we have by the Bayes' rule that

\mu Pi(\sigma wi \in C | \sigma wi - 1 \in C) = \mu Pi(\sigma wi - 1 \in C | \sigma wi \in C) =
1 +B

B + q  - 1
= \chi .

Combining these, we obtain (8.8), therefore concluding the proof of Lemma 8.2.
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We will use the following corollary of Lemma 8.2.

Corollary 8.3. Let q \geq 3 and B \in (0, 1), and set \chi := 1+B
B+q - 1 . Let P be a path

with \ell \geq 2 vertices and let \Lambda be a subset of the vertices which includes the endpoints
of the path. Then, for any configuration \tau : \Lambda \rightarrow [q], it holds that

\mu P (P is bichromatic | \sigma \Lambda = \tau ) \leq (4q/B)| \Lambda | \chi \ell  - 2| \Lambda | .

Proof. Let t := | \Lambda | and denote the set of vertices in \Lambda by u1, . . . , ut in the order
that they appear in the path. Note that u1 and ut are the endpoints of P (since by
assumption \Lambda includes the endpoints of P ). For i = 1, 2, . . . , t - 1, let Pi be the path
induced by the vertices between ui and ui+1 and let \ell i be the number of vertices in
Pi. Then, we have

\mu P (P is bichromatic | \sigma \Lambda = \tau ) \leq \mu P (Pi is bichromatic for i = 1, . . . , t - 1 | \sigma \Lambda = \tau )

=

t - 1\prod 
i=1

\mu Pi(Pi is bichromatic | \sigma ui = \tau ui , \sigma ui+1 = \tau ui+1).

By Lemma 8.2, we have that

\mu Pi(Pi is bichromatic | \sigma ui = \tau ui , \sigma ui+1 = \tau ui+1) \leq (4q/B)\chi \ell i - 2

and therefore, since
\sum t

i \ell i = \ell and \chi ,B \in (0, 1), we obtain that

\mu P (P is bichromatic | \sigma \Lambda = \tau ) \leq (4q/B)| \Lambda |  - 1\chi \ell  - 2(| \Lambda |  - 1) \leq (4q/B)| \Lambda | \chi \ell  - 2| \Lambda | .

This finishes the proof.

We are now ready to prove Lemma 6.6, which we restate here for convenience.

Lemma 6.6. Let \Delta , q \geq 3 be integers, and let B \in (0, 1) be in the uniqueness
regime of the (\Delta  - 1)-ary tree with B \not = (\Delta  - q)/\Delta . Then, for any \epsilon \prime > 0, there exists
a positive constant K < 1+B

B+q - 1 + \epsilon \prime and \epsilon > 0 such that the following holds for all
sufficiently large integers \ell and h.

Let G be a graph of maximum degree \Delta and P be a path with \ell vertices whose
h-graph-neighborhood contains (1 - \epsilon )\ell isolated tree components. Let \mu G be the Potts
measure on G with parameter B. Then,

\mu G(path P is bichromatic) \leq K\ell .

Proof. Let \chi := 1+B
B+q - 1 and consider arbitrary \epsilon \prime > 0. We begin by specifying the

constants K, \epsilon and how large \ell and h need to be. In particular, let K be any constant
satisfying \chi < K < \chi + \epsilon \prime and \epsilon > 0 be a small constant such that

(8.9) (4q/\chi B)2\epsilon 
\biggl( 
1/q + \epsilon 

1/q  - \epsilon 
\chi 

\biggr) 1 - 2\epsilon 

\leq K/(1 + \epsilon ).

Note that such an \epsilon exists by considering the limit \epsilon \downarrow 0. Let \ell be sufficiently large so
that

(8.10) \epsilon \ell \geq 2 and (1 + \epsilon )\ell \geq q2.

Finally, let \vargamma (\cdot ) be the function in Lemma 8.1, so that for all sufficiently large h it
holds that

(8.11) \vargamma (h) \leq \epsilon .
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We are now ready to proceed to the proof of the lemma. Let G be a graph and
consider a path P in G, with vertices u1, . . . , u\ell , whose h-graph neighborhood contains
at least (1 - \epsilon )\ell isolated tree components. By definition, an isolated tree component
contains exactly one of the vertices u1, . . . , u\ell and therefore the set

U =
\bigl\{ 
ui

\bigm| \bigm| ui belongs to an isolated tree component and ui \not = u1, u\ell 

\bigr\} 
satisfies | U | \geq (1 - \epsilon )\ell  - 2 \geq (1 - 2\epsilon )\ell . Note that we exclude the endpoints of the path
P from U , even if they belong to isolated tree components. Let also U denote the set
\{ u1, . . . , u\ell \} \setminus U , so that | U | \leq 2\epsilon \ell . Recall that Th is the subtree of the (\Delta  - 1)-ary
tree consisting of vertices at distance at most h from the root. By definition of the
set U , we have that

(8.12) for u \in U , \Gamma h(G\setminus P, u) induces a subgraph in G which is a subtree of Th.

For u \in U , let for convenience Vu = \Gamma h(G\setminus P, u), Fu be the subgraph of G induced on
Vu and Lu be the set of vertices that are at distance h from u in Fu. Note that Fu is
a tree rooted at u all of whose vertices are at distance at most h from u; Lu is thus
the set of all leaves in Fu which are at distance h from u (note that there could be
other leaves which are closer to u but these will not matter).

Let F be the union of the subgraphs Fu for u \in U ; note that F is a disjoint union
of copies of trees (each of which is a subtree of Th from (8.12)). Let also L :=

\bigcup 
u\in U Lu.

We will also denote by VP , EP the vertex and edge set of the path P . Note that EF

is disjoint from EP (though VP and VF intersect at VP ). Finally, let H = (VH , EH)
be the subgraph of G with vertex set VP \cup VF and edge set EP \cup EF .

To bound the probability that P is bichromatic, we will condition on a worst case
boundary configuration on L and U . In particular, we have the bound

\mu G(P is bichromatic) \leq max
\tau :L\rightarrow [q],\tau \prime :U\rightarrow [q]

\mu G(P is bichromatic | \sigma L = \tau , \sigma U = \tau \prime ).

To bound the r.h.s., fix arbitrary configurations \tau : L \rightarrow [q], \tau \prime : U \rightarrow [q] and note
that

\mu G(P is bichromatic | \sigma L = \tau , \sigma U = \tau \prime ) = \mu H(P is bichromatic | \sigma L = \tau , \sigma U = \tau \prime ),

so the lemma will follow (since \tau , \tau \prime are arbitrary) by showing that, for arbitrary colors
c1, c2 \in [q], it holds that

(8.13) \mu H

\bigl( 
\scrE (c1, c2) | \sigma L = \tau , \sigma U = \tau \prime 

\bigr) 
\leq K\ell /q2,

where \scrE (c1, c2) is the event that each vertex in P is colored with either c1 or c2. Since
U includes the endpoints of the path P , by Corollary 8.3 we have that

(8.14) \mu P (\scrE (c1, c2) | \sigma U = \tau \prime ) \leq (4q/B)| U | \chi \ell  - 2| U | = (4q/\chi B)| U | \chi | U | .

Let ZP be the partition function of the path P and let ZP (c1, c2) be the contribution
to ZP from configurations such that P is colored with c1 or c2, i.e.,

ZP =
\sum 

\sigma :VP\rightarrow [q]; \sigma U=\tau \prime 

wP (\sigma ), ZP (c1, c2) =
\sum 

\sigma :VP\rightarrow \{ c1,c2\} ; \sigma U=\tau \prime 

wP (\sigma ).
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Then, (8.14) translates into

ZP (c1, c2)/ZP \leq (4q/\chi B)| U | \chi | U | .

The trees hanging from vertices in U reweight the probability that the path is bichro-
matic but do not cause significant distortion since the states of the roots are roughly
uniformly distributed (because of uniqueness on the tree). To quantify this, for u \in U
and a color c \in [q], let

Zu(c) =
\sum 

\sigma :Vu\rightarrow [q];
\sigma Lu=\tau Lu , \sigma u=c

wFu
(\sigma ).

Let also Zu =
\sum 

c\in [q] Zu(c). By Lemma 8.1 and the choice of h in (8.11), we have

that for all c \in [q] it holds that

(8.15)
\bigm| \bigm| \bigm| Zu(c)

Zu
 - 1

q

\bigm| \bigm| \bigm| \leq \vargamma (h) \leq \epsilon .

We can now write \mu H

\bigl( 
\scrE (c1, c2) | \sigma L = \tau , \sigma U = \tau \prime 

\bigr) 
as

\mu H

\bigl( 
\scrE (c1, c2) | \sigma L = \tau , \sigma U = \tau \prime 

\bigr) 
=

\sum 
\sigma :VP\rightarrow \{ c1,c2\} ; \sigma U=\tau \prime wP (\sigma )

\prod 
u\in U Zu(\sigma u)\sum 

\sigma :VP\rightarrow [q]; \sigma U=\tau \prime wP (\sigma )
\prod 

u\in U Zu(\sigma u)
.

Dividing both numerator and denominator by
\prod 

u\in U Zu, we obtain using (8.15) that

\mu H

\bigl( 
\scrE (c1, c2) | \sigma L = \tau , \sigma U = \tau \prime 

\bigr) 
\leq 
\biggl( 
1/q + \epsilon 

1/q  - \epsilon 

\biggr) | U | 

(ZP (c1, c2)/ZP )

\leq (4q/\chi B)| U | 
\biggl( 
1/q + \epsilon 

1/q  - \epsilon 
\chi 

\biggr) | U | 

.

We have | U | \geq (1  - 2\epsilon )\ell and | U | \leq 2\epsilon \ell , so from the choice of \epsilon and \ell in (8.9) and
(8.10), we obtain that

\mu H

\bigl( 
\scrE (c1, c2) | \sigma L = \tau , \sigma U = \tau \prime 

\bigr) 
\leq K\ell /(1 + \epsilon )\ell \leq K\ell /q2,

which is exactly (8.13), as wanted. This concludes the proof of Lemma 6.6.

9. Correlation decay and sampling for antiferromagnetic Ising. In this
section, we prove Theorem 6.3 and Lemma 6.4. The proofs follow relatively easily
from correlation decay bounds on trees appearing in [27]; the bounds there are stated
for the case of the ferromagnetic Ising model, but there is a simple translation of these
bounds to the antiferromagnetic case which allows us to conclude the desired results.
In section 9.1, we import the results from the literature that we need. We then give
the proof of Theorem 6.3 in section 9.2 and the proof of Lemma 6.4 in section 9.3.

9.1. Preliminaries. Following [27], for a graph G and a vertex u in G, we
consider the self-avoiding walk tree T = TSAW(G, u), which consists of all paths
starting from u and not intersecting themselves, except possibly at the terminal vertex
of the path.8 The following lemma originates in the work of Weitz for the hard-core
model [33]; it is well-known that the lemma holds more generally for any two-state
system. The particular version we state here is close to [27, Lemma 13].

8More precisely, a self-avoiding walk in our context is a walk w = (v1, . . . , vt) where vertices are
pairwise distinct, except that we allow v1 = vt. The tree T = TSAW(G, u) is induced by the set of all
walks starting from u, where two walks w1, w2 are connected by an edge if w1 can be obtained from
w2 by deleting the last vertex of w2 (or vice versa). Naturally, we can relabel walks in T according
to their last vertex, so that each vertex in T corresponds to a vertex in G (in a many-to-one fashion).
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Lemma 9.1 (see, e.g., [27, Lemma 13]). Let G = (V,E) be a graph and let u
be a vertex in G. Consider the self-avoiding walk tree T = TSAW(G, u) starting from
u and denote by A the leaves of the tree. Then, there is a configuration \eta : A \rightarrow 
\{ 1, 2\} (described in [33]) such that the following holds for any set \Lambda \subseteq V and any
configuration \tau : \Lambda \rightarrow \{ 1, 2\} .

Let U\Lambda be the set of vertices in T which correspond to vertices in \Lambda and let
\eta \prime : U\Lambda \setminus A \rightarrow \{ 1, 2\} be the configuration where each vertex in U\Lambda \setminus A inherits the state
of the corresponding vertex in \Lambda under \tau . Then,

\pi G(\sigma u = 1 | \sigma \Lambda = \tau ) = \pi T (\sigma u = 1 | \sigma A = \eta , \sigma U\Lambda \setminus A = \eta \prime ).

The following lemma follows from a strong spatial mixing result in [27] for the
ferromagnetic Ising model, which in turn builds upon a lemma from [3].

Lemma 9.2. Let B \in (0, 1). Let T = (V,E) be a tree, \Lambda \subseteq V be a subset of the
vertices, and u be an arbitrary vertex. Let \tau 1, \tau 2 : \Lambda \rightarrow \{ 1, 2\} be two configurations on
\Lambda which differ only on a subset U \subseteq \Lambda . Then,\bigm| \bigm| \pi T (\sigma u = 1 | \sigma \Lambda = \tau 1) - \pi T (\sigma u = 1 | \sigma \Lambda = \tau 2)

\bigm| \bigm| \leq \sum 
v\in U

\biggl( 
1 - B

1 +B

\biggr) \sansd \sansi \sanss \sanst (u,v)

,

where \sansd \sansi \sanss \sanst (u, v) denotes the distance between u and v in T .

Proof. It is well-known that, on bipartite graphs G = (V,E), there is a measure-
preserving bijection between configurations of the antiferromagnetic Ising model with
parameter B \in (0, 1) and configurations of the ferromagnetic Ising model with param-
eter 1/B, obtained by flipping the states of each vertex on one side of the bipartition.
The desired inequality therefore follows from the strong spatial mixing result for the
ferromagnetic Ising model given in [27, Lemma 14]. To translate the parameterization
of that result, note that in [27] the weight of an (ferromagnetic) Ising configuration
\sigma is parameterized to be proportional to exp(2\beta m(\sigma ))---therefore 1/B = e2\beta , so
tanh\beta = 1 - B

1+B . Using this translation, we obtain the desired inequality.

9.2. Proof of Theorem 6.3. To prove Theorem 6.3, we will use the following
algorithm that allows us to compute conditional marginal probabilities with very small
absolute error.

Lemma 9.3. Let B \in (0, 1) and b > 0 be constants such that b 1 - B
1+B < 1, and let

\Delta \geq 3 be an integer. Then, there exists M0 > 0 such that the following holds for all
M > M0.

There is a polynomial-time algorithm that, on input (i) an n-vertex graph G =
(V,E) with maximum degree at most \Delta and average growth b up to depth L =
\lceil M log n\rceil , (ii) a subset \Lambda \subseteq V with a configuration \tau : \Lambda \rightarrow \{ 1, 2\} , and (iii) a
vertex u \in V \setminus \Lambda , outputs a number \^p \in [0, 1] such that\bigm| \bigm| \^p - p

\bigm| \bigm| \leq B\Delta 

2n11(1 +B\Delta )
, where p := \pi G(\sigma u = 1 | \sigma \Lambda = \tau ),

i.e., \^p is within absolute error O(1/n11) from the marginal probability that \sigma u = 1
conditioned on \sigma \Lambda = \tau , where \sigma is from the Ising distribution \pi G on G with parame-
ter B.

Proof. Letting M0 be a large constant so that for n \geq 2 and L0 := \lceil M0 log n\rceil , it
holds that

(9.1) bL0

\biggl( 
1 - B

1 +B

\biggr) L0

\leq B\Delta 

2n11(1 +B\Delta )
.
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Note that such an M0 exists since b 1 - B
1+B < 1. Fix M to be an arbitrary constant

larger than M0.
Let G be an arbitrary n-vertex graph with average growth b up to depth L =

\lceil M log n\rceil , \Lambda \subseteq V be a subset of the vertices, \tau : \Lambda \rightarrow \{ 1, 2\} be a configuration on
\Lambda , and u \in V \setminus \Lambda be a vertex. Consider the self-avoiding walk tree T = TSAW(G, u)
starting from u, and denote by A the leaves of the tree. By Lemma 9.1, we have that
there is a configuration \eta : A \rightarrow \{ 1, 2\} such that

(9.2) \pi G(\sigma u = 1 | \sigma \Lambda = \tau ) = \pi T (\sigma u = 1 | \sigma A = \eta , \sigma U\setminus A = \eta \prime ),

where U := U\Lambda is the set of vertices in T that correspond to some vertex in \Lambda and \eta \prime is
the assignment on U \setminus A inherited by \tau (see Lemma 9.1 for details). For convenience,
let F := U \cup A and \zeta : F \rightarrow \{ 1, 2\} be the configuration which agrees with \eta on A and
with \eta \prime on U\setminus A, so that (9.2) can be rewritten as

\pi G(\sigma u = 1 | \sigma \Lambda = \tau ) = \pi T (\sigma u = 1 | \sigma F = \zeta ).

Let T \prime = (V \prime , E\prime ) be the subtree of T induced by vertices at distance at most L  - 1
from u and let F \prime = F \cap V \prime . Let

p := \pi T (\sigma u = 1 | \sigma F = \zeta ) and \^p := \pi T \prime (\sigma u = 1 | \sigma F \prime = \zeta F \prime ).

Note that \^p can be computed in polynomial time since the tree T \prime and the configura-
tion \zeta F \prime can be constructed in polynomial time (since T \prime is a tree of size O(\Delta L)). So,
the lemma will follow by showing that

(9.3)
\bigm| \bigm| \^p - p

\bigm| \bigm| \leq B\Delta 

2n11(1 +B\Delta )
.

To prove this, let J be the set of vertices in V \prime \setminus F \prime whose distance from u is exactly
L  - 1 in T and note that | J | \leq bL since G has average growth b up to depth L (cf.
Definition 3.3). Note also that, conditioned on the configurations on J and F \prime , the
probability that \sigma u = 1 depends only on T \prime (and not on the configuration on the rest
of the tree T ). Using the law of total probability, we can therefore expand p as

(9.4) p =
\sum 

\iota :J\rightarrow \{ 1,2\} 

\pi T \prime (\sigma u = 1 | \sigma F \prime = \zeta F \prime , \sigma J = \iota )\times \pi T (\sigma J = \iota | \sigma F = \zeta F ).

Therefore, (9.3) will follow by showing that for any configuration \iota : J \rightarrow \{ 1, 2\} it
holds that

(9.5)
\bigm| \bigm| \pi T \prime 

\bigl( 
\sigma u = 1 | \sigma F \prime = \zeta F \prime , \sigma J = \iota 

\bigr) 
 - \^p
\bigm| \bigm| \leq B\Delta 

2n11(1 +B\Delta )
.

Note that we can expand \^p analogously to (9.4) by conditioning on the configuration
on J , so to prove (9.4) it suffices to show that for any two configurations \iota 1, \iota 2 : J \rightarrow [q]
it holds that

\kappa \leq B\Delta 

2n11(1 +B\Delta )
,

where \kappa :=
\bigm| \bigm| \pi T \prime 

\bigl( 
\sigma u = 1 | \sigma F \prime = \zeta F \prime , \sigma J = \iota 1

\bigr) 
 - \pi T \prime 

\bigl( 
\sigma u = 1 | \sigma F \prime = \zeta F \prime , \sigma J = \iota 2

\bigr) \bigm| \bigm| .
By the strong spatial mixing result of Lemma 9.2, we have that
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\kappa \leq 
\sum 
v\in J

\biggl( 
1 - B

B + 1

\biggr) dist(u,v)

= | J | 
\biggl( 
1 - B

B + 1

\biggr) L

\leq bL
\biggl( 
1 - B

1 +B

\biggr) L

.

Combining this with the choice of M0 (cf. (9.1)), we obtain (9.5), thus concluding the
proof of the lemma.

Using Lemma 9.3, the proof of Theorem 6.3 follows by standard techniques. We
restate it here for convenience.

Theorem 6.3. Let B \in (0, 1) and b > 0 be constants such that b 1 - B
1+B < 1, and

let \Delta \geq 3 be an integer. Then, there exists M0 > 0 such that the following holds for
all M > M0.

There is a polynomial-time algorithm that, on input an n-vertex graph G with
maximum degree at most \Delta and average growth b up to depth L = \lceil M log n\rceil , outputs
a configuration \tau : V \rightarrow \{ 1, 2\} whose distribution \nu \tau is within total variation distance
1/n10 from the Ising distribution on G with parameter B, i.e.,\bigm\| \bigm\| \nu \tau  - \pi G

\bigm\| \bigm\| 
TV

\leq 1/n10.

Moreover, the algorithm, when given as additional input two vertices u and v in G,
outputs a configuration \tau : V \rightarrow \{ 1, 2\} such that \tau u = 1 and \tau v = 2, and whose
distribution \nu \tau satisfies \bigm\| \bigm\| \nu \tau  - \pi 1,2

G,u,v(\cdot )
\bigm\| \bigm\| 
TV

\leq 1/n10,

where \pi 1,2
G,u,v is the Ising distribution on G conditioned on u having state 1 and v

having state 2.

Proof of Theorem 6.3. Denote by v1, v2, . . . , vn the vertices of G. The algorithm
will sample the state si of vertex vi sequentially for i = 1, . . . , n. We just give the
details for the first part of the algorithm; the proof of the second part is completely
analogous (namely, it suffices to assume in the following that we first set v1 = u, v2 =
v, then fix the states s1 = 1, s2 = 2, and finally sample the states si for i = 3, . . . , n).

Assume that, at some time i = 1, . . . , n, we have sampled the states s1, . . . , si - 1

(which can take arbitrary values in \{ 1, 2\} ). Using the algorithm of Lemma 9.3, we
obtain in polynomial time numbers \^pi(1), \^pi(2) \in [0, 1] such that \^pi(1) + \^pi(2) = 1
and, for s \in \{ 1, 2\} , it holds that

(9.6)
\bigm| \bigm| ai(s) - \^pi(s)

\bigm| \bigm| \leq B\Delta 

2n11(1 +B\Delta )
,

where ai(s) := \pi G(\sigma vi = s | \sigma v1 = s1, . . . , \sigma vi - 1
= si - 1). We then sample the state

si by letting si = 1 with probability \^pi(1), or else si = 2 (note that si = 2 with
probability \^pi(2)). Denote by \tau the final configuration and by \nu \tau its distribution.

We will show that, for any configuration \eta : V \rightarrow \{ 1, 2\} , it holds that

(9.7) | \nu \tau (\eta ) - \pi G(\eta )| \leq 
2

n10
\pi G(\eta ),

so by summing over \eta we obtain\bigm\| \bigm\| \nu \tau  - \pi G

\bigm\| \bigm\| 
TV

=
1

2

\sum 
\eta : V\rightarrow \{ 1,2\} 

\bigm| \bigm| \nu \tau (\eta ) - \pi G(\eta )
\bigm| \bigm| \leq 1

n10

\sum 
\eta : V\rightarrow \{ 1,2\} 

\pi G(\eta ) = 1/n10,
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which proves the first part of the theorem; the second part follows analogously. To
prove (9.7), fix an arbitrary configuration \eta : V \rightarrow \{ 1, 2\} and let

pi,\eta := \pi G(\sigma vi = \eta vi
| \sigma v1 = \eta v1 , . . . , \sigma vi - 1

= \eta vi - 1
).

Note that

(9.8) \pi G(\eta ) =

n\prod 
i=1

pi,\eta and \nu \tau (\eta ) =

n\prod 
i=1

\^pi(\eta vi).

Moreover, from (9.6), we have that for all i = 1, . . . , n it holds that

\bigm| \bigm| pi,\eta  - \^pi(\eta vi)
\bigm| \bigm| \leq B\Delta 

2n11(1 +B\Delta )
\leq pi,\eta 

2n11
,

where the last inequality follows from the lower bound of Lemma 6.5. Using the
inequalities 1 - x \leq e - x \leq 1 - x/2 which hold for all x \in [0, 1/2], we obtain that, for
\epsilon = 1/n11, it holds that

e - \epsilon pi,\eta \leq \^pi(\eta vi) \leq e\epsilon pi,\eta .

Multiplying over i = 1, . . . , n and combining with (9.8) gives (9.7), thus completing
the proof of Theorem 6.3.

9.3. Proof of Lemma 6.4. In this section, we give the proof of Lemma 6.4,
which we restate here for convenience.

Lemma 6.4. Let B \in (0, 1) and b > 0 be constants such that b 1 - B
1+B < 1. Then,

there exists M \prime 
0 > 0 such that the following holds for all M > M \prime 

0.
Let G be an n-vertex graph with average growth b up to depth L = \lceil M log n\rceil , and

let u, v be distinct vertices in G. Then

\bigm| \bigm| \bigm| \pi G(\sigma u = 1 | \sigma v = 1) - \pi G(\sigma u = 1 | \sigma v = 2)
\bigm| \bigm| \bigm| \leq 1

n10
+

L\sum 
\ell =1

P\ell (G, u, v)

\biggl( 
1 - B

1 +B

\biggr) \ell 

,

where P\ell (G, u, v) is the number of paths with \ell vertices in G that connect u and v.

Proof of Lemma 6.4. Let M \prime 
0 be sufficiently large so that for all n \geq 2 and L0 :=

\lceil M \prime 
0 log n\rceil , it holds that

(9.9) bL0

\biggl( 
1 - B

1 +B

\biggr) L0

\leq 1/(2n10).

Note that such a constant exists since b 1 - B
1+B < 1. Fix arbitrary M > M \prime 

0. Let G be
an arbitrary graph with average growth b up to depth L = \lceil M log n\rceil , \Lambda \subseteq V be a
subset of the vertices, \tau : \Lambda \rightarrow \{ 1, 2\} be a configuration on \Lambda , and u \in V \setminus \Lambda be a
vertex.

Consider the self-avoiding walk tree T = TSAW(G, u) starting from u, and denote
by A the leaves of the tree and by U the set of vertices in T that correspond to v. For
a subset of vertices W of the tree we denote by \sigma W = 1 the event that all vertices in
W have state 1 and analogously for \sigma W = 2. By Lemma 9.1, we have that there is a
configuration \eta : A \rightarrow \{ 1, 2\} such that for s \in \{ 1, 2\} it holds that

(9.10) \pi G(\sigma u = 1 | \sigma v = s) = ps, where ps := \pi T

\bigl( 
\sigma u = 1 | \sigma A = \eta , \sigma U\setminus A = s

\bigr) 
.
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Let T \prime = (V \prime , E\prime ) be the subtree of T induced by vertices at distance at most
L - 1 from u and let A\prime = A \cap V \prime , U \prime = U \cap V \prime . For s \in \{ 1, 2\} , let

p\prime s := \pi T \prime (\sigma u = 1 | \sigma A\prime = \eta A\prime , \sigma U \prime \setminus A\prime = s).

We will show that

| p\prime 1  - p\prime 2| \leq 
L\sum 

\ell =1

P\ell (G, u, v)

\biggl( 
1 - B

1 +B

\biggr) \ell 

,(9.11)

| p1  - p\prime 1| \leq 1/(2n10), | p2  - p\prime 2| \leq 1/(2n10).(9.12)

Assuming these for the moment, we obtain by (9.10) and the triangle inequality that

| \pi G(\sigma u = 1 | \sigma v = 1) - \pi G(\sigma u = 1 | \sigma v = 2)| = | p1  - p2| 

\leq 1

n10
+

L\sum 
\ell =1

P\ell (G, u, v)

\biggl( 
1 - B

1 +B

\biggr) \ell 

,

thus proving the lemma. It thus remains to prove (9.11) and (9.12).
To prove (9.11), note that by Lemma 9.2, we have that

\bigm| \bigm| p\prime 1  - p\prime 2
\bigm| \bigm| \leq \sum 

w\in U \prime \setminus A\prime 

\biggl( 
1 - B

1 +B

\biggr) \sansd \sansi \sanss \sanst (u,w)

\leq 
L\sum 

\ell =1

P\ell (G, u, v)

\biggl( 
1 - B

1 +B

\biggr) \ell 

,

where the last inequality follows from observing that each vertex w \in U \prime \setminus A\prime with
\sansd \sansi \sanss \sanst (u,w) = \ell corresponds to a distinct path with \ell + 1 vertices between u and v in
G. This proves (9.11).

To prove (9.12), we focus on showing that | p1 - p\prime 1| \leq 1/(2n10), the other inequality
being completely analogous. We follow closely a similar argument which was presented
in the proof of Lemma 9.3. Let J be the set of vertices in V \prime \setminus (U \prime \cup A\prime ) whose distance
from u is exactly L  - 1 in T and note that | J | \leq bL since G has average growth b
up to depth L (cf. Definition 3.3). Note also that, conditioned on the configurations
on J and U \prime \cup A\prime , the probability that \sigma u = 1 depends only on T \prime (and not on the
configuration on the rest of the tree T ), i.e., we can write p1 as

\sum 
\iota :J\rightarrow \{ 1,2\} 

\pi T \prime (\sigma u = 1 | \sigma A\prime = \eta A\prime , \sigma U \prime \setminus A\prime = 1, \sigma J = \iota )\times \pi T (\sigma J = \iota | \sigma A = \eta , \sigma U\setminus A = 1).

(9.13)

Therefore, | p1  - p\prime 1| \leq 1/(2n10) will follow by showing that, for any configuration
\iota : J \rightarrow \{ 1, 2\} it holds that

(9.14)
\bigm| \bigm| \pi T \prime 

\bigl( 
\sigma u = 1 | \sigma A\prime = \eta A\prime , \sigma U \prime \setminus A\prime = 1, \sigma J = \iota 

\bigr) 
 - p\prime 1

\bigm| \bigm| \leq 1/(2n10).

We can expand p\prime 1 analogously to (9.13) by conditioning on the configuration on J ,
so to prove (9.14) it suffices to show that for any two configurations \iota 1, \iota 2 : J \rightarrow [q] it
holds that \kappa \leq 1/(2n10), where \kappa equals\bigm| \bigm| \pi T \prime 

\bigl( 
\sigma u = 1 | \sigma A\prime = \eta A\prime , \sigma U \prime \setminus A\prime = 1, \sigma J = \iota 1

\bigr) 
 - \pi T \prime 

\bigl( 
\sigma u = 1 | \sigma A\prime = \eta A\prime , \sigma U \prime \setminus A\prime = 1, \sigma J = \iota 2

\bigr) \bigm| \bigm| .
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By the strong spatial mixing result of Lemma 9.2, we have that

\kappa \leq 
\sum 
v\in J

\biggl( 
1 - B

B + 1

\biggr) dist(u,v)

= | J | 
\biggl( 
1 - B

B + 1

\biggr) L

\leq bL
\biggl( 
1 - B

1 +B

\biggr) L

.

Combining this with the choice of M \prime 
0 (cf. (9.9)), we obtain \kappa \leq 1/(2n10), thus

concluding the proof of | p1  - p\prime 1| \leq 1/(2n10) and therefore completing the proof of
Lemma 6.4.
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