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Abstract. We study the complexity of approximating the value of the independent set polyno-
mial Zg(A) of a graph G with maximum degree A when the activity A is a complex number. When
A is real, the complexity picture is well understood, and is captured by two real-valued thresholds \*
and Ac, which depend on A and satisfy 0 < A* < Ac. It is known that if A is a real number in the
interval (—A*, \¢) then there is a fully polynomial time approximation scheme (FPTAS) for approx-
imating Zg(\) on graphs G with maximum degree at most A. On the other hand, if A is a real
number outside of the (closed) interval, then approximation is NP-hard. The key to establishing this
picture was the interpretation of the thresholds A* and A. on the A-regular tree. The “occupation
ratio” of a A-regular tree T is the contribution to Z7(A) from independent sets containing the root
of the tree, divided by Zp(\) itself. This occupation ratio converges to a limit, as the height of
the tree grows, if and only if A € [=A*,\¢]. Unsurprisingly, the case where A is complex is more
challenging. It is known that there is an FPTAS when ) is a complex number with norm at most A*
and also when A is in a small strip surrounding the real interval [0, Ac). However, neither of these
results is believed to fully capture the truth about when approximation is possible. Peters and Regts
identified the complex values of A for which the occupation ratio of the A-regular tree converges.
These values carve a cardioid-shaped region Aa in the complex plane, whose boundary includes the
critical points —A\* and A.. Motivated by the picture in the real case, they asked whether Aan marks
the true approximability threshold for general complex values A. Our main result shows that for
every A outside of Aa, the problem of approximating Zg(\) on graphs G with maximum degree at
most A is indeed NP-hard. In fact, when )\ is outside of Aa and is not a positive real number, we
give the stronger result that approximating Zg (M) is actually #P-hard. Further, on the negative
real axis, when A < —\*, we show that it is #P-hard to even decide whether Zg(A) > 0, resolving
in the affirmative a conjecture of Harvey, Srivastava, and Vondrdk. Our proof techniques are based
around tools from complex analysis—specifically the study of iterative multivariate rational maps.

1. Introduction. The independent set polynomial is one of the most well stud-
ied graph polynomials, arising in combinatorics and in computer science. It is also
known in statistical physics as the partition function of the hard-core model. This pa-
per studies the computational complexity of evaluating the polynomial approximately
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when a parameter, called the activity, is complex. For properties of this polynomial
in the complex plane, including connections to the Lovasz local lemma, see the work
of Scott and Sokal [14]. For A € C and a graph G the polynomial is defined as
Za(X) = 3>°; Al] where the sum ranges over all independent sets of G. We will be
interested in the problem of approximating Z¢(A) when the maximum degree of G is
bounded.

When A is real, the complexity picture is well understood. For A > 3, let Ga be
the set of graphs with maximum degree at most A. The complexity of approximating
Za(X) for G € G is captured by two real-valued thresholds A\* and A. which depend
on A and satisfy 0 < A\* < A.. To be precise, \* = (AX# and A\, = %. The
known results are as follows.

1. If X is in the interval —\* < A < A, there is a fully polynomial time approx-
imation scheme (FPTAS) for approximating Zs(A) on graphs G € Ga. For
0 < X < A, this follows from the work of Weitz [17], while for —A* < A <0
it follows from the works of Harvey, Srivastava, and Vondrék [8] and Patel
and Regts [11].
2. If A < =X* or A > A, it is NP-hard to approximate |Zg(\)| on graphs
G € Ga, even within an exponential factor. For A > )., this follows from
the work of Sly and Sun [15], while for A < —A* it follows from the work of
Galanis, Goldberg, and Stefankovic [6].
The key to establishing this complexity characterization was the following interpre-
tation of the thresholds A* and A\.. Given a A-regular tree T' of height h with root p,

. . S ez M1
let pp denote the “occupation ratio” of the tree, which is given by p; = %’

where the sum ranges over the independent sets of T' that include the root p. It turns
out that the occupation ratio p; converges to a limit as h — oo if and only if the
activity A lies within the interval [—A\*,A.], so it turns out that the complexity of
approximating Zg(\) for G € Ga depends on whether this quantity converges.

Understanding the complexity picture in the case where A € C is more chal-
lenging. If A is a complex number with norm at most A* then there is an FPTAS
for approximating Zg(A) on graphs G € Ga. This is due to Harvey, Srivastava and
Vondrak and to Patel and Regts [8, 11]. More recently, Peters and Regts [12] showed
the existence of an FPTAS when A is in a small strip surrounding the real interval
[0, A\.). However, neither of these results is believed to fully capture the truth about
when approximation is possible. Motivated by the real case, Peters and Regts [12]
identified the values of A\ for which the occupation ratio of the A-regular tree con-
verges (for A > 3). These values carve a cardioid-shaped region A in the complex
plane, whose boundary includes the critical points —A\* and A.. The definition of A
is as follows (see Figure 1):!

(1.1) AA:{Aeclazec: |z\§1/(A71),>\:ﬁ}.

Peters and Regts showed that, for every A in the (strict) interior of Aa, the occupation
ratio of the A-regular tree converges, and asked whether the region A marks the true
approximability threshold for general complex values .

ITechnically, the word “cardioid” refers to a curve which can be obtained by a point on the
perimeter of a circle which is rolling around a fixed circle of the same radius. The region (1.1) does
not formally correspond to a cardioid in this sense, but its shape closely resembles a heart for all
values of A > 3, which justifies the (slight) abuse of terminology.
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A'(B) Ac(B)

Fic. 1. The cardioid-shaped region Aa in the complexr plane. We show that for all A €
C\(Aa UR>y), approzimating Zg(N\) is #P-hard. Previously, it was known that the problem is
NP-hard on the real line in the intervals A < —A\* and A > . Note, we have that the thresholds
—X*, Ac belong to A, by taking z = £1/(A —1) in (1).

Our main result shows that for every A outside of the region Aa, the problem
of approximating Z(A) on graphs G € Ga is indeed NP-hard, thus answering [12,
Question 1]. In fact, when X is outside of Aa and is not a positive real number,
we establish the stronger result that approximating Zg(\) is actually #P-hard. We
do this by showing that an approximation algorithm for Zg(A) can be converted
into a polynomial-time algorithm for exactly counting independent sets. Further, on
the negative real axis, when A < —\*, we show that it is #P-hard to even decide
whether Zg(\) > 0, resolving in the affirmative a conjecture of Harvey, Srivastava,
and Vondrak [8, Conjecture 5.1].

We need the following notation to formally state our results. Given a complex
number z € C, we use |z| to denote its norm and Arg(x) to denote the principal value
of its argument in the range [0, 27). We also define arg(x) = {Arg(x) + 275 | j € Z}.
For y,z € C, we use d(y, z) to denote the Ziv distance between them [18], namely,
d(y,z) = LZ‘) We denote by Cg the set of complex numbers whose real and

max NE
imaginary palf‘t?él ;lirle rational numbers (see Definition 3.4).

We consider the problems of multiplicatively approximating the norm of Zg(\),
additively approximating the argument of Zg()\), and approximating Zg(A) by pro-
ducing a complex number Z such that the Ziv distance d (2 . Z¢ (X)) is small. We start
with the following problem, which captures the approximation of the norm of Zg ().

Name #BipHardCoreNorm(\, A, K).

Instance A bipartite graph G with maximum degree at most A.

Output If |Z5(N\)| = 0 then the algorithm may output any rational number. Other-
wise, it must output a rational number N such that N/K < [Zg(\)| < KN.

Our first theorem shows that it is #P-hard to approximate | Zg ()| on bipartite graphs
of maximum degree A within a constant factor.

THEOREM 1.1. Let A > 3 and A € Cqg be such that A & (Aan UR>g). Then,
#BipHardCoreNorm(\; A, 1.01) is #P-hard.

Remark 1.2. The value “1.01” in the statement of Theorem 1.1 is not important.
In fact, for any fixed € > 0 we can use the theorem, together with a standard powerling
argument, to show that it is #P-hard to approximate |Zg(\)| within a factor of 2 .
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The following problem captures the approximation of the argument of Zg(\).

Name #BipHardCoreArg(\, A, p).

Instance A bipartite graph G with maximum degree at most A.

Output If Zg(A) = 0 then the algorithm may output any rational number. Otherwise,
it must output a rational number A such that, for some a € arg(Zg())),
|A—al <p.

Our second theorem shows that it is #P-hard to approximate arg(Zg(A)) on
bipartite graphs of maximum degree A within an additive constant 7/3.

THEOREM 1.3. Let A > 3 and A € Cqg be such that A & (Aa UR>g). Then,
#BipHardCoreArg(\, A, 7/3) is #P-hard.

Theorem 1.3 also has the following immediate corollary for the case in which A is
a negative real number, resolving in the affirmative [8, Conjecture 5.1].

COROLLARY 1.4. Let A > 3 and A € Q be such that A < —\*. Then, given as
input a bipartite graph G with maximum degree A, it is #P-hard to decide whether
Zg(/\) > 0.

Theorems 1.1 and 1.3 show as a corollary that it is #P-hard to approximate
Zc(A) within a small Ziv distance.

Name #BipComplexHardCore(), A).

Instance A bipartite graph G with maximum degree at most A. A positive integer
R, in unary.

Output If Zg(\) = 0 then the algorithm may output any complex number. Otherwise,
it must output a complex number z such that d(z, Zg(\)) < 1/R.

COROLLARY 1.5. Let A >3 and A € Cq be such that X\ & (Aa UR>q). Then, the
problem #BipComplexHardCore(\, A) is #P-hard.

Corollary 1.5 follows immediately from Theorem 1.1 using the fact (see [7, Lemma
2.1]) that d(2’, 2) < e implies |2'|/|z] < 1/(1 — €). This fact implies (see [7, Lemma
2.2]) that there is a polynomial Turing reduction from #BipHardCoreNorm(\, A, K)
to #BipComplexHardCore(A, A). Similarly, Corollary 1.5 can also be proved using
Theorem 1.3. To see this, note that for e < 1/3, d(2’,z) < e implies that there are
a € arg(z) and o’ € arg(z’) such that |a — a’| < 4/36¢/11. This fact is proved in
[7, Lemma 2.1] and it implies (see [7, Lemma 2.2]) that there is a polynomial Turing
reduction from #BipHardCoreArg(A, A, p) to #BipComplexHardCore(\, A).

Note that our #P-hardness results for A € Cg\(Aa UR>() highlight a difference
in complexity between this case and the case where A is a rational satisfying A > A.. If
A is a positive rational then Zg(\) can be efficiently approximated in polynomial time
using an NP oracle, via the bisection technique of Valiant and Vazirani [16]. Thus, in
that case approximation is NP-easy, and is unlikely to be #P-hard. The techniques
for proving hardness also differ in the two cases.

1.1. Proof approach. To prove our inapproximability results, we construct
graph gadgets which, when appended appropriately to a vertex, have the effect of
altering the activity A to any complex activity A’ that we wish, perhaps with some
small error €. In fact, it is essential for our #P-hardness results to be able to make
the error € exponentially small with respect to the number of the vertices in the graph
(see the upcoming Proposition 2.2 for details).
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Interestingly, our constructions are based on using tools from complex analysis for
analyzing the iteration of rational maps. We start with the observation that (A —1)-
ary trees of height h can be used to “implement” activities X’ which correspond to
the iterates of the complex rational map f : z — 1&\% Crucially, we show that
when A ¢ A, all of the fixpoints of f are repelling, i.e., applying the map f at any
point close to a fixpoint w will push us away from the fixpoint. In the iteration of
univariate complex rational maps, repelling fixpoints belong to the so-called Julia set
of the map; a consequence of this is that iterating f in a neighborhood U of a repelling
fixpoint gives rise to a chaotic behavior: after sufficiently many iterations, one ends
up anywhere in the complex plane.

This sounds promising, but how can we get close to a repelling fixpoint of f in the
first place? In fact, we need to be able to create arbitrary points in a neighborhood
U of a repelling fixpoint and iterating f will not get us anywhere close (since the
fixpoint is repelling). The key is to use a Fibonacci-type construction which requires
analyzing a more intricate multivariate version of the map f. Surprisingly, we can
show that the iterates of the multivariate version converge to the fixpoint w of the
univariate f with the smallest norm. Using convergence properties of the multivariate
map around w (and some extra work), we obtain a family of (univariate) contracting?
maps ®1, ..., ®; and a small neighborhood U around w such that U C U!_;®;(U). The
final step is to show that “contracting maps that cover yield exponential precision.”
To do this we first show that, starting from any point in U, we can apply (some
sequence of) ®q,...,P; at most poly(n) times to implement any point in U with
precision exp(—£2(n)). We then show that by iteratively applying the univariate map
f and carefully tracking the distortion introduced, we can eventually implement any
point in the complex plane with exponentially small error.

Section 2 gives a more detailed description of the proof approach, stating the
key lemmas, and explaining how they relate to each other. Section 3 gives some
preliminary definitions, which are not necessary for understanding the proof outline
in section 2, but are necessary once we start with the proofs. Section 3 also imports
some key facts from related works. Section 4 proves some key properties of the cardioid
defined by (1.1). The main technical part of the paper is contained in sections 5 and 6.
Section 5 shows how to implement activities with exponential precision. Section 6
shows how to obtain our inapproximability results, using these. Some of the technical
proofs for section 5 are deferred to section 7.

1.2. New developments. After this paper was written, Bencs and Csikvéri [2]
discovered a new zero-free region inside the region Aa. Using the algorithm of Patel
and Regts [11], this gives an FPTAS for approximating Zg(A) on graphs G € Ga
within this zero-free region. In addition to this, Rivera-Letelier [13] and Buys [4]
showed the existence of zeros inside the region Aa, close to the boundary.

2. Proof outline. In this section, we give a more detailed outline of the proof
of our results. We focus mainly on the case where A € Cg\(Aa UR). In section 2.7 we
describe suitable modifications that will give us the ingredients needed for negative
real values A € Q\Aa.

Let A € C and G = (V, E) be an arbitrary graph. We denote by Z the set of
independent sets of G (including the empty independent set). For a vertex v € V', we

2Let ® : C — C be a complex map. We say that ® is contracting on a set S C C if there exists a
real number M < 1 such that for all 2,y € S it holds that |®(z) — ®(y)| < M|z —y|.
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will denote

Z5,(N =Y A zEi oy = Y Al

I€Zg;vel I€Zg;vgl

Thus, Z§ ,(A) is the contribution to the partition function Zg(X) from those inde-
pendent sets I € Zg such that v € I; similarly, Z&" (\) is the contribution to Zg(\)
from those I € Z¢ such that v ¢ I.

DEFINITION 2.1. Fiz a complexr number A that is not 0. Given X, the graph G is
said to implement the activity X' € C with accuracy € > 0 if there is a vertex v in G
such that Zg"% (\) # 0 and

1. v has degree one in G, and
z8,(\)
780
We call v the terminal of G. If item 2 holds with e = 0, then G is said to implement
the activity N.

2. - N|<e.

The key to obtaining our #P-hardness results is to show that, given any target
activity \' € C, we can construct in polynomial time a bipartite graph G that im-
plements A with exponentially small accuracy, as a function of the size of \’. More
precisely, we use size(\, €) to denote the number of bits needed to represent the com-
plex number X' € Cg and the rational € (see Definition 3.4). The implementation that
we need is captured by the following proposition.

PROPOSITION 2.2. Let A > 3 and A € Cg be such that A ¢ Ax UR. There is an
algorithm which, on input X' € Cq and rational € > 0, outputs in poly(size(X, €)) time
a bipartite graph G of maximum degree at most A with terminal v that implements
N with accuracy €. Moreover, the algorithm outputs the values ZiC’},U(A)’ Z‘(’;“,E}(x\)

Proposition 2.2 is extremely helpful in our reductions since it enables us to con-
struct other gadgets very easily, e.g., equality gadgets that reduce the degree of a
graph and gadgets that can turn it into a bipartite graph. The proofs of Theo-
rems 1.1 and 1.3 show how to use these gadgets to obtain #P hardness. In this proof
outline, we focus on the most difficult part which is the proof of Proposition 2.2.

To prove Proposition 2.2, we will make use of the following multivariate map:

1

2.1 -
1) (@1, s2a) = T T

, where d := A — 1.
If, starting from 1, there is a sequence of operations (2.1) which ends with the value
x, for the purposes of this outline, we will loosely say that “we can generate the value
2” (the notion is formally defined in Definition 7.1). There is a simple correspondence
between the values that we can generate and the activities that we can implement:
in Lemma 7.2, we show that if we can generate a value z, we can also implement the
activity Az using a tree of maximum degree A.3

To get some insight about the map (2.1), the first natural step is to look at the
univariate case x; = --- = x4 = x, where the map (2.1) simplifies into

1

e
/ 14 Az
3Note the extra factor of A when we pass to the implementation setting which is to ensure the
degree requirement in item 1 of Definition 2.1; while the reader should not bother at this stage with
this technical detail, the statements of our lemmas are usually about implementing activities and
therefore have this extra factor A\ incorporated.
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Even analyzing the iterates of this map is a surprisingly intricate task; fortunately
there is a rich theory concerning the iteration of complex rational maps which we can
use (though much less is known in the multivariate setting!). In the next section, we
review the basic ingredients of the theory that we need; see [1, 9] for detailed accounts
on the subject.

2.1. Iteration of complex rational maps. We will use C=cCu {0} to
denote the Riemann sphere (complex numbers with infinity). To handle co, it will be
convenient to consider the chordal metric d(-,-) on the Riemann sphere C, which is
given for z,w € C by
2|z — w| 2

= 1. — =T o
(1421721 + [w|?)1/2 and d(z, 00) wgﬂmd(sz) (1+ |2[2)1/2

d(z,w) =

Note that d(z w) is bounded by an absolute constant for all z,w € C.

Let f : C — C be a complex rational map, i.e., f(z) = P(2)/Q(z) for some
coprime polynomials P, Q. We define f(co0) as the hmlt of f(z) when z — co. The
degree of f is the maximum of the degrees of P, Q. A point p € C is called a pole of
fif Q(p) = 0; when p = oo, p is a pole of f if 0 is a pole of f(1/2).

Suppose that z* € C is a fixpoint of f, i.e., f(z*) = z*. The multiplier of f at
is given by ¢ = f/(2*). If 2* = oo, the multiplier of f at z* is given by 1/f’(c0).
Depending on the value of |g|, the fixpoint z* is classified as follows: (i) attracting if
lg| < 1, (ii) repelling if |g| > 1, and (iii) neutral if |g| = 1.

For a nonnegative integer n > 0, we will denote by f™ the n-fold iterate of f (for

*

n = 0, we let fO be the identity map). Given 2y € ((Aj the sequence of points {z,}
defined by z, = f(zp—1) = f"(zo) is called the orbit of zg.

Given a rational map f : C - (C we will be interested in the sensitivity of an
orbit under small perturbations of the starting point. A point zg belongs to the Fatou
set if, for every e > 0 there exists § > 0 such that, for any point 2" with d(z’, z9) < 6, it
holds that d(f™(z"), f™*(z0)) < € for all positive integers n (in other words, zg belongs
to the Fatou set if the family of maps {f"},>1 is equicontinuous at zp under the
chordal metric). A point zg belongs to the Julia set if zy does not belong to the Fatou
set (i.e., the Julia set is the complement of the Fatou set).

LEMMA 2.3 (e.g., [9, Lemma 4.6]). FEwvery repelling fizpoint belongs to the Julia
set.

For z € C, the grand orbit [z] is the set of points 2’ whose orbit intersects the orbit
of z, i.e., for every 2’ € [z], there exist integers m,n > 0 such that f™(z) = f™(2').
The exceptional set of the map f is the set of points z whose grand orbit [z] is finite.
As we shall see in the upcoming Lemma 3.7, the exceptional set of a rational map f
can have at most two points and, in our applications, it will in fact be empty.

For zp € C and r > 0, we use B(zg,r) to denote the open ball of radius r around
z0. A set U is a neighborhood of z if U contains a ball B(zg,r) for some r > 0. We
will use the following fact.

THEOREM 2.4 (see, e.g., [9, Theorem 4.10]). Let f : C — C be a complex
rational map with exceptional set Er. Let zg be a point in the Julia set and let U be

an arbitrary neighborhood of zo. Then, the union of the forward images of U, i.e., the
set U,,>o f"(U), contains C\Ey.

Peters and Regts [12] used a version of Theorem 2.4 to conclude the existence
of trees T' and A’s close to the boundary of Aa such that Zp(A) = 0. We will use
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Theorem 2.4 as a tool to get our #P-hardness results for any A outside the cardioid
AA.

2.2. A characterization of the cardioid. To use the tools from the previous
section, we will need to analyze the fixpoints of the map f(z) = l-h\ﬁ We denote
by 9Aa the following curve (which is actually the boundary of the region A defined
in (1.1)):*

z
2.2 da={reC|3eC: l=1/(A-1), A= ——}.
(22) a={recim:ec: F=1/a-1. 2= g7
The following lemma is proved in section 4.
LEMMA 2.5. Let A > 3 and consider the map f(z) = H)\% for A€ C. Then,
1. for all X\ € AA\YAA, f has a unique attractive fizpoint; all other fizpoints are
repelling;
2. for all A € 9AA, f has a unique neutral fizpoint; all other fixpoints are re-
pelling;

3. for all X ¢ A, all of the fizpoints of f are repelling.

2.3. Applying the theory. We are now in a position to discuss in detail how
to apply the tools of section 2.1 and the result of section 2.2. Let A € Cg\(Aa UR).
By Lemma 2.5, all of the fixpoints of the map f(z) = H)\% are repelling. By
Lemma 2.3, all of the repelling fixpoints belong to the Julia set of the map and,
therefore, by applying Theorem 2.4, iteratively applying f to a neighborhood U of a
repelling fixpoint gives the entire complex plane. Therefore, if we want to generate
an arbitrary complex value X' € C, it suffices to be able to generate values in a
neighborhood U close to a repelling fixpoint of f. Of course, in our setting we will
also need to do this efficiently, up to exponential precision. The following proposition
is therefore the next important milestone. It formalizes exactly what we need to show
in order to be able to prove Proposition 2.2.

PROPOSITION 2.6. Let A >3 and A € Cg \ R, and set d := A — 1. Let w be the
fizpoint of f(x) = ﬁ with the smallest norm.5 There exists a rational p > 0 such
that the following holds.

There is a polynomial-time algorithm such that, on input X' € B(Aw,p) N Cg
and rational € > 0, outputs a bipartite graph G of mazximum degree at most A with

terminal_v that implements N with accuracy €. Moreover, the algorithm outputs the
values Z5 ,(N), Z&", (A).

To briefly explain why Proposition 2.2 follows from Proposition 2.6, we first show
how to use Proposition 2.6 to implement activities Az*, where z* is close to a pole p of
f (i.e., a point p which satisfies 1+Ap? = 0). For some r > 0, let U be the ball B(w,r)
of radius r around w. Using Theorem 2.4, we find the first integer value of N > 0

4The fact that the curve 9A, as defined in (2.2), is the boundary of the region Ax (defined in
(1.1)) follows from Lemma 4.1. Lemma 4.1 states that for every A € Aa, there is a unique z € C

such that |z| < 1/(A —1) and XA = ﬁ. Thus, the function g(z) = ﬁ is holomorphic and

injective on the open disc U given by |z| < 1/(A — 1). By the open mapping theorem, we have
that g(U) is an open set. Moreover, |g(z)| < |z|/(1 — |z])®~1, so g(U) is bounded. Since g extends
injectively and continuously to the closed disc |z| < 1/(A — 1), the boundary of g(U) is given by the
image of the circle |z| = 1/(A—1). (Alternatively, one can also apply the domain invariance theorem
to g.)

5Note, by Lemma 4.2, all the fixpoints of f have different norms for \ € Co \ R, so w is well-
defined.
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such that a pole p* belongs to fV(U); in fact, we can choose r (see Lemma 5.4) so
that there exists a radius r* > 0 such that B(p*,r*) C fV(U). The idea of “waiting
till we hit the pole of f” is that, up to this point, the iterates of f satisfy Lipschitz
inequalities, i.e., it can be shown that there exists a real number L > 0 such that
|fN(z1) — fN(22)| < L|z1 — 22| for all 21,25 € U. Therefore, for any desired target
x* € B(p*,r*) we can find w* € U such that fV(w*) = 2*. We then implement
Aw* using Proposition 2.6 with accuracy € > 0. Due to the Lipschitz inequality, this
yields an implementation of Az* with accuracy at most ALe, i.e., just a constant factor
distortion. Once we are able to create specified activities close to Ap*, where p* is a
pole we move from there using the recurrence f(z) = H-ﬁ and this enables us to
implement activities A’ with large norm. After that, we use the implementations that
we have to implement activities A’ with small norm and, finally, \’ with moderate
value of |\'| as well. See the proof of Proposition 2.2 in section 5.3 for more details.

2.4. Chasing repelling fixpoints. In this section, we focus on the proof of
Proposition 2.6, whose proof (given in section 7) requires us to delve into the analysis
of the multivariate map (restating (2.1))

1

- ———————— whered:= A — 1.
T v— where

(1,...,2q)
Recall, in the scope of proving Proposition 2.6, our goal is to generate points close
to a repelling fixpoint of the map f : z — ﬁ Since A is outside the cardioid
region Aa, the fixpoints of the map f are repelling and therefore we cannot get close
to any of them by just iterating f. Can the multivariate map make it easier to get to
a fixpoint of f? The answer to the question is yes, as the following lemma asserts.

LEMMA 2.7. Let A >3 and A € C\ R, and set d := A — 1. Let w be the fizpoint

of f(x) = ﬁ with the smallest norm. For k > 0, let xi be the sequence defined by

1

=———— fork>d.
DY §

(2.3) To=x1 =+ =Tg_1=1, xp

Then, the sequence xy, is well-defined (i.e., the denominator of (2.3) is nonzero for
all k > d) and converges to the fizpoint w as k — co. Moreover, there exist infinitely
many k such that xj # w.

Note, Lemma 2.5 gurarantees that the fixpoint w in Lemma 2.7 is repelling when
A € C\(Aa UR), so Lemma 2.7 indeed succeeds in getting us close to a repelling
fixpoint in this case. It is instructive at this point to note that the sequence in (2.3)
corresponds to a Fibonacci-type tree construction Ty, ..., Ty, where for k > d tree
T}, consists of a root r with subtrees T;_g,...,Tr_1 rooted at the children of r. The
trees Ty _q, ..., Tx_1 generate the values xx_g4,...,xr_1, respectively, and the tree Ty
generates the value .

A few remarks about the proof of Lemma 2.7 are in order. Analyzing the behavior
of multivariate recurrences such as the one in (2.3) is typically an extremely compli-
cated task and the theory for understanding such recurrences appears to be still under
development. Fortunately, the recurrence (2.3) can be understood in a surprisingly
simple way by using the linear recurrence Ry defined by Ry = --- = Ry = 1 and
Ri11 = Ri + ARy—g for all k > d, and observing that x;, = Rj/Ri41 for all k. By
interpreting Ry as the independent set polynomial of a claw-free graph evaluated at
A € C\R, we obtain using a result of Chudnovsky and Seymour [5] that Ry # 0. The
detailed proof of Lemma 2.7 can be found in section 7.1.
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2.5. Exponential precision via contracting maps that cover. Lemma 2.7
resolves the intriguing task of getting close to a repelling fixpoint w of the univariate
map when A € C\(Aa UR). But in the context of Proposition 2.6 we need to accom-
plish far more: we need to be able to generate any point which is in some (small) ball
U around the fixpoint w with exponentially small error e.

To do this, we will focus on a small ball U around w, i.e., U = B(w,d) for some
sufficiently small § > 0, and we will examine how the multivariate map (2.1) behaves

when z1,...,zq € U. In particular, we show in Lemma 7.9 that for any choice of
r1,...,2q € U it holds that

1
(2.4) ~w+z((z1—w)+- -+ (zg—w)) for z € C\R and 0 < || < 1.

14+ Az 2yg

To establish (2.4) we choose z = w — 1 so it is important (see Lemma 7.4) that
w satisfies 0 < |w — 1] < 1. Another important observation is that once we fix
Z1,...,24—1 € B(w,d), the resulting map ® is contracting with respect to the re-
maining argument x4 (in the vicinity of w); see Lemma 7.11 for a more detailed
treatment of this contraction.

The observation that ® is contracting will form the basis of our approach to
iteratively reduce the accuracy with which we need to generate points (by going
backwards): if we need to generate a desired x € U with error at most e it suffices to
be able to generate ®~!(z) with error at most €/|z| > ¢, i.e., to generate x with good
accuracy, we only need to do the easier task of generating the point ®~!(z) with less
restrictive accuracy. The only trouble is that, if we use a single map ®, after a few
iterations of the process the preimage ®~!(x) will eventually escape U. To address
this, note that in the construction of the map ® above, we had the freedom to choose
arbitrary z1,...,24-1 € B(w,d). We will make use of this freedom and, in particular,
we will use a family of contracting maps @1, ..., ®; (for some large constant t) instead
of a single map ®; the large number of maps will allow us to guarantee that for all
x € U, at least one of the preimages ®;*(z),...,®; ' (x) belongs in U, i.e., that the
images ®1(U),...,®:(U) cover U. We will discuss in section 2.6 how to obtain the
maps P, ..., P, but first let us formalize the above into the following lemma, which
is the basis of our technique for making the error exponentially small.

LEMMA 2.8. Let zg € Cqg, r > 0, be a rational, and U be the ball B(zg,r). Further,
suppose that X|,...,\; € Cq are such that the complex maps ®; : z — with
1 € [t] satisfy the following:

1. for each i € [t], ®; is contracting on the ball U;

2. UC U, &(U).
There is an algorithm which, on input of (i) a starting point xo € UNCq, (ii) a target
x € UNCq, and (iii) a rational € > 0, outputs in poly(size(zo, x,€)) time a number
€ UNCq and a sequence iy, iz, ..., i € [t] such that

F=0; (P4, _, (- Py (xg)---)) and |Z — x| < e.

_1
1+M 2

The proof of Lemma 2.8 can be carried out along the lines we sketched above;
see section 5.1 for details. In that section, we also pair Lemma 2.8 with a path
construction which, given the sequence of indices i1, ...,4, returns a path of length
k that implements A% (cf. footnote 3 for the extra factor of A); see Lemma 5.2 for
details.

2.6. Constructing the maps. We next turn to the last missing piece, which
is to create the maps @4, ..., ®; which satisfy the hypotheses of Lemma 2.8 in a ball
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U = B(w,d) around the fixpoint w for some small radius ¢ > 0 (note, we are free
to make § as small as we wish). The following (standard) notions of “covering” and
“density” will be relevant for this section.

DEFINITION 2.9. Let U C C. A set F C U is called an e-covering of U if for
every x € U there exists y € F such that |x —y| <e. A set F CU is called dense in
U if F is an e-covering of U for every € > 0.

We have already seen in section 2.5 that, for arbitrary x1,...,24 € U, we have
(restating (2.4))
1
FRTp v ~w+z((z —w)+ -+ (wg —w)) for € C\R and 0 < |2| < 1.
We also discussed that, if we fix arbitrary 1, ..., z4—1 € U, the resulting map ®(x) =

m is contracting in U for all sufficently small § > 0, and therefore we
can easily take care of the contraction properties that we need (in the context of
Lemma 2.8). The more difficult part is to control the preimage of the map ®. We

show in Lemma 7.10 that for z,z1,...,z4_1 € U, it holds that

d—1

00 = g () e (- e )

j=1

Therefore to ensure that ®~!(z) belongs to U = B(w,d) we need to ensure that
T1,...2Tq_1 are such that

(2.5)

d—1
=

zw —z_:(xj —w)) < §/2.

Jj=1

Note that by Lemma 2.7 we can generate points arbitrarily close to w and hence we
can make each of z9 —w,...,x4-1 — w so small that they are effectively negligible
in (2.5); then, to be able to satisfy (2.5), we need to be able to choose x; so that
|(z —w)/z — (z1 — w)]| is small, say less than §/4. Since |(x —w)/z| < §/|z|, the key
will therefore be to produce a (§/4)-covering of the slightly enlarged ball B(w,d/|z|).
Then, we can take 21 to be one of the points in the (§/4)-covering.

We will in fact show the following slightly more general lemma, which guarantees
that we can indeed generate the required points around w for any desired precision
e > 0 provided that we choose § small enough (and can therefore implement ac-
tivities around Aw). Note that the lemma can be viewed as a “relaxed” version of
Proposition 2.6 with much weaker guarantees.

LEMMA 2.10. Let A > 3 and A € Cg \ R, and set d := A — 1. Let w be the
fizpoint of f(x) = ﬁ with the smallest norm. For any €,k > 0 there exists a
radius p € (0,k) such that the following holds. For every X' € B(\w,p), there exists
a tree G of maximum degree at most A that implements N with accuracy pe.

But how can we “populate” the vicinity of w, i.e., generate a covering of a ball
U = B(w,d)? Lemma 2.7 only shows that we can generate points arbitrarily close to
w. The key once again is to use the multivariate map around w and, in particular,
the perturbation estimate in the right-hand side (r.h.s.) of (2.4). To focus on the
displacement from w, we will use the transformation a; = x; —w so that (2.4) translates
into the following operation

(aty...,aq) — z(ar + - + aq),
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i.e., if we have generated points which are displaced by a1, ..., aq from w, we can also
generate a point which is roughly displaced by z(a1+- - -+aq) from w; we will only need
to apply the operation a finite number of times, so the error coming from (2.4) will
not matter critically and can be ignored in the following. We show in Lemma 7.8 that,
using a sequence of such operations, we can generate points of the form w+ zN(p)p(z),
where p is an arbitrary polynomial with nonnegative integer coefficients and N (p) is
a positive integer which is determined by the number of operations we used to create
p. We further show in Lemma 7.5, that for all z € C\R with |z| < 1, the values p(z),
as p ranges over all polynomials with nonnegative integer coefficients, form a dense
set of C. Therefore, to obtain Lemma 2.10, we can choose an e-covering F' of the unit
disc using a finite set of values p(z) and set § = 2V, where N = max,cr N(p); then,
we can generate the points w + 0p(z) for every p € F', which form an (ed)-covering of
the ball U = B(w, ¢), yielding Lemma 2.10. The full proof is in section 7.2.

2.7. Fitting the pieces together and proof for the real case. We briefly
summarize the proof of Proposition 2.6. First, we get points close to a repelling
fixpoint by showing Lemma 2.7 (discussed in section 2.4 and proved in section 7.1).
Then, we bootstrap this into a moderately dense set of points around the fixpoint,
yielding Lemma 2.10 (discussed in section 2.6 and proved in section 7.2). Further, we
bootstrap this into exponential precision around the fixpoint using Lemma 2.8 (dis-
cussed in section 2.5 and proved in section 7.3). Finally, we propagate this exponential
precision to the whole complex plane, therefore yielding Proposition 2.6 (discussed in
section 2.3 and proved in section 5.3).

Finally, we mention the modifications needed for the real case when A < —A*. The
following proposition is the analogue of Proposition 2.2 and allows us to implement
real activities with exponential precision.

PROPOSITION 2.11. Let A > 3 and A € Q be such that X < —\*. There is an
algorithm which, on input N, e € Q with € > 0, outputs in poly(size(N',€)) time a
bipartite graph G of maximum degree at most A with terminal v that implements X'
with accuracy e. Moreover, the algorithm outputs the values Z (), Z&" (N).

As in the complex case, we will need a moderately dense set of activities to get
started, i.e., an analogue of Lemma 2.10; here, our job is somewhat simplified (relative
to the case where A € C\R) since we can use the following result of [6] .

LEMMA 2.12 (see [6, Lemma 4]). Let A > 3 and A\ < —\*. Then, for every
X € R, for every e > 0, there exwists a bipartite graph G of mazximum degree at most
A that implements X' with accuracy e.

Note that Lemma 2.12 does not control the size of the graph G with respect to
the accuracy €, so it does not suffice to prove Proposition 2.11 on its own. In order
to do this, we use the “contracting maps that cover” technique to get the exponential
precision, i.e., the analogue of Lemma 2.8 restricted to the reals (see Lemma 5.1).
The proof of Proposition 2.11 is completed in section 5.2.

Once the proofs of Propositions 2.2 and 2.11 are in place, we give the proofs of
our #P-hardness results in section 6.

2.8. Dependencies between lemmas. The proofs of some theorems, propo-
sitions, and lemmas depend directly upon other theorems, propositions, and lemmas
that are proved in this paper. To help the reader keep track of this, we provide
Table 1. Note that Theorems 1.1 and 1.3 follow directly from Theorems 6.6 and 6.8.
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TABLE 1
Dependencies between lemmas, etc.

[ Result [ Depends directly on
Proposition 2.2 Proposition 2.6, Lemma 5.4
Lemma 2.5 Lemma 4.1
Proposition 2.6 Lemmas 2.8, 5.2, 7.12
Lemma 2.7 Lemmas 4.2, 7.3
Lemma 2.10 Lemmas 2.7, 7.2, 7.4, 7.5, 7.8, 7.9
Proposition 2.11 | Lemmas 5.1, 5.2, 5.3
Lemma 5.4 Lemma 2.5
Lemma 6.3 Lemmas 6.1, 6.2
Theorem 6.4 Propositions 2.2, 2.11, Lemma 6.3
Theorem 6.6 Theorem 6.4
Theorem 6.8 Propositions 2.2, 2.11, Lemma 6.7
Lemma 7.4 Lemma 4.2
Lemma 7.11 Lemmas 7.4, 7.9
Lemma 7.12 Lemmas 2.10, 7.4, 7.9, 7.10, 7.11

3. Preliminaries.

3.1. Implementing activities. We recall the following definitions from [6],
which we modify (slightly) here to account for complex activities.

DEFINITION 3.1. Let A > 2 be an integer and A € Cro. We say that (A, N)
implements the activity A € C if there is a bipartite graph G of mazimum degree
at most A which implements the activity N'. More generally, we say that (A, )
implements a set of activities S C C if for every X € S it holds that (A, ) implements
N,

Implementing activities allows us to modify the activity at a particular vertex v.
As in [6], it will therefore be useful to consider the hard-core model with nonuniform
activities. Let G = (V, E) be a graph and A = {\, },ev be a complex vector, so that
Ay is the activity of the vertex v € V. The hard-core partition function with activity

vector A is defined as
N | B
I€Tg vel

Note that by setting all vertex activities equal to A we obtain the standard hard-core
model with activity A. For a vertex v € V, we define ZI(X) and Z&'*(X) for the non-
uniform model analogously to Zf(\) and Z&'*(\) for the uniform model, respectively.

The following lemma is proved in [6] for real values but the proof holds verbatim
in the complex setting as well. The lemma connects the partition function Zg(A) of a
graph G with nonuniform activities to the partition function Zg/ () of an augmented
graph G’ with uniform activity A (the augmented graph G’ is obtained by sticking on
each vertex v of G a graph G, which implements the activity A,).

LEMMA 3.2 (see [6, Lemma 5]). Let A € Cxg, let t > 1 be an arbitrary integer,
and let N\,...,\; € C. Suppose that, for j € [t], the graph G; with terminal v; im-
plements the activity X, and let C; := %L;t)vj (N). Then, the following holds for every
graph G = (V, E) and every activity vector X = {\, }yev such that A\, € {\, A\, ..., A}
for everyv € V.

For j € [t], let Vj :={v € V | \, = X}. Consider the graph G’ obtained from G
by attaching, for every j € [t] and every vertex v € Vj, a copy of the graph G; to the

verter v and identifying the terminal v; with the vertex v. Then, for C = H;zl C}‘GI,
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1t holds that

(3.1) Zar(N) =C - Za(N),
(3.2) Yo eV: Z& ,(A) =C - Z§ ,(N), Zg,(N) = C - Zg" (N).

/v

Remark 3.3. As noted in [6, Remark 6], the construction of G’ in Lemma 3.2
ensures that the degree of every vertex v in G with A, = A maintains its degree, while
the degree of every other vertex v in G gets increased by one. Also, if the graph G is
bipartite and the graphs G; are bipartite for all j = 1,...,¢, then G’ is bipartite as
well.

These observations will ensure in later applications of Lemma 3.2 that we do not
blow up the degree and that we preserve the bipartiteness of the underlying graph G.

3.2. Finding roots of polynomials. To prove our #P-hardness results, we
will sometimes need in our reductions to compute with accuracy € roots of polynomial
equations with coefficients in Cg. We will therefore need some basic results that these
procedures can be carried out in polynomial time. To formalize the running time, we
will use the following definition for the size of a number in Cg.

DEFINITION 3.4. Let Cg be the set of complex numbers whose real and imaginary
parts are rationals. Let a € Cq and write a = § +13, where a, b, c,d are integers such
that ged(a,b) =1, ged(e,d) = 1. Then, the size of a, denoted by size(a), is given by
1+ log(|al + |b] + |c| + |d]).

For ayq,...,04 € Cq, size(ay,...,a:) denotes the total of the sizes of as, ..., az.

We will need the following fact for finding roots of polynomials with complex
coeflicients.

LEMMA 3.5 (see, e.g., [10]).  There is an algorithm which, on input of a co-
efficient list co,...,c, € Cqg with ¢, # 0 and a rational € > 0, outputs in time
poly(n, size(co, . . ., Cn, €)) numbers p1,..., pn € Cq such that

‘p17ﬁ1|a~“7|pn*ﬁn| <€
where py, ..., pn are the roots of the polynomial P(x) = > ¢;x".

3.3. Lower bounds on polynomials evaluated at algebraic numbers. Let
P(z) = Y, a;z" be a polynomial with complex coefficients. The (naive) height of
P(z) is defined as H(P) = max;{|a;|}. In transcendental number theory, the height
of a polynomial in x is used to give a lower bound on its value when z is an algebraic
number. The simple version of the lower bound that we use (Lemma 3.6 below) is
from [7, Lemma 6.3] but the proof is entirely standard, and the proof given in [7] is
taken from the proof of Theorem A.1 of Bugeaud’s book [3].

Recall, that the minimal polynomial for an algebraic number is the monic poly-
nomial of minimum degree and rational coefficients which has « as a root; the degree
of an algebraic number is the degree of its minimal polynomial.

LEMMA 3.6 (Liouville’s inequality). Let P(x) be an integer polynomial of degree n
and y € C be an algebraic number of degree d. Then either p(y) = 0 or |P(y)| >

c,"(n+ 1)H(P)_d+1, where ¢, > 1 is an effectively computable constant that only
depends on y.

3.4. Characterizing the exceptional set. We conclude this section with the
following characterization of the exceptional set (cf. Theorem 2.4).
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LEMMA 3.7 (see [9, Lemma 4.9] and [1, Theorem 4.1.2]). Let f : C — C be
a complex rational map of degree > 2 and let Ef denote its exceptional set. Then,
|E¢| < 2. Moreover,
o if By = {(}, then C is a fizpoint of f with multiplier 0.
o if B ={(1,(a}, then (1, (o are fizpoints of f2 with multiplier 0.

4. Proving the properties of the cardioid. In this section, we will prove
Lemma 2.5 which classifies the fixpoints of the map f(z) = W\% depending on
the value of .

We start by proving the following property of the region Aa defined in (1.1).

LEMMA 4.1. Let A > 3 be an integer. Then, for every A € Aa, there is a unique
z € C such that [2| <1/(A —1) and A = =55

Proof. Existence of z € C with the required properties is immediate by the defi-
nition of Aa.

To show uniqueness, set d := A — 1, and assume for the sake of contradiction that
there exist 2,y € C with  # y such that |z|,|y| < 1/d and X\ = (1_;)“1 = (1_3)d+1.
This gives

2(1 -y —y(1 - 2)™ =0,

By expanding terms we obtain that

d+1
o= )™ =1 =) = =)= 3 (T ) et -,
k=2

Since  # y and z(1 — y)?! — y(1 — ) = 0, we can factor out (z — ) to obtain

that
e VP S k—2 s
— - _1\k J,,(k—2)—J
M—17WhereM.—Z< k )( 1)my2xy .
k=2 3=0
We will first show that |M| = 1 only if x, y are conjugate complex numbers satisfying
|z| = |y| = 1/d. Then, we will bootstrap the argument to show that |M| = 1 further
implies that =,y € R. Thus, we will get that = = y, contradicting that x # y.
The main observation is that since |z|, |y| < 1/d, by the triangle inequality we
have that

d+1

d+1 k—2
) Sl (e [CI) DEVE R D oY (e )|x||y§j|x|f|y|k =
' <
k=2 =0 k=2

(4.1) < di <d+ 1) =1,

where the last equality follows from subtracting the equalities

S ()N () - (- () ()

k=2 k=2
% d+1 i_<d+1)d+1_1_d+1
2\ Kk Jar T \Td d

It follows that the inequality in (4.1) must hold at equality, from where we obtain that
|z| = |y| = 1/d. Further, since Ty T = (1_yy)d+1, we obtain that |1 —z| = |1 — y].
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Now, since = # y, from |z| = |y| = 1/d and |1 — x| = |1 — y|, we obtain that x and y
are conjugate complex numbers with |z| = |y| = 1/d.

Since x # y and z,y are conjugates, the imaginary parts of both z and y must be
nonzero. Without loss of generality (w.l.o.g.), we may assume that the imaginary part
of x is positive, so we can set z = éei‘g and y = ée_ie for some 6 € (0,7). For each
k=2...,d+1, let M} :=zy Zf;g 2z7y(*=2)=J Observe that My, is a real number
(since it equals its conjugate) satisfying |Mj| < (k —1)/d*. In fact, we have that

ol — k=1 sin((k —1)0)

M, = =
L T —y dk sin 0

for each k = 2,...,d + 1 and in particular My = 1/d?. Using the triangle inequality

again, we have that
d+1
d+1\k—-1
< — =1
(V)

so the inequality must hold at equality. For this to happen, and since the Mj’s
are real numbers, it must be the case that there exists s € {0,1} so that M =
(=1)k*+3(k —1)/d" for each k = 2,...,d + 1. From My = 1/d?, we obtain that s = 0.
Note that d > 2, so M3 = —2/d? yields that sin(20) = —2sin(f). By the identity

1= M| = df(d?)(—l)wk

k=2

sin(26) = 2sinf cosf, we obtain that at least one of sinf = 0 or cos = —1 must
hold, which contradicts that 6 € (0, 7).
Thus, it must be the case that x = y, concluding the proof of Lemma 4.1. ]

We are now ready to prove Lemma 2.5, which we restate here for convenience.

LEMMA 2.5. Let A > 3 and consider the map f(z) = H*Aiﬁ for A€ C. Then,
1. for all x € AA\OAA, [ has a unique attractive fizpoint; all other fixpoints are
repelling;
2. for all A € 9AA, f has a unique neutral fizpoint; all other fixpoints are re-
pelling;
3. for all X & A, all of the fizpoints of f are repelling.

Proof. Let w € C be an arbitrary fixpoint of f so that

(4.2) w= 1T owh T or, equivalently, Aw™ =1 — w.
w
Let g := f’(w) be the multiplier of f at z = w. We have that
(A —1)Iw?r2
(4.3) q=f'(w):—mZ—(A—l)AwAZ—(A—l)(l—W),

where in the latter two equalities we used (4.2). Let & := 1 —w. Then, (4.2) and (4.3)
give

~

w

4.4 A= —r =A-1)|¥|.
(4.4) -2~ lal = ( ) [l
We are now ready to prove the lemma. Let wq,...,w; denote the distinct fixpoints of
f (note that 1 < ¢ < A) and for i € [t], let ¢; be the multiplier of f at w;. Further,
let @; =1 — w;. Then, (4.4) gives that for all ¢ € [¢] it holds that
(15 yo S el = (A - 1)

M - (1 _ @)A’ q’L - ]
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For A € Ap\UAA, there exists j € [t] such that |w;| < 1/(A—1) (by the definition
of the regions Ax and YAa) and hence |¢;| < 1. By Lemma 4.1, for all ¢ € [t] with
i # j it holds that |;| > 1/(A — 1) and hence |g;| > 1. This proves item 1.

For X € YAa, there exists j € [t] such that |0;| = 1/(A — 1) (by the definition of
the region YAa) and hence |¢;| = 1. Again, by Lemma 4.1, for all ¢ € [t] with i # j
it holds that |&;] > 1/(A — 1) and hence |g;| > 1. This proves item 2.

For A ¢ Aa, we have that every «&; satisfies |&;] > 1/(A — 1) (by the definition of
the region Aa) and hence |g;| > 1. This proves item 3.

This concludes the proof of Lemma 2.5. ]

We close this section with the following lemma that applies to all A € C\R.

LEMMA 4.2. Let A € C\R and A > 3. Then, the fizpoints of the map f(z) =

H_)\% have (pairwise) distinct norms.

Proof. For convenience, let d := A—1. The fixpoints are roots of Az#t1 42 —1. It

will be convenient to reparameterize z = 1/y and consider the roots of A + 2% — z4+1.
(Note that for y; = 1/21,y2 = 1/29, we have |z1| = |22 if and only if |y1| = |y2].)

For the sake of contradiction, suppose that A = y¢+! — y¢ has two roots y1, 9o of
the same norm, that is |y1| = |y2|. We have
d d
Al = [y |“(yr = 11) = [y2]*(ly2 — 1)),
and since |yi| = |y2| we conclude |y; — 1| = |y2 — 1|. Note that this means that

y1,y2 lie on the intersection of two circles—one centered at 0 and one centered at 1.
This means that y; and yo are conjugate (since the centers lie on the real line and
if two circles intersect in 2 points then the points are symmetric about the segment
connecting the centers) and thus

X=gr =gt =yt g = A

that is, A € R. ]

5. Impementing activities with exponential precision. In this section, we
prove our main implementation results, Propositions 2.2 and 2.11. We start in sec-
tion 5.1 by proving Lemma 2.8 and its analogue for the real case that will help us
obtain the exponential precision; we also give a path construction that will give us the
desired implementations. Then, in section 5.2, we give the proof of Proposition 2.11
for the real case and, in section 5.3, the proof of Proposition 2.2 for the complex case.

5.1. Contracting maps that cover yield exponential precision. We first
restate here Lemma 2.8 for convenience.

LEMMA 2.8. Let zg € Cqg, r > 0, be a rational, and U be the ball B(zg,r). Further,
suppose that Nj,...,\; € Cq are such that the complex maps ®; : z — with
1 € [t] satisfy the following:

1. for each i € [t], ®; is contracting on the ball U;

2. UC U, @:(U).
There is an algorithm which, on input of (i) a starting point xo € UNCq, (ii) a target
x € UNCyg, and (iii) a rational € > 0, outputs in poly(size(xg, z,€)) time a number
€ UNCq and a sequence iy, iz, ..., i € [t] such that

F=0; (P4, _, (- Py (xg)--+)) and |Z — x| < e.

_1
1+)\§z

The following is the exact analogue of Lemma 2.8 for the real case. For z € R
and r > 0, we use I(z,7) to denote the interval of length 2r centered at z.
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LEMMA 5.1. Let zg € Q andr > 0, be a rational. Suppose further that X\, ..., A, €
Q are such that the real maps ®; : z — ﬁ with i € [t] satisfy the following:
1. for each i € [t], ®; is contracting on the interval I1(zo,7);
2. I(20,7) €U, ®i(I(20,7))-
There is an algorithm which, on input of (i) a starting point xo € I(z9,7) N Q,
(i) a target x € I(z9,7) N Q, and (iii) a rational € > 0, outputs in poly(size(xo, z,€))
time a number & € I(zo,7) N Q and a sequence iy,ia, ..., i € [t] such that

T = (I)lk(q)lk—l( . '(I)il(l'o) s )) and |i’ — .’E| é €.

Proof of Lemmas 2.8 and 5.1. We focus on proving Lemma 2.8, since the proof
of Lemma 5.1 is almost identical; one only needs to replace the ball B(zp,r) with the
interval I(zg,r) in the following argument.

Since the maps ®; are contracting on the ball B(zg,r) for all ¢ € [t], there exists
a real number M < 1 such that for all ¢ € [t] and all z,y € B(zp,7), it holds that

(5.1) |@i(x) = @i(y)| < Mz —yl.

W.lo.g., we assume that M € Q.

Let xg,z € B(z,7)NCq and € € (0,1). We are now going to describe a procedure
that produces a point that is at distance at most € from z in time polynomial in
size(xo, , €).

GetPoint(z, €)

if € > |x — x|, then return xg

else
let i € [t] be such that x € ®;(B(z0,7))
y < GetPoint(®; ' (z), e/M)
return & = ®,(y)

Note that, in each recursive call of the procedure GetPoint(, -), the second parameter
increases by a factor 1/M and hence the number N of recursive calls is bounded by
1+logy /0 (27/€) = O(size(e)). Moreover, we can find i € [t] such that z € ®;(B(z0,7))
in time polynomial in size(z, €) (since we can compute ®; *(z) for each i € [¢] and check
whether |®; ! (z) — 29| < 7). Finally, note that, in each recursive call of the procedure
GetPoint(-, -), the first parameter is always from B(zg, r) since z € ®;(B(z0,7)).

The correctness of the algorithm is proved by induction on the number N of
recursive calls. In the base case N = 0, we have € > |z — xg| and the procedure
returns xg which is at distance at most € from x. For the inductive step we have
ly — ®; ! (z)| < ¢/M and hence by (5.1)

-1
[©i(y) —z| < My — @7 (z)| < e
It remains to observe that we can modify the procedure GetPoint(z, €) so that it also
returns the desired sequence 1,49, . .., k. 0

We will pair our applications of Lemmas 2.8 and 5.1 with the following path
construction.

LEMMA 5.2. Fiz A € Cq. Let xo,\},..., A\, € Co\{0} and, fori € [t], consider

the maps ®;(z) = T&,Z for z # =3, Let iy, i, ..., i € [t] be a sequence such that
D, (Psy,_, (- @iy (z0)--+)) =& for some & € C.
Let P be a path of length k + 1 whose vertices are labeled as vg,v1, ..., Vg, Vgt1-

Let A\ be the activity vector on P given by

>\U0 = (1 - LL’())/IEQ, Avj = )\;J forj € [k], A =\

Vk+1
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P Uk 1 (>‘)

Then, it holds that Zg%,  (X) # 0 and e AZ.  Moreover, there is an

Uk+1
algorithm that, on input o, \y,...,\;,k, computes the quantities Z3 (A) and

Pk 1
2%, (A) in time polynomial in k and size(zo, Ay, ..., At).

Proof. For j = 0,1,...,k, denote by P; the path of length j induced by the
vertices vg,v1,...,v;; the activity of a vertex v; in P; is equal to the activity of the
vertex v; in P. To 5implify notation, we will drop the activity vector A from notation,
i.e., we will write ZP ;0 2P, Zp, instead of Z v; (A ZB5, (X)), Zp, (A).

We will show by induction on j that

Pj,v;

(5.2) 7

= .’Ej, where £Cj = (I)i]. (@ijfl(. ce (I)il (.’Eo) e ))

For 7 = 0, we have

(53) ZOUt = 1, ZPO =1+ )\0 = 1/.’E0,

Po,vo

and therefore (5.2) holds. Assuming that (5.2) holds for some j in 0,...,k — 1, we
show that it holds for j + 1 as well. Note that z;,; = ®;,, (z;) and therefore

out
—1/\,. i 1€ ij,vj/ZPJ —1/N . We have
out .
(5.4) Pji1vi41 — Zp;,
: in out _ out
2Py = ZPJ+17UJ+1 + ZPJ+1’UJ+1 - )\Uj+1ZPj711j +2Zp; 70
and therefore
o 1
J+1Y5+1 o ) N )
Z o za = Qi (%) = zj41.
Pji1 14X Pjvj

Vi+1 " Zp,

This finishes the proof of (5.2) for all j =0,1,...,k. To conclude the proof, note that

in _ t t
- T
ZP,vk+1 = ZPk # 0,
Zin
so that gt = AZ. Finally, note that using (5.3), (5.4), (5.5), we can also compute
Pogiq
ZEUH1(>‘) and Zg%  (A) in time polynomial in k and size(zo, A, ..., ;). This
completes the proof of Lemma 5.2. O

5.2. Proof of Proposition 2.11 (real case). To prove Proposition 2.11, we
will bootstrap Lemma 2.12 to obtain implementations that control logarithmically
the size of G in terms of the desired accuracy e. The following technical lemma will
allow us to use Lemma 5.1.

LEMMA 5.3. Let A\j = —1/4, X5 = —6/25, and I be the interval [7/4,11/6]. Let
n = 10719, then the following holds for all X} € [\;—n, \;+n] and Ny € [N5—n, \3+1n).

The maps ®1(z) = ﬁ and ®o(x) = are contracting on the interval I
and, moreover, I C ®1(I) U Po(1).

_1
1+
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Proof. For all \| € [A\] —n, AT +n] and N\, € [N\ —n, A5 + 7], we have that ®1, P,
are increasing, while @, @, are decreasing. Therefore

Dy (1) = [©1(7/4), 21 (11/6)],  P2(I) = [@2(T7/4), P2(11/6)],
D (1) = [®1(11/6), D1 (7/4)],  P5(1) = [D5(11/6), D5(7/4)].
By calculating the relevant function values, we obtain that

(178, 1.84] C @1(I),  [L.73,1.78] C ®o(I),  max {|®) ()], @h()|} < 9/10,

and the lemma follows. 0

We are now ready to give the proof of Proposition 2.11, which we restate here for
convenience.

PROPOSITION 2.11. Let A > 3 and A € Q be such that X\ < —X*. There is an
algorithm which, on input N e € Q with ¢ > 0, outputs in poly(size(N,¢€)) time a
bipartite graph G of mazimum degree at most A with terminal v that implements N
with accuracy €. Moreover, the algorithm outputs the values Zav()\), Z(N).

Proof of Proposition 2.11. Let I = [7/4,11/6] be the interval of Lemma 5.3. The
main idea of the proof is to use the maps in Lemma 5.3 in combination with Lemma 5.1
to get a subinterval of I where we can get exponentially accurate implementations.
Then, we will propagate this exponential accuracy to the whole real line by using
implementations from Lemma 2.12.

We next specify the activities that we will need to implement with constant
precision via Lemma 5.3 (later, these activities will be combined with Lemma 5.1 to
get the exponential precision). Let AT, A5, n, I be as in Lemma 5.3. Moreover, let
be the midpoint of the interval I and let A\ = (1 — z))/xf, N5 = —1/xf. Finally, let
;= max{10'2,10'2|\|}. (Note that all of these are rationals.)

By Lemma 2.12, for i = 0,1, ..., 4, there exists a bipartite graph G; of maximum
degree A which implements A with accuracy 7. Let v; be the terminal of G; and

&, v, (A

%, we have that A, € [Af —n, A\ + n]. Moreover, let o = 1/(1 + A{)
and note that |zg — z§| < 1077, so that xg € I. Also, let z3 = —1/)} and note that
|zz — 23| < 1077, so that the interval I* = [z3 — 1073, 23 + 107?] is a subinterval of

I. Finally, we have that
(5.6) NGl = (AT =1 > [AG] = [Af]/2 = max{10"!, 10" [A]}.

set Al =

Suppose that we are given inputs ), e € Q with € > 0 and we want to output
in poly(size(N,€)) time a bipartite graph of maximum degree A that implements \
with accuracy €. Clearly, we may assume that ¢ € (0,1). The algorithm has three
cases depending on the value of |X|.

Case I (large |N']): |[N| > max{10*|A|,1}. Let =* be a rational such that

A 1 /A
| 2 semmaa = L (2 )
(5.7) T Ao , so that x SASY
Recall that z3 = —1/)\}, so using the assumption |\'| > 10*|\| and that |\j| >
|A%] —n > 1/10, we have that
* ‘)\| -3
- = <107~
ol g =

It follows that =* belongs to the interval I.
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Note that Lemma 5.3 guarantees that the maps ®4(x) = ﬁ and ®o(z) =

Hﬁ satisfy the hypotheses of Lemma 5.1 with 2o = z; and r equal to half the

2

length of the interval I. Therefore, using the algorithm of Lemma 5.1, on input

x*d’:~'{¢¢l btain in ti [y (si €)=
0, and € = € min { 57577, FEAZN }, we obtain in time poly(size(xg, x*,€'))

poly(size(N', €)) a number & and a sequence i1,. .., € {1,2} such that
(5.8) 2=, (P, (- P (x)--+)) and |& — x*| < €.
Using (5.7) and (5.8), we have by the triangle inequality that

Al
2|V

AL

G:9) N 2 [T M = ()] 2

s | >

and, therefore,

A
1+ Ny

O O S 1

IV e T e B NS Ve I T V]

_ IVx[E =2 2(V)2N]
1+ Xez|  — |l

-\

(5.10)

|& —z*| <,

where in the last equality we used (5.7), in the second to last inequality we used (5.9),
and in the last inequality we used (5.8) and the choice of ¢'.

Now, let P be a path of length k + 2 with vertices labeled vy, v1, ..., V511, Vgt2-
Let A be the activity vector on P given by

Ao = Ao Au, = /\;j for j € [k], Aups = A5 Apppn = A
: out Zi}g»“k+2 ) A
Then, by Lemma 5.2, it holds that Z’, (A) # 0 and o ) = Tiars; moreover,
’ Puj 1o 3

we can compute the values Z}S,Ukw()\), Z3%, ., (A) in time poly(k, size(Xg, A1, A5)) =
poly(size(N',€)). Since the bipartite graphs Gy, G1, G2, Gs implement the activities
g, Abs Ay, A5, respectively, we obtain by applying Lemma 3.2 (to the path P with
activity vector A) a bipartite graph G’ with maximum degree A and terminal vy o
such that

(5.11) Z&r iy =C - ZB A), ot (N =C-Z% (N,

7Uk+2( JVk+2 Puk42

where C = [T°_, (zg:,, (A))‘{je{o"”’ﬂﬂ‘/\”j = We conclude that

Zi(?”,'uk+2(/\) o Z}g,vk+2(>‘) o A
Z%‘ika+2(/\) Z;’g‘,‘zk“()\) 1+ Mg+

Combining this with (5.10), we obtain that G’ with terminal vy 2 is a bipartite graph
of maximum degree A which implements X with accuracy e. Moreover, using (5.11),

we can also compute the values Zi% (N), Zt (N).

k42 JVk+2

Case 11 (small |X']): |N]| < min{107°,1075|\|}. We first assume that X' # 0.
Let A be such that

A N A
(5.12) ==X sothat A\ == — 1.
1+ A A
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Using the assumption |\| < min{107°,107°|\|} and the triangle inequality, we have
that

N Al

Al > Ui 1> 2l > max{10*\|, 1}.
Therefore, by Case I, we can construct a bipartite graph G with terminal v that
implements \ with accuracy ¢ = e - m1n{2‘|§\|/ ,4||;‘,|‘2,1} in time poly(sme()\ €)) =

poly(size(X',€)). Moreover, we can compute the values Z§ (A) and Zg"(A) at the
same time. Let N = 262 gq that |N" — \] < €. Using this and (5.12), we have

Z2a0, (N
: o A\
5.13 LN > 1+ A=\ = A >|——’>
(513) 14X 2 LA = |0 = )] 2 - ¢ 2 g
and, therefore,
A A=A

‘1+X’_ LA LA TN
VIV = AL _ 22
= <

[T+ 7 A

(5.14)

N = Al <,

where in the last equality we used (5.12), in the second to last inequality we used
(5.13), and in the last inequality we used |\’ — A| < ¢ and the choice of €.

Now, let G’ be the bipartite graph obtained from G by adding a new vertex u
whose single neighbor is the terminal v of G. Then, we have that

(5.15) Z8 LX) = AZZ% (M), ZF (N = Za(N) = Z8.,(\) + Z&5(N).
We conclude that

Z8, () AZ2 (V) A
Zg, () Z8 N+ 228N TN

Combining this with (5.14), we obtain that G’ with terminal u is a bipartite graph
of maximum degree A which implements X with accuracy e. Moreover, using (5.15),
we can also compute the values Z¢, (), Z&",, ().

To finish this case, it remains to argue for ' = 0. In this case, for ¢/ =
min{e, 107°,1075|\|}, we can use the preceding method to implement the activity
€ /2 # 0 with accuracy €”/2 in time poly(size(e”)) = poly(size(e)). The implemented
activity A’ satisfies by the triangle inequality |A”| < €; hence, we have implemented
the desired activity ' = 0 with accuracy e.

Case I (moderate h|\'|): min{107°,107°|\|} < || < max{10*|\|,1}. Let z*
be a rational such that
A 1 /A
(516) m )\ so that z* )\I ()\/ — 1)
Using the assumption 107°|\| < |\| and |/\ | > max{10', 1011|)\\} (cf. (5.6)), w
have that |z*| < min{1075/|\|,1075}. Let ¢ = ¢ - mln{wml)\, ,1010‘)\,‘} Then, by

the algorithm for Case II, we can implement the activity Az* with precision € in time
poly(size(Ax*, €')) = poly(size(N',€)). That is, we can construct a bipartite graph G
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of maximum degree at most A with terminal v such that, for X" := Z§ ,(X)/Z&",()),
it holds that

(5.17) !)\” — ¥ < €.

Now, using (5.16) and (5.17), we have by the triangle inequality that

. " 1 1 1
(5.18) 11 +/\£1(/\///>\)| > |1 +>\£1x | — ‘)‘ﬁl(x - )‘”/)\)| > 108 ~ 1010 = 105

and, therefore,

(5.19)

__‘ A I S I O T e O]

TN VA TNl [T Nk [+ A (V)

_ NG e = (/A
[T+ X (A7 /A)

where in the last equality we used (5.16), in the second to last inequality we used

(5.18) and |X|/|A| < 10%, and in the last inequality we used (5.17) and the choice of
€.

$ -\
L+ N, (\/X)

< 10X [PAa” — V| < e,

Recall that G is a bipartite graph of maximum degree A, with terminal vy, which
implements the activity \j. Let G’ be the bipartite graph obtained by taking a copy
of G4 and G and identifying the terminals v4, v into a single vertex which we label v’
(note that G’ has maximum degree A as well since vy and v have degree one in G4
and G, respectively). Then,

in 1 in in
(520) Z, ’,u’()‘) = XZG4,’U4()\)ZG,U<>\)’ Zou’t,u’()‘) = %u4t,v4()‘)Z2¥L::)(>\)'

Consider the graph G” obtained from G’ by adding a new vertex u” whose single
neighbor is the vertex «’. Then, we have that

(521)  ZGi y(A) = AZEL L (N),  Z&% (N = Zar(N) = ZG (V) + Z8E 0 ().

1!
U

Using this in conjuction with (5.20), we conclude that

Z8 (N AZEE (M) B A B A
28N 2B N+ 28 ) L Zen ) TNV
’ ’ ’ Ze ™

Combining this with (5.19), we obtain that G”’ is a bipartite graph of maximum degree
at most A with terminal u” which implements A\’ with accuracy e. Moreover, using
(5.20) and (5.21), we can also compute the values Z&,, . (N), Z& i (A).

This completes the three different cases of the algorithm, thus completing the
proof of Proposition 2.11. ]

5.3. Proof of Proposition 2.2 (complex case). In this section, we prove
Proposition 2.2 assuming Proposition 2.6 (the proof of the latter is given in section 7).
Note that Proposition 2.6 applies for all A € Cg \ R. By restricting our attention to
A ¢ Ax UR and using the theory of section 2.1, we obtain the following.

LEMMA 5.4. Let A >3 and A € Cg \ R be such that A ¢ Aa, and set d := A —1.
Let w be the fizpoint of f(z) = Hﬁ with the smallest norm, and p1,...,pq be the
poles of f. Then, for any real number n > 0, there exist

(i) N € Z>1, (ii) a pole p* € {p1,...,pa}, (iil) rationals L > 0 and r,r',r* € (0,7n)
such that v’ < r and all of the following hold:
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1. B(p*,r*) C fN(B(w,r"));

2. p1y...,pd & Ufj:_ol fm (B(w,r)); and
3. for all 1,25 € B(w,7), it holds that | fN (x1) — fN(x2)| < L|zy — 22|

Proof. Consider an arbitrary n > 0. Note that w # p1,...,p4, so there is no loss
of generality in assuming that n < |w — p1|,...,|w — pa|. Let U’ be the open ball
B(w,n/10) and note that our assumption on 7 ensures that py,...,pqs ¢ U’.

Since A ¢ Ax UR, we have by Lemma 2.5 that w is a repelling fixpoint of f and
therefore w belongs to the Julia set of f (by Lemma 2.3). Moreover, using Lemma 3.7,
we have that the exceptional set of f is empty.® Therefore, by Theorem 2.4, it holds
that |~ f"(U’) = C. Let N’ be the smallest integer such that one of the poles

p1,...,pq belongs to fN/(U’), i.e., N’/ satisfies

N'—1

(5.22) fpopadn (U 71@)) =0and {pr,..opak 0 N W07) £ 0.
n=0

Note that N’ > 1 since p1,...,pq € U'.

To prove the lemma, it will be important to ensure that the pole of f which belongs
to fV'(U’) does not sit on the boundary of any of the sets fO(U"), fL(U"),..., fN'(U").
To achieve this, we will enlarge a little bit the ball U’ as follows. Let P be the union
of the poles of the functions f',..., fN/. Note that P is a finite set, therefore, we can
specify a radius r € (n/10,7n) so that the boundary OU of the open ball U = B(w,r)
is disjoint from P (i.e., U NP = ). Since U’ C U and ps,...,pq &€ U, we conclude
from (5.22) that there exists a positive integer N < N’ such that

N-1
(5.23) foreeopad 0 (U £W)) =0 and {p,...pak 0 SN ©) £0,
n=0

i.e., N < N’ is the first integer such that a pole of f belongs to f¥(U). Let p* €
{p1,...,pa} be an arbitrary pole of f such that p* € f¥(U). We claim that

(5.24) for all n € {0,..., N}, p* does not lie on the boundary of f(U).

Indeed, observe that U is open and f is holomorphic on U for all n =0, ..., N since
f"~1(U) does not contain any pole of f. Therefore, by the open mapping theorem,
we have that

(5.25) f™(U) is an open set for all n =0,..., N.

Since p* € fN(U), this already shows that p* does not lie on the boundary of f(U).
For n =0,...,N — 1, we obtain from (5.25) and the open mapping theorem that p*
lies on the boundary of f™(U) only if p* lies on the boundary of f*(9U), i.e., f™*(0U)
contains a pole of f and so U contains a pole of f*!. In turn, this would imply
that OU NP # (), which is excluded by the choice of the radius r of U. This proves
(5.24).

6To see this, let Ej denote the exceptional set of f. By Lemma 3.7, we have that a necessary
condition for a point z € C to be in Ey is that either f/(z) = 0 or f/(f(z))f’(xz) = 0, which gives
x = 0 as the only possible point. However, since f(0) = 1, we have that = 0 cannot be a fixpoint
of either f or f2 and therefore, by Lemma 3.7, there is no point = € C that belongs to Ey. Similarly,
we have that oo ¢ E since = oo is not a fixpoint of either f or f2 (by f(c0) = 0 and £(0) = 1),
proving that E; is empty.
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We are now ready to prove items 1 and 2 of the lemma. Namely, from (5.23), we
have that pi,...,pq ¢ Uf::ol f™(B(w,r)), which proves item 2. For item 1, note that
from p* € fV(U) we obtain that there exists * € U = B(w,r) such that f~ (z*) = p*.
Since U is an open ball, let 7’ be a rational such that |z* —w| < r’ < r and consider the
open ball B(w,r’). Then, we have that p* € f~¥(B(w,r’)) (since z* € B(w,r’)). We
also have by the open mapping theorem that f~(B(w,r’)) is open, therefore, there
exists rational 7* € (0,7) such that B(p*,r*) C fN(B(w,r")), thus proving item 1.

It remains to prove item 3, which essentially follows from the fact Uf:’;ol fM(U)
does not contain any poles of f and (crude) Lipschitz arguments. In particular, note
that, by (5.23) and (5.25), there exists a rational § > 0 such that

N-1
(5.26) |z —p1l,..., |z —pg| > 6 for all x € U ().

n=0

LetLO:IanddeﬁneLnH:Ln%fornzl,...,Nfl. Forn=0,..., N,

we will show by induction that
(5.27) for all 21, x5 € U it holds that | f™(xz1) — f™(22)| < Lp|z1 — 2],

which clearly proves item 3 by taking L to be any rational > Ly. The base case n = 0
is trivial, so assume that (5.27) holds for some nonnegative integer n < N — 1. Then,
since w is a fixpoint of f, we have that f"(w) = w and therefore f™(U) C B(w, L),
ie.,

(5.28) |z] < |w| + Lyr for all z € f*(U).

Moreover, since n < N — 1, we have by (5.26) that |z —p1],...,|x —p4| > 6 and hence
by factoring 1 + Az? = \(z — p1) - -+ (x — pg), we obtain

(5.29) 11+ )\xd| = Az —p1) - (x — pa)| > |6 for all z € f(U).

Let x1,22 € U and set 21 = f™(x1), 22 = f™(x2), so that the inductive hypothesis
translates into

(5.30) |21 — 22| < Ly|w1 — 22l

We then obtain that
IA(=f = 29)|
(1 + Azf) (1 + )\zg)’
AL 22 e 2
|(1 + /\zf) (1 + )ngl)|

[f 5 @) = fr 7 (@2)] = (1) = flz2)| = |

= |21 — 22 -

< Lptilzr — x2/,

where in the last inequality we used (5.28), (5.29), and (5.30). This finishes the proof
of (5.27) and, therefore, the proof of item 3. This concludes the proof of Lemma 5.4. 0O

We are now ready to prove Proposition 2.2, which we restate here for convenience.

PROPOSITION 2.2. Let A > 3 and A € Cg be such that A ¢ Ax UR. There is an
algorithm which, on input X' € Cq and rational € > 0, outputs in poly(size(X, €)) time
a bipartite graph G of maximum degree at most A with terminal v that implements
A with accuracy €. Moreover, the algorithm outputs the values Zg (), Z&”EJ()\)
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Proof. For convenience, set d := A — 1. Let w be the fixpoint of f(z) = ﬁ
with the smallest norm, and py,...,pq be the poles of f. Let p > 0 be the constant
in Proposition 2.6. Then, by Lemma 5.4 (applied with n = p/|}\|), there exist a
positive integer N, rationals L > 0, and r,v/,r* € (0,n) with ' < r, and a pole
p* € {p1,...,pa} such that

(5:31) B S NB@.r), prepa € UnZe f1(B()
(5.32) for all 1,29 € B(w,r), it holds that |fN(z1) — fN(22)| < L|z1 — 22|

We may assume that r* is sufficiently small so that, for all poles p € {p1,...,pa}
which are different than p* it holds that

(5.33) |z —p| > for all x € B(p*, ™),

where § > 0 is a sufficiently small constant. Moreover, since p* is a pole of f, we

have that 1+ \(p*)? = 0, so there exists a unique integer k € {0,1,...,d — 1} so that

p* = ‘/\Ill/d el0+2mi(k/d) where § = é(w — Arg(\)). Since k is an integer depending on

A but not on the inputs A’ or €, the value of k which specifies p* among the poles of
f may be used by the algorithm.

Now, suppose that we are given inputs X' € Cg and rational € > 0. We want to
output in time poly(size(N', €)) a bipartite graph of maximum degree A that imple-
ments X with accuracy e. Clearly, we may assume that e € (0,1). Let M > 0 be a
rational so that M > 2/(r*d%). The algorithm has three cases depending on the value
of ||, namely,

Case I |N| > M, Casell: |N| <|\/(M+1), Caselll: \/(M+1) < |N|< M.

Note that since A\,\' € Cg and M € Q, the algorithm can distinguish in time
poly(size(\, N, M)) = poly(size(\')) which of the three cases applies.”

Case 1 (large |N']): |N| > M. The rough outline of the proof is to first specify
and implement an activity Aw for some appropriate w whose main property is that
A (14 AN (w))9) is e-close to \'; then, we will show how to implement the activity
A (1+ MfN(w))4) by using an appropriate tree construction.

We begin by specifying w. We first claim that there exists a unique z* €
B(p*,r*/2) such that

A
5.34 — =\
Indeed, for all  such that |z — p*| = 7*/2 it holds that (using (5.33) and the choice
of M)

(5.35) L+ 22 = A~ |z = pa| -+ [& = pal = [Ar*6?/2 > [Al/IN],

so by Rouché’s theorem® we have that the polynomial 1 4+ Az? — % has the same

number of roots as the polynomial 1 + Az¢ in the ball B(p*,r*/2); the roots of the

"E.g., by squaring the inequalities, the radical of the norm goes away and the algorithm has just
to compare rational numbers.

8Rouché’s theorem says that for any functions f and g that are holomorphic inside a region B
surrounded by a simple closed contour 9B, if |g(x)| < |f(z)| on OB, then f and f + g have the same
number of roots inside B.
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latter polynomial are precisely the poles py,...,pqs and therefore, by (5.33), exactly
one of those lies in the ball B(p*,r*/2) (namely, p*). This establishes the existence
and uniqueness of z* € B(p*,r*/2) satisfying (5.34).
By the first part of (5.31), we obtain that there exists w* € B(w,r’) such that
N (w*) = 2%, ie.,
(5.36) .
L+ A(fN(w))

A fact we will use later is that
(5.37)
|fN (w*) — p*| = |2* — p*| > 7, where 7 > 0 is such that dr(|p*| + 7)1t < 1/|\].

To see this, note that for all  such that |z — p*| < 7 we have
1 20 < 14 A+ Ao = 7)) = A o = (7))

< Je = ]Zxﬂ Y| < dr (It + ) < /1N

and, therefore, by (5.34), it must be the case that |«* — p*| > 7, thus proving (5.37).
Note, we can compute 7 € Q satisfying (5.37) in time poly(size(\')). Let

. . o(r—=r" T 1 €
e::mln{i,—,—, , ,1}
3 TALTALTAdLIN|(Ip*| + )47t 4dLI(N)?[([p*| 4 r) 4!
and let € € (0,€) be a rational with size(e') = poly(size(N, €)).
Note that fV(z) is a rational function of degree d¥ and, in fact, we can write it as

N(z) = ng;’ where P(z),Q(z) are polynomials with coefficients in Cg. Therefore,
we can rewrite (5.36) as a polynomial equation in terms of w*, whose degree is at most
dV (note that this is independent of ' and €) and whose coefficients have polynomial
size in terms of size(\'). Let wq,...,w; denote the roots of the polynomial. Using
Lemma 3.5, we can compute w1,...,%0; € Cg such that |w; — w;| < €/2 for all
i € [t]. In particular, there exists j € [t] such that |w; — w*| < €'/2 and therefore
w; € B(w, 1" +€'/2). Moreover, by applying (5.32) for 21 = W, and 2 = w*, we have

[N (i) — a*| = | N () — N (w*)] < Ll — w*| < Lé /2.
Therefore, by trying? all of wy,...,%;, we can specify @ € {iw1,...,0;} in time
poly(size(N', €)) such that
(5.38) W€ B(w,r' +€), |fN(w)—a*| < Le.

Since ¢ < (r — 1’)/3 we have that @ € B(w,r). Recall that r < p/|)\|, so by the
algorithm of Proposition 2.6, we can construct a bipartite graph G of maximum degree
A with terminal v that implements M with accuracy A¢’ in time poly(size( A, Ae)) =

9Note that w is the root of the polynomial  + Az9t! — 1 with the smallest norm and therefore,

using Lemma 3.5, we can compute & € Cg such that |& —w| < €/6 in time poly(size(e’)). Similarly,
x* is the unique root of the polynomial 1 + Az® — % in the ball B(p*,r*/2) and therefore we can
compute £* € Cg such that |£* — 2*| < Le’/6 in time poly(size(\’,€’)). Then, for i € [t], we
check whether |w; — @] < 2€¢//3 and |fN (w;) — #*| < 2Le’/3; the check must pass for at least one
w € {w1,...,W:}, and using the triangle inequality we obtain that o satisfies (5.38).
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poly(size(N'€)). Moreover, we can compute the values ZiG",U(/\) and Z&"% (\) at the
same time. )
Let w be such that Aw = iﬁ,‘t”gig, so that |w — @] < €. Since ' + 2€¢’ < r, we
G,v
obtain using (5.38) that w € B(w,r). Further, by applying (5.32) for 1 = w and
zy = W, we get that | fV(w) — fV ()| < Le’ and therefore by the triangle inequality

and (5.38) we have

(5.39) | (w) — fN(w*)] < 2L€.
We will next show that

A
(5.40) ‘ N <e

L4 A(FN (w))

Since fN( ) = z* and |z*| < |p*| + 7*/2, we can conclude (using (5.39)) that

| (w w)| < |p*| +r*. In turn, this gives
(5.41)
d—1 , 4
¥ @) " = ()| = [ ) = ¥ )] 3 (Y @) ()
7=0

< 2dL(Jp*| + 7)1t < 1/(2N]),

where in the last inequality we used that ¢ <

and the triangle inequality, we obtain that
(5.42)

‘1+,\ (£ (w ‘> ‘1+A (FN (w ))d‘ - ‘A(fN(w)) AN (w

TV From (5.36), (5.41),

- 2 | )\’ |
and, therefore,

A d

'1+A0Nmmd_A B

AR (N () = (Y )]
|1 AN )] !1+A<fN<w*>)\
VAL (Y @)~ (N

14+ AN ()]
where in the last equality we used (5.36), in the second to last inequality we used
(5.41) and (5.42), and in the last inequality we used the choice of €¢’. This concludes

the proof of (5.40). To ensure that certain partition functions are nonzero, we will
need the following additional fact for w, namely, that

)) | §4dL|)\/‘2(|p*|+T*)d_1€/ SQ

(5.43) f"(w) #p1,...,pqg foralln=0,1,... N.

For n =0,1,..., N — 1, this just follows from (5.31) and the fact that w € B(w,r).
For n = N, we have from (5.39) and f¥(w*) = z* that fV(w) is within distance
2Le < r*/2 from z* € B(p*,r*/2) and therefore f~(w) € B(p*,r*). This implies
that for all poles p # p* it holds that fV (w) # p (cf. (5.33)). For the pole p*, we have
from (5.39) that fV(w) is within distance 2Le’ < 7/2 from f™(w*) and therefore,
using (5.37), we have that |V (w) — p*| > 7/2 > 0, i.e., f¥(w) # p*. This finishes
the proof of (5.43).
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In light of (5.40), we next focus on implementing the activity A/(1+ A(fV (w))?)
using a bipartite graph of maximum degree A. For h = 0,1,..., N, let T}, denote the
d-ary tree of height h and denote the root of the tree by uy. Let G} be the bipartite
graph of maximum degree A obtained from 7} by taking, for each leaf [ of T}, d
distinct copies of the graph G (which implements Aw) and identifying ! with the d
copies of the terminal v of G. Then, using that \w = ng(A)/Zg;“);()\), we have

in in d d
(5.44) 28y ueN) = MZE, NN 285,00 = (225 (0)°,
’ in ou ou d
Zao(N) = 285,00V + 2850, (V) = (285,(N) (1 + 2.
(5.43) ensures that w # p1,..,pq so we have 1+ dw? # 0. We therefore obtain from
(5.44) that

Zet L ()t
(5.45) Zay(N) # 0 and ZeOy = (zg;;g}(x))d(umd) = f(w).

Further, for h =1,..., N it holds that

(5.46)
in ou d ou d
ZGh,uh (A) = )\( G}ffl,uhfl()\)) I ZG:,uh ()\) = (ZGh—l()\)) I
d
in ou d ( %Ut 1,U 71()\ )
ZGh (A) = ZG;L,u;L(A) + ZG;T,U,;L ()\) = (ZGh—l ()\)) 1 + A - - d

We will show by induction that for all A =0,1,..., N it holds that

(5.47) Zc, (A) # 0 and M
' - Z6, (V)
For h = 0, this is just (5.45). Assume that it holds for A — 1; we have by (5.46) and

the induction hypothesis that

= /" w).

Zan () = (Zo )" (14 A (w))") #0,

where the disequality follows from Zg, _, () # 0 and (5.43). We therefore obtain that

2850, (N _ 1 _ ! = " (w)
Zout “ A d d ’
e ra(F) T )

completing the induction and the proof of (5.47). For h = N, (5.47) gives that
Zey(A) # 0 and

Z%U:IJJN()\) _ ¢N+1 w) = N w)) = 1
(5.48) ety =) = AU =

Consider the graph G’ obtained from Gy by adding a new vertex u’ whose single
neighbor is the vertex uy. Then, we have that

(5.49) 8N = AZEE (N, 22, (N) = Zay (N) #0.

GN,uN "’
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Using this in conjuction with (5.48), we conclude that

7 o) AZE L (V) A

GN,uN

28N T ZayN 1A w)

From this and (5.40), we obtain that G’ is a bipartite graph of maximum degree A
with terminal u" which implements A" with accuracy e. Moreover, using (5.44), (5.46),
and (5.49), we can also compute the values Zg3, ,/(\), Z&F,,/(A).

The remaining cases of the algorithm (Cases II and III below) are almost identical
to Cases II and IIT of the algorithm in Proposition 2.11 for the real case, so we focus on
the main differences (which mostly amount to modifying the upper and lower bounds
for the relevant quantities). To align with the notation there, let G4 be a bipartite
graph of maximum degree at most A with terminal vy that implements a constant
activity A with

/ ! Zg4 Vg (>\)
(5.50) Ayl > (M +1)(M +2), where A} = ————.
zZet O
4,4
Note, this implementation can be done using the algorithm for Case I. We next give
the details of the algorithm for the remaining cases.

Case 1T (small |X]): |N] < |\|/(M 4 1). We first assume that X # 0. Let A be
such that

A N A
(5.51) - =X\ sothat A= — — 1.
1+ A A
Let € = ¢ - min { 2‘&',', QI‘;‘J‘Q , 1} and let € be a rational less than € so that size(e') =

poly(size(N, €)).
Using the assumption || < |A|/(M +1) and the triangle inequality, we have that

Al > K‘,‘l — 1> M. Therefore, by Case I, we can construct in time poly(size(N,€))
a bipartite graph G of maximum degree A with terminal v that implements A with

accuracy €, and we can compute the values Zic?,u()‘) and Zg" (M) at the same time.

Let )/ = 2620 o4 that |N" — A| < €. Using this and (5.51), we have

Z.,(00
(5.52) TSI I VTS VG VT L e |
- Y — 2V
and, therefore,
) NI Al 2V
5.53 ‘ V| = < N A <e
(5.53) T4+ M TESURERI =

Now, let G’ be the bipartite graph obtained from G by adding a new vertex u
whose single neighbor is the terminal v of G. Then, just as in Case II of Propo-
sition 2.11 we can conclude that G’ with terminal u is a bipartite graph of maximum
degree A which implements )\ with accuracy €, and we can also compute the values
ZiG“,’u()\),Zg“,t’u()\). The case X' = 0 can be handled using the above technique by
implementing the activity €”/2 # 0 with accuracy €’ /2, where €’ > 0 is a rational less
than min{e, |A|/(M + 1)} such that size(e’) = poly(size(e)); see Case II of the proof
of Proposition 2.11 for more details.
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Case IIT (moderate |N'|): |A|/(M +1) < |X| < M. Let «* be such that

A , L1/

Let é — : A2 A2
et € = e~m1n{m, SR

poly(size(N €)).

Using the assumption [A'| > |A|/(M +1) and |\}| > (M 4+ 1)(M +2) (see (5.50)),
we have that |z*| < 1/(M + 1). By the algorithm for Case II, we can implement the
activity Az* with precision €’ in time poly(size(Az*, €’)) = poly(size(N, €)), i.e., we can
construct a bipartite graph G of maximum degree at most A with terminal v such
that, for A" := Zg ,(X)/Z&"()), it holds that

1} and let € be a rational less than € so that size(e') =

(5.55) IV =] <€
Now, using (5.54) and (5.55), we have by the triangle inequality that
A

T I B N P OV e

and, therefore,
(5.57)
T S S P - [
T+ X (A/A) 14 N [T+ Ajz*| - |1+ N, (N'/N)]
(NG — (A/A)] 2| Ml
= <2M
T+ N A/N T A2

where in the last equality we used (5.54), in the second to last inequality we used
(5.56) and |N| < M, and in the last inequality we used (5.55) and the choice of €.

Recall from (5.50) that G4 is a bipartite graph of maximum degree A with ter-
minal vy which implements the activity Aj. Let G’ be the bipartite graph obtained
by taking a copy of G4 and G and identifying the terminals v4, v into a single vertex
which we label v/. Further, consider the graph G” obtained from G’ by adding a new
vertex u” whose single neighbor is the vertex «’. Then, just as in Case III of Propo-
sition 2.11, using (5.57) we can conclude that G” is a bipartite graph of maximum
degree at most A with terminal «” which implements A\’ with accuracy €, and we can
also compute the values Zi",7u()\), Z&" (N,

A N
1+ N, (V7N

Azt — N'| <,

This completes the three different cases of the algorithm, thus completing the
proof of Proposition 2.2. 0

6. #P-hardness. In order to prove Theorems 1.1 and 1.3 we first prove #P-
hardness of multivariate versions of our problems. Instead of insisting that every
vertex has activity A, we allow the activities to be drawn from the set

(6.1) L) ={\-A—1,-1,1}.

Name #MVHardCoreNorm(\, A, K).

Instance A graph G with maximum degree at most A. An activity vector A =
{M }vev, such that, for each v € V', A\, € L(A). For every vertex v € V with
Av # A, the degree of v in G must be at most 2.

Output If |Z5(A)| = 0 then the algorithm may output any rational number. Other-
wise, it must output a rational number N such that N/K <|Za(N)| < KN.
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B; with activity vector A B! with activity vector X’

FIG. 2. The binary equality gadgets B; and B used in the proof of Lemma 6.3.

Name #MVHardCoreArg(X, A, p).

Instance A graph G = (V, E) with maximum degree at most A. An activity vector
A = {A, }vev such that, for each v € V', A, € L(A). For every vertex v € V
with A, # A, the degree of v in G must be at most 2.

Output If Zg(A) = 0 then the algorithm may output any rational number. Otherwise,
it must output a rational number A such that, for some a € arg(Zg(N)),
[A—al <p.

6.1. Reducing the degree using equality gadgets. Given a graph B =
(V, E) and two subsets T;, and T of the vertex set V satisfying Ti, C T, let Zg 11,
denote the set of independent sets I of B such that INT = Ti,. Let Zp 11, (N) =
dreTpam M1 We use similar notation when activities are nonuniform. We start

in

by introducing “equality” gadgets.

LEMMA 6.1. Let A € C be such that A # —1,0. Let B; and B, be the graphs
in Figure 2 with activity vectors X and X', respectively, and set T; = {u;,v;}, T, =
{si,t;}. Then,

ZBi,Tn{Ui}(A) = ZBi,Ti,{m}()‘) = Ov ZBi7Ti;®(A) = ZBi,ThTi (A) =C:= )‘(1+A) 7& Oa
and
1
Zpr 1 sy N) = Zpr 1y (N) =0, Zprqrg(N) = XZB;,T;,T;(X) =1L

Proof. By enumerating the independent sets of B;, we have

(6 2) ZBz',Trn{ui}()‘) = /\uq(l + )‘y7 + )‘Zq‘,)v ZBinh{'Ui}(A) = /\Uq(l + )‘L + )‘Zq‘,)v
. ZBi,Ti,@()‘) =1+ )‘Ll + )\yi + )‘Zi + )‘»LL /\ym ZB'inhTi (A) = )\uz )\Ui(l + /\Zz)

Observe that B/ is obtained from B; by “appending” the vertices s; and t;. Therefore,
(6.3)

)
) =X (ZB. 1 oN) + Zp, 11 {0y (X))
Zpr 1 gy (N) = Ay, (Zg, 1 0N) + ZB, 10 iy (X)),
Zpi 11t (N) = A A, Zp, 0 (X))
Using (6.2), we have that
ZpmoN) =1, Zp, 1, fuyN) = Zp, 1, foryN) = =1, Zp, 1, 1,(N) =2.
Plugging this into (6.3) concludes the proof of the lemma. ]
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The following lemma defines the gadgets for the case A = —1.

LEMMA 6.2. Let A = —1. Let B; be the path of length siz with endpoints u;,v;,
with activity vector A, where every vertex has activity A = —1, apart from the endpoint
v; which has activity +1. Let B! be the graph in Figure 2 with the activity vector X'
given there. Set T; = {u;,v;} and T = {s;,t;}. Then,

ZB'hTiy{ui}(A) = ZBi,Ti7{Ui}(A) =0, ZBi,Tq‘,7®(A) = ZBi,Ti,Tz‘(A) =C:=1,

and
1
Z, 11,0 N) = Z 0y X) =00 Zaiaro(XN) = 5250 (X) = 1.

Proof. Note that both graphs are paths of length six. We can therefore use the
formula in (6.3). The lemma therefore follows by just making the substitutions. 0

The following lemma shows how to use the equality gadgets to replace high-degree
vertices with equivalent subgraphs made up of low-degree vertices. For a graph G and
a vertex v in G, we denote by d,(G) the number of neighbors of v.

LEMMA 6.3. Let A € Cxo. If A = —1, let C = 1; otherwise, let C = X\(14+X) # 0.

Suppose that G = (V, E) is a graph with an activity vector X = {\, }yev such
that, for every vertex v € V, we have A, € {1,A}. Let Uy = {v eV | A\, = 1} and
Un = {v e V| A = A}. Consider an arbitrary set S C V. Then, there is a set
S’ of vertices (distinct from V') and a graph G' = (V', E’) with an activity vector
X = {\ }oev: such that

Zer(N)
H’UGSﬂUl Cd’U(G) H’UGSﬂU)\ Cdv(G)_l

Za(A) =

Furthermore,
o V'=5"U(V\S) and |S'| is at most 8|V|?*;
o cvery vertexv € S’ has dy(G') < 3 and X, € L(N). If X, # X then d,(G') < 2;
o cvery verter in V(G)\ S has d,(G) = d,(G') and X, = X,.

Proof. To prove the lemma, we can assume that |S| = 1. (To prove the lemma
for a larger set S we just repeatedly apply the singleton-set version to each of the
vertices in S.) So let S = {v} and, for convenience, let d = d,(G) be the degree of v
in G. There are two cases.

Case 1: v € U;. Assume first that d # 1. In this case, S’ will be the union of the
vertices in the gadgets Bj,..., Bg by identifying vertex v; of B; with vertex u;;1 of
By for each ¢ = 1,...,d (we will use the conventions that ugy1 = w1, Ber1 = By,
and By = By). To construct G’ from G we replace v with the union of these gadgets.
If a vertex w is in exactly one of these gadgets, then the activity A}, will be inherited
from the gadget. Also, w will have no other neighbors in G’ (other than the neighbors
in its gadget). Now, for ¢ = 1,...,d, the vertex u; is in two gadgets, namely, B; and
B;_1. In addition to having its gadget neighbors, this vertex u; will be connected to
the ith neighbor of v in G. Then we will set A} = A, since this is the product of
the activities inherited from B; and B;y;. Note from Lemma 6.1 (and Lemma 6.2 in
the case A = —1) that, in the resulting graph G’, in any independent set of nonzero
weight, either all v;’s are in the independent set, or all v;’s are missing. In each of
these cases, we get a factor of C? in the partition function. The construction for
d =1 is analogous, i.e., we replace v with the gadget B, but now we do not do any
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identification of vertices and we use u; to connect to the neighbor of v in G; further,
every vertex in B retains its activity in G’. As before, we conclude that we get a
factor of C' in the partition function.

Case 2: v € Uy. Assume first that d # 1. In this case, S’ will be the union of the
gadgets By, ..., Bq_1,B). We will further identify vertex v; of B; with vertex u;4q
for each ¢ = 1,...,d — 2; for i = d — 1, we will identify vertex vy_; of By_1 with
vertex sq of B and vertex tq of B/, with vertex u; of By. To construct G’ from G
we we will replace v with the union of these gadgets. The assignment of activities
is the same as in Case 1; the only difference is in the construction of the graph G’
where now, for i = 1,...,d — 1, the ith neighbor of v connects to the vertex u; while
the dth neighbor of v connects to the vertex s;. From Lemma 6.1 (and Lemma 6.2
in the case A\ = —1), we have that, in the resulting graph G’, in any independent set
of nonzero weight, either all v;’s are in the independent set, or all v;’s are missing.
If they are all in, then we get a factor of C?~'X in the partition function; otherwise,
we get a factor of C%~1. The construction for d = 1 is analogous, i.e., we replace v
with the gadget Bj, but now we do not do any identification of vertices and we use s;
to connect to the neighbor of v in G; further, every vertex in Bj retains its activity
in G’. As before, we conclude that in any independent set of nonzero weight, either
all v;’s are in the independent set (contributing a factor of A), or all v;’s are missing
(contributing a factor of 1).

This concludes the proof of Lemma 6.3. 0

6.2. #P-hardness of the multivariate problem.

THEOREM 6.4. Let A > 3 and A € Cg be a complex number such that A ¢
(AaUR>g). Then, for K =1.02, #MVHardCoreNorm(\, A, K) is #P-hard. Also, for
p =97/24, #MVHardCoreArg(\, A, p) is #P-hard.

Proof. Counting the number of independent sets of an input graph is a well
known #P-hard problem. We will reduce this to both problems. To do this, let
H be an n-vertex graph, and let N = Zg (1) denote the number of independent sets
of H. Our goal is to show how to use an oracle for #MVHardCoreNorm(A, A, K) or
#MVHardCoreArg(\, A, p) to compute N. Let e = 1/50 and n = 1/35.

Consider any rational number M in the range 0 < M < 2". Let Jj; be a graph
with terminal v and maximum degree at most A that implements —M with accuracy €;
note, by applying Propositions 2.2 and 2.11 (for complex and real A, respectively),
there is an algorithm to construct Jy, in time poly(size(M, €)) = poly(size(M)) that
also outputs the exact values of Z  (\), Z9%t ()). Let

Jnr v Jnr,v

(6.4) Ango=Z7, (N)/Z5% ,(N), and note that Z3*t (A) # 0 and [Ay + M| < e.
Let Gz be the graph formed by taking the disjoint union of H and Jj; and attaching
the terminal v of Jy; to every vertex in H. Let Aj; be the activity vector for Gy
obtained by setting the activities of vertices originally belonging to H equal to 1 and
the activities of vertices originally belonging to Jjs equal to A. Note that

(6.5) Zaw (M) = 27

Jnr,v

(N + 2% (N Zy(1) = 2"

Jar,v I v

(A + 23 (VN

Let Gy, and X, be the graph and activity vector that are constructed by applying
Lemma 6.3 to Gy with S = V(H) U {v}. Note that the size of Gj; is at most
a polynomial in size(M) so (from Lemma 6.3) the size of G'; is also at most a
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polynomial in size(M). From Lemma 6.3, we have that

(6.6) Zay (Anr) = Zer,,(Nay) /W, where Wy :=c™ ' [ ™™
veEV (H)

and C is the constant in Lemma 6.3. Furthermore, every vertex v of G, has degree
at most A and every vertex v of G, with A/, # X has degree at most 2 in G’,;. Thus,
G’ is a valid input to #MVHardCoreNorm(A, A, K) and #MVHardCoreArg(A, A, p).
Moreover, combining (6.5), (6.6) and dividing through by Z%"t (\), we have

Iy
6 A N = ZG'M (A/ )
( T ) M I{r Zoxt7 ()\) = JMm-

Part one: #P-hardness of #MVHardCoreNorm(\, A,1.02).
By the triangle inequality (in the form |la| — [b]| < [a + b]), we have

[Ifarl =M = N|| < [Aar + N+ M= N| = Ay + M| <,

where in the last inequality we used (6.4). Therefore, |N—M|—e < |fum| < |N—M|+e.

Consider M so that [N — M| > 1. Then |fy| is not 0. From the definition
of far in (6.7), this means that |Zg (Ay)] # 0 and hence we can use the oracle
for #MVHardCoreNorm(A, A,1.02) to produce an estimate for |Zg, (Xyy)] within a

factor of 1.02. We can also obtain an estimate of the value |[WxZ5t  (\)| within a

factor of (1 + 7n/8)/1.02 = 1.025/1.02, since Z“}E‘J’v()\) is output by the algorithm
from Propositions 2.2 and 2.11. Combining these, we obtain an estimate f; for |fa|
satisfying (1 — n)|far] < far < (1 + )| far]. We now use the binary search technique
of [7].

The invariant that we will maintain is that we have an interval [Mgtart, Mend] of
real numbers with Mgt < N < Mepq. Initially, Mgy = 0 and Mepg = 2™. Let
{ = Mgnqg — Mgtart- If £ < 1 then there is only one integer between Mgtart and Mepq,
so the value of N is known.

Suppose £ > 1. For i € {0,...,8}, let M; = Mstart +1il/8. For i € {0,...,7}, let
s; be the sign (positive, negative, or zero) of fy, — fM7,+1

First, consider i € {0,...,7} and suppose N > M; 5. Then,

Far, = Pt = (L= farl — L+ ) far, |
>(L=n)(N—M;—¢)—(1+n)(N—M—L/8+¢€)
= (1+n)¢/8 — 2n(N — M;) — 2¢

(1+m)

> /8 — 20l — 2e.

This is positive since 2n < (1 +7)/16 and € < n < ¢, so s; is positive. Similarly, if
N S Mi,1 then

+ )l fa | = (1 _n)lff\/fi+1|

+n)(M; —N+¢€) —(1—n)(M;—N+/4/8—¢)
=—(1—n)t/8+2n(M; — N) + 2¢

< —(1=n)t/8+2nl + 2¢,

fMi - fMi+1

So s; is negative.
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Now, consider ¢* so that M;« < N < M;~y1. Then sq,...,S;x_o are plus and
Si*42,.-.,87 are minus. So we have a (possibly nonempty) sequence of pluses followed
by three arbitrary signs followed by a (possibly nonempty) sequence of minuses. If
there are three minuses in a row at the end of the sequence, we must have N < M-
(otherwise s5 would have been a plus). So we can shrink the interval by redefining
Meng to be My. Otherwise, there are three pluses in a row at the beginning of the
sequence. This means that N > M; (otherwise so would have been negative). So, in
this case, we can shrink the interval by redefining M.y to be M7. Either way, the
interval shrinks to 7/8 of its original size, so we can recurse on the new interval; after
at most poly(n) steps, we will have Meng — Mgtart < 1, which gives us the exact value
of N.

Part two: #P-hardness of #MVHardCoreArg(\, A, 97/24).

Consider any rational number M in the range 0 < M < 2". We will show that,
if N > M + 1/7 then there is an a € arg(far) such that —7/12 < a < w/12. Also, if
N < M —1/7 then there is an a € arg(fas) such that 7 — /12 < a < 7w+ 7/12.

To prove these claims, let xpr = Apr + M so by (6.4), |xar| < e. Then by (6.7),
fM=Aum+N=zy+N-—M. Suppose N > M + 1/7 and consider 6 € arg(fas) =
arg(xpr + N — M). For concreteness (by adding integer multiples of 27 if necessary),
suppose that 6 is in the range [—m, 7). Then tan(f) < =57 < 7e. But tan(r/12) >
0.26 > Te. So 6 < w/12. Similarly, § > —n/12. The case M > N + 1/7 is similar
(restricting 6 to [0, 27)).

Now suppose |N — M| > 1/7. Since fyr = xy + N — M, we have fy #
0. Since we can compute the value of WHZ?IS,u(/\) exactly, we can also compute

Arg(WgyZ9"t (X)) within +7/48. Using an oracle for #MVHardCoreArg(, A, 97/24)

Jnr,v

with input (G, Xj;) we thus obtain an estimate A s such that, for some a € arg(far),
|Aps — a) < 97/24 + 7/48 = 197 /48.

As in Part one, we now do a binary search. Again, the invariant that we will
maintain is that we have an interval [Mgpart, Mena] of real numbers with Mgpary <
N < Mepng. Initially, Mgary = 0 and Meng = 2™. Let £ = Mong — Mspars. If £ < 1 then
there is only one integer between Mgiart and Menq, so the value of N is known.

Suppose ¢ > 1. For i € {0,...,6}, let M; = Mgt + i€/6. Let s; be minus if
there is an integer j such that 7/2 < Ay, +27j < 31/2. Let s; be plus if there is an
integer j such that —7/2 < AMi + 2mj < w/2. If neither of these occurs, then s; is
undefined.

If N < M;_; then s; is minus. If N > M, then s; is plus. So sg, ..., Sg consists
of a (possibly empty) sequence of pluses followed by one unknown value followed by
a (possibly empty) sequence of minuses.

Suppose that sg, s1, and s are all plus. Then N > M; (otherwise so would be
minus). Otherwise, s4, s5, and sg are all minus. In this case, N < M5 (otherwise s4
would be plus). Either way, we can shrink the interval to 5/6 of its original length,
so, as in Part one, we can discover the value of N. 0

6.3. Restricting to bipartite graphs. In this section, we reduce the problems
#MVHardCoreNorm(\, A, K) and #MVHardCoreArg(\, A, p) to multivariate versions
whose inputs are further restricted to bipartite graphs. To do this, we will need to
enlarge slightly the set of activities that a vertex can have. Namely, let

(6.8) Luip(A) = L) U{=2,—1/4} = {\, =A —1,—1,1,-2,—1/4}.

We will consider the following problems.
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F1G. 3. The gadget B! with activity vector A" used in the proof of Lemma 6.5.

Name #MVBipHardCoreNorm(\, A, K).

Instance A bipartite graph G with maximum degree at most A. An activity vector
A = {A\, }vev, such that, for each v € V, A, € Lypip(A). For every vertex
v € V with A\, # A, the degree of v in G must be at most 2.

Output If |Zg(A)| = 0 then the algorithm may output any rational number. Other-
wise, it must output a rational number N such that N/K < |Zg(A)| < KN.

Name #MVBipHardCoreArg(X, A, p).

Instance A bipartite graph G = (V, E) with maximum degree at most A. An activity
vector A = {A, }vev such that, for each v € V, A, € Lyip(A). For every vertex
v € V with A\, # A, the degree of v in G must be at most 2.

Output If Z5(A) = 0 then the algorithm may output any rational number. Otherwise,
it must output a rational number A such that, for some a € arg(Zg(\)),
|A—a| <p.

LEMMA 6.5. Let B! be the graph in Figure 3 with activity vector X, and set T!' =

{pi,qi}. Then, for any value of the activities Ay, Ag, € C, it holds that

ZBi,Ti”,(D(AN) = ]" ZB£I7T;,,{pi}(A//) = )\pi7
Zp, 1 4ayN') = Ngis Zpy oy (N') = 0.

Proof. Note that B is obtained from the path B] in Figure 2 by appending the
vertices p;, ¢;, and in turn B} is obtained from the path B; in Figure 2 by appending

the vertices s;,¢;. As in Lemma 6.1, we denote T] = {s;,t;} and T; = {u;,v;}.
Completely analogously to (6.3), we have
6.9
| )ZB” 10N") = Zgr 00 oN') + Zpr 0 (s iy N + Zar 1 0y N + Zgr o (N,
Zpr 1 oy N') = X (Zpr 01 0(N") + Zr 10 41y (X)),
Zpy 1y 14y N') = Mg (Zaym10N) + Zpy 11 (s (X))
Zgy i1 (N') = Ap Ag. Zr 10 ().

To compute the r.h.s. in (6.9) we will use (6.3) which expresses the relevant quantities
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in terms of the gadget B; in Figure 2. Using (6.2) and (6.3), we therefore obtain

ZBini,m(A”) = _1/4a ZBi,Ti,{Ui}(}‘//) = ZBiniy{ﬂi}(AH) = _1/4’ ZB/L':TI',T'L'(A”) = 3/47
Zpyr0N") =0, Zy g (sdN) = Zyay gy (') = 1 Zgyry (W) = —1.

Plugging this into (6.9) concludes the proof of the lemma. O

THEOREM 6.6. Let A > 3 and A € Cg be a complex number such that A &
(AA U RZO)-

Then, for K = 1.02, #MVBipHardCoreNorm(\, A, K) is #P-hard. Also, for p =
97 /24, #MVBipHardCoreArg(\, A, p) is #P-hard.

Proof. Let G = (V, E) be an n-vertex graph with maximum degree at most A.
Suppose that A = {\,}yev is an activity vector for G such that, for each v € V|
Ay € L(N). Let eq,. .., e, be an arbitrary enumeration of the edges of G and suppose
that e; = {p;,¢;}, where p; and ¢; are vertices of G. Let H be the bipartite graph
constructed from G by replacing every edge e; of G with the gadget B! from Figure 3
and denote by A’ the resulting activity vector on H (every vertex originally in G retains
its activity in H). Observe that every vertex activity in H is from the set Lpip(N).
Moreover, Zg(A) = Zg(X'). The result therefore follows from Theorem 6.4. d

We will need the following lower bound on Zg(A), which follows from Lemma 3.6.

LEMMA 6.7. Suppose that X € Cq. Then, there exists a rational Cy > 1 such
that the following holds. For any n-vertex graph G = (V, E) and any activity vector
A = { A }oev such that A, € Lyip(A) for all v € V, it holds that either Zg(X) =0 or
| Za(N)] > C ™.

PTOOf. Let /\1 = —-A- 1, )\2 = —1, )\3 = 1, )\4 = —2, and )\5 = —1/4, so that
Ebip(A) = {Av )‘13 ) )‘5}

Let {Uy, Uy, ...,Us} be a partition of V such that A, is equal to \ if v € Uy and,
fori=1,...,5, A\, = \; if v € U;. For an independent set I € Zg and i = 0,...,5,
let n;(I) = |INU;| and n_(I) = ny(I) + na(I) + na(I) + ns(I). Then,

5
ZG()\) = Z o) H}\ZM(I) _ Z (_1)n_(I)2n4(I)(1/4)715(1)/\710(1)(1 + )\)m(f)

I€ela i=1 I€elg
N (m(D)
= 3 (1) Mg (1 gy yme) 3 ( ! )Ak_
I€Zq k=0

Thus, we have that 4"Z; () is an integer polynomial of A. Moreover, observe that
the absolute values of the coefficients of 4" Z;(A) corresponding to an independent
set I € T sum to at most 4™ - 2™ = 8", Since |Zg| < 2™, we have that the absolute
values of the coefficients of 4" Z5 () sum to at most 2" - 8 = 16™. The result now
follows by applying Liouville’s inequality (cf. Lemma 3.6). |

6.4. Reduction from the multivariate problem to the single-activity
problem. The purpose of this section is to prove the following theorem.

THEOREM 6.8. Let A > 3 and A € Cg be a complex number such that A &
(Aa UR>q). Then there is a polynomial-time Turing reduction from the problem
#MVBipHardCoreNorm(A, A, 1.02) to #BipHardCoreNorm(A, A, 1.01). There is also a
polynomial-time Turing reduction from the problem #MVBipHardCoreArg(\, A, 97 /24)
to the problem #BipHardCoreArg(A\, A, 7/3).
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PTOOf. Let )\1 =-A— 1, )\2 = —1, /\3 = 1, )\4 = —2, )\5 = —1/4 so that Ebip(/\) =
{MN AL, A5} Let M > 1 be a rational such that M > max{|\[, [A1],...,| 5|} and
let C'y > 1 be the rational in Lemma 6.7.

Let G = (V, E) be an n-vertex bipartite graph with maximum degree at most
A. Suppose that A = {\, },ev is an activity vector for G such that, for each v € V|
Ay € Lpip(A). Let {Uo, Ui, ...,Us} be a partition of V' such that A, is equal to A if
veUyand, fori=1,...,5, A\, = \; if v € U;. Suppose further that, for every vertex
v E Ule U;, the degree of v in G is at most 2.

Let € := m. Fori:=1,...,5, let J; be a bipartite graph with maximum
degree at most A with terminal v; that implements \; with accuracy €. Propo-
sitions 2.2 and 2.11 guarantee that J; exists, and that it can be constructed in
time poly(size(e)). The propositions also guarantee that Z3" (A\) # 0. Let A} =
Z5 0 (N)/Z3*, (N, so that [\] — A\i| < e. Note, we have the crude bound |Xj| < 2M
for all i = 1,.

Let A be the activity vector for G formed from A by replacing every instance
of A\; with A, for ¢ = 1,...,5. Let H be the bipartite graph constructed from G by
replacing, for each ¢ € [5], every vertex v € U; with a (distinct) copy of J;, relabeling
the terminal v; as v and attaching the terminal to the (at most two) neighbors of v
in G (note that this is the same construction as the one in Lemma 3.2). Note that
the maximum degree of H is at most A and, by Lemma 3.2,

(6.10) Za(XN') = Zu(\)/Ch, where Cyy _H IT z5.. )

i=1veU;

Note that using the output of the algorithm provided by Propositions 2.11 and 2.2,
we can compute C exactly in time poly(size(e)).
We will show that, whenever Zg () # 0, it holds that

1.01 N 1.015

1015|ZG( N <1ZaN)| < —Za(X)]

A1
(6.11) 1.01

and that
(6.12)  there are a € arg(Zg (X)) and a’ € arg(Zg(N')) such that |a — a’| < 7/30.

Before proving (6.11) and (6.12), we show that they give the desired reductions.
To reduce #MVBipHardCoreNorm(A, A, 1.02) to #BipHardCoreNorm(A, A,1.01), sup-
pose that (G, A) is an input to #MVBipHardCoreNorm(\, A, 1.02) and that Zg(A) # 0.
By (6.11), we obtain that Zg(\) is nonzero and, therefore, by (6.10), |Zg(\)| # 0
as well. Thus, an oracle for #BipHardCoreNorm(A, A,1.01) with input H gives an
approximation N so that N/1.01 < |Zz(\)| < 1.01N. By (6.10) and (6.11), we
therefore obtain that

N N
— <z <1.015——
1.015|Cy |—| a(| ICul|

As we noted earlier, the value Cy can be computed exactly in time poly(size(e)).
Thus, it is easy, in time poly(size(e€)), to compute a value C' such that
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Thus, the algorithm for #MVBipHardCoreNorm(A, A;1.02) can return N/C’ as an
output.

To reduce #MVHardCoreArg(\, A, 97/24) to #BipHardCoreArg(\, A, 7/3), sup-
pose that (G,) is an input to #MVHardCoreArg(\, A,97/24). An oracle call to
#BipHardCoreArg(\, A, 7/3) with input H gives a value A such that, for some h €
arg(Zy(\)), |A — h| < m/3. Consider a and o’ from (6.12). By (6.10) there is a
¢ € arg(Cy) such that ' = h — ¢. Now, by the triangle inequality,

la—(A=c)| <l|a—d|+|d = (h—c)|+|h— A <7/304 0+ /3 =117/30.

Adding an integer multiple of 27 to both a and ¢ on the left-hand side, we conclude
that for every ¢ € arg(Cy) there exists an a € arg(Zg(\)) such that |a — (A — &)| <
117/30. In particular, taking ¢ = Arg(C), there exists an a € arg(Zg (X)) such that
la—(A—Arg(Cy))| < 117/30. Thus, the algorithm for #MVHardCoreArg(\, A, 97 /24)
can compute a value C such that \C Arg(Cy)| < 97/24 — 117/30 and return the
value A — C as output.

So in the rest of the proof, we will establish (6.11) and (6.12). First, we show
that, whenever Zg () # 0, it holds that

(6.13) 1Za(A) = Za(N)] < 104(1@)” s |Zfo(4>\)|~

The rightmost inequality is immediate by Lemma 6.7. For the leftmost inequality,
note that for all positive integers k: and arbltrary complex numbers x1, Y1, . . ., Tk, Y We
have the telescopic expansion Hl 1T — Hz 1Y = Zk: (x; —yj) 3_11 x; Hf:jﬂ Yi-
Hence, for an arbitrary independent set I € Z¢, we have that (using the crude bounds
|)\i|,|)\;| < 2M and |\| < 2M)

‘ ITA - TTN] < Soean=1a, = | < n(2M)"e

vel vel vel

where in the last inequality we used that |\, — X,| < € for all v € V. Since |Zg| < 2™
and € = m, we obtain (613)

Now we are ready to show (6.11) and (6.12) whenever Zg(X) # 0. In particular,
by the triangle inequality and (6.13), we have that

‘|ZG(X) 1' _ 2N = 1ZeWN| _ 1Z6(XN) — Za(N)|
[ Za(N)] 1Za (M) - |Za(N)]
which proves (6.11). In fact, using the inequality above and (6.11), it follows that the

Ziv distance between Zg(\) and Zg(\) is at most 10~2 and, therefore, (6.12) follows
from [7, Lemma 2.1]. |

<1074,

7. Proof of Proposition 2.6. In this section, we prove Proposition 2.6. To do
this, we will focus on understanding the following type of sequences.

DEFINITION 7.1. Let A > 3 and A € Cg \ R, and set d := A — 1. A hard-core
program is a sequence ag,aq, ..., starting with ag = 1, and
1

7.1 ak = ork>1,
( ) k 1—|—)\ai,€,1 C Qi g f -

where ik1,...,ika € {0,...,k —1}. We say that the hard-core program generates
x € C if there exists an integer k > 0 such that ay, = x.
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Our interest in hard-core programs is justified by the following lemma.

LEMMA 7.2. Let A € C and d > 2. Suppose that ag, a1, ... is a hard-core program.
Then, for every k > 1, there exists a tree of maximum degree at most A = d + 1 that
implements the activity \ay.

Proof. The proof is by induction on k. For k =1, we have that ip; = -+ = ipq =
0,s0 a; =1/(1 4+ A). Let T be the single-edge tree {u,v}. Then, we have that
Z3,(\) =X ZEA) =1+ A,

. . . o ZR (A
and therefore T with terminal v implements the activity Z°Tt7”EA§ = \a1, as wanted.
T,v

Suppose that the statement is true for all values < k and suppose that

1
1+ )‘aikJ T Qi g

Q41 =

for some g 1,...,igq € {0,...,k —1}. Let J = {j € [d] | ix,; # 0} and note that
for every j € [d]\J, it holds that a; , = 1. By the induction hypothesis, for every

j € J, there exists a tree T; of maximum degree at most A, with terminal v;, such

that %&; = Aa;, ;- Let T be the tree obtained by taking the disjoint union of the
T,v ’

trees T; with j € J and identifying all the terminals v; into a new vertex v. Then,
| zp, 0 )
(72) Zp, 0 = AT 72,z = [T 238, O
jeJ jeJ

Now consider the tree T” obtained from T by adding a new vertex u whose single
neighbor is the vertex v. Then,

Zi”,vu()\) =25 (N),  Z9.(N) = Zr(N).

’
U

Using this and (7.2), we therefore obtain that

Ziir“]’,u(/\) o Z%L,Iitf()\) =\ 1 = A
2007 200 Ty 2y 1 ATl ey s
2N
A
:)\a2+17

1+ AHje[d] @iy 5
where in the second to last equality we used that a;, ; =1 for j € [d]\J. d

7.1. Getting close to a repelling fixpoint. In this section, we will show
how to generate points that are arbitrarily close to a fixpoint of the function f(x) =
IH\% using a hard-core program. We start with the following lemma.

LEMMA 7.3. Let A > 3 and set d :== A — 1. Let py be a polynomial in \ defined
by

po=p1=-"=pqa=1, and pry1 = pr + Apk—aq for k > d.

Then, for all k > 0, all roots of pi, are real.
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Proof. Consider a graph G, = (V, E) with V = {d+1,...,k} with 4, j connected
if |i — j| < d. We will show, by induction, that the independent set polynomial of Gy,
is pi. The claim is true for £ = 0,...,d (since the graph is empty and py = 1). For
k+1>d+ 1 the claim follows by induction:

e the contribution of the independent sets with k + 1 included is A times the
independence polynomial of Gy_g4, which, by the inductive hypothesis, is
APk—d;
e the contribution of the independent sets with k£ + 1 not included is the inde-
pendent set polynomial of G, which, by the inductive hypothesis, is py.
Hence, the independent set polynomial of Gy is px + Apk—d = Pr+1-

A claw is a graph with 4 vertices a, b1, bs,b3 and 3 edges aby, abs, abs. A claw-
free graph is a graph that does not contain a claw as an induced subgraph. We will
show that Gy, is claw-free. Suppose a,by,b2,b3 € {d+1,...,k} form a claw; w.l.o.g.
by < by < by. Then |a —b;| < dfori=1,2,3. If by < a then by —b; < a—0b; <d and
hence b1by is an edge—a contradiction with the assumption that a, by, bs, b3 form a
claw. If bo > a then b3 — by < b3 — a < d and hence bybs is an edge—a contradiction
with the assumption that a, by, ba, b3 form a claw. Thus Gy is claw-free.

Now we use [5, Theorem 1.1] which states that the roots of the independent set
polynomial of a claw-free graph are all real. ]

We will now show that we can get close to the fixpoint of f with the smallest
norm.
LEMMA 2.7. Let A >3 and A € C\ R, and set d:= A — 1. Let w be the fizpoint
of f(z) = H_ﬁ with the smallest norm. For k > 0, let xi be the sequence defined by
1

=———— fork>d.
1+ /\H;izl Th—

(73) Top =21 ="""=%=Xqg-1 = 1, Tk

Then, the sequence xy, is well-defined (i.e., the denominator of (7.3) is nonzero for
all k > d) and converges to the fizpoint w as k — oo. Moreover, there exist infinitely
many k such that xy # w.

Proof. For k > 0, let Ry be the sequence defined by
(74) Ry=R;=---=Rg=1, Rk+1 = Ri + ARp_q for k > d.

Observe that Ry = pr()\), where py, is the polynomial in Lemma 7.3. Since A € C\R,
Lemma 7.3 implies that Ry # 0 for all £ and hence for k£ > 0 we can let

(7.5) Yk = Ri/Ry1.
Note that for k € {0,...,d — 1} we have y; = 2. For k > d we have
Ry Ry 1 1 1

= = = R’_’ = d R ~ = d
Riy1 R+ ARpk—a 14\ i S Y ] P Rkﬁjil L+ AT vk—j

Yk

and hence, by induction, x; = yi for all k. It follows that the sequence xj is well-
defined.

Let wy,...,wqs1 be the fixpoints of f(z) = 1—5—# sorted in increasing order of
their absolute value, so that w; = w. Note, since A € C\R, by Lemma 4.2 we have
that |w;| # |w;| for different ¢, j € [d 4 1]. Observe that the characteristic polynomial

of the recurrence (7.4) is 2¢*1 — 2% — X\ and that the roots of the polynomial are
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1/wi,...,1/way1 (to verify this, use that )\w;l+1+wj —1=0for j € [d+1]). Therefore,
from the theory of linear recurrences we have that there exist ag,...,a441 € C such

that for all k > 0
d+1

Rp =Y oj(1/w))".
j=1

Note that since Ry = Ry = --- = Rq = 1 we have that ay,...,aq41 is the solution of
the following (Vandermonde) system

d+1
Z(l/wj)kaj =1 forke{0,...,d}.
j=1
Suppose one of the o, ..., g4 is zero, say o; = 0 for some i € [d+1]. Let agyo = —1

and wgt2 = 1. For j € [d + 1], note that w; # 1 (since that would imply A = 0) and
therefore wj # wgy2. Then we have that {a;};ecia+2)\ s} i @ nonzero solution of the
following (again Vandermonde) system

(7.6) > (w)ra; =0 forke{o,....d}.

Jeld+2\{i}
This is a contradiction, since the system only has a zero solution (w1, . ..,Wdt1,Wdt2
are distinct). Thus none of the aq,...,aq41 is zero and, in particular, oy # 0. It

follows that z; = Ry /Ry41 converges to wy = w as k — oo.

To finish the proof, it remains to show that z; # w for infinitely many k. For the
sake of contradiction, assume otherwise, and let ky be the largest integer such that
T, # w. From (7.3), we obtain

1
Thotd = d—1 :
I+A Hj:O Lko+j
By the choice of ky, we have z3,11 = -+ = Zp,+4 = w, which gives that z,, = w
(using that w = H_ﬁ), a contradiction.
This concludes the proof of Lemma 2.7. 0

Finally, we conclude this section with the following lemma, which will be useful
later.

LEMMA 7.4. For A € C\R and d > 2, let w be the fizpoint of f(z) = ﬁ with
the smallest norm. Then, w € C\R and 0 < |w — 1| < 1.

Proof. Since 1 —w = At we have that |w — 1| > 0 (otherwise, A = 0) and
w € C\R (otherwise, A € R). We therefore focus on showing that |w — 1| < 1.

Let wy,...,wqgy1 be the fixpoints of f sorted in increasing order of their norm,
so that w; = w. By Lemma 4.2, we have |wi| < --- < |wgt1], s0o by 1 —w; = )\wj”-lH
(4 € [d]), we obtain that

(77) |1—w1|<|1—w2\<---<|1—wd+1|.
Note that wy —1,...,wgs1 — 1 are roots of A(y + 1)+ +4 = 0; the coefficient of y9+!
and the coefficient of y° are both equal to ), so by Vieta’s formula,

d+1

(7.8) [[a-w)=1

Jj=1

Equations (7.7) and (7.8) imply |1 —wi| < 1, as needed. d
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7.2. Bootstrapping a point next to a fixpoint to an e-covering. Once we
have the ability to obtain points close to the fixpoint w, we proceed to the next step,
which is creating a moderately dense set of points around w (cf. Lemma 2.10).

The main idea of the proof of Lemma 2.10 is that close to the fixpoint the recur-
rence implements with a small error any polynomial with nonnegative integer coeffi-
cients (evaluated at w —1). Then we use the fact that the values of these polynomials
yield a dense set of points in C. Before proceeding with the proof of Lemma 2.10 we
state these ingredients formally.

LEMMA 7.5. Let z € C\ R be such that |z| < 1. Let S be the set of values
of polynomials with nonnegative integer coefficients evaluated at z (that is, S =
{p(2) |p € Z>o[z]}). Then S is dense in C.

Proof. We can write z = |z|e?™ for some z € [0,1). Note that x # 0 and x # 1/2
(since we assumed z ¢ R).

First suppose that z is rational, that is, = p/q for integer coprime p, g, where
g > 3. For any k € {0,...,¢g — 1} we can obtain an arbitrarily small number on the
ray with angle 27k/q (by taking (¢~ ™04 9)k+4¢ for large £) and hence we have a
dense set of points on the ray (taking integer multiples of the small number). Now
we show how using the points on the rays we obtain a point arbitrarily close to any
complex number ¢ € C. First, we can write ¢ as a convex combination of points
on the rays, that is, ¢ = agro + --- + a4—17¢—1, where r is on the ray with angle
21k/q (for k € {0,...,q—1}), ay, € [0,1] (for k € {0,...,¢ —1}), and 39"} ap = 1.
For € > 0, let &y be a rational such that |&r — ag| < €/q and let w be the product
of the denominators of dy,...,d&—1. Since we have a dense set of points on each
ray we can obtain 73, on the ray with angle 27rk:/q such that |ry/w — k| < e/w (for
ke {0,...,q—1}). Now we argue that > 7_ O(wak)rk is close to t. We have

(7.9)
q—1 q—1 q—1 q9—
‘ Z wak 72 (ak—&k)rk—l—de(rk—wrk Z|7“k|+ 1+6
k=0 k=0 k=0 k=0

Taking e sufficiently small we get a point arbitrarily close to t.

Now suppose « is irrational. Let t = [t|e*™ be a complex number, where y €
[0,1). The fractional part {kx} of kx for positive integers k is dense in [0, 1) and, hence,
for € > 0, there exists k such that |[{kx} —y| < € and |z|* < e. Let w = [[|t|/|z"|]
so that 0 < |t| — w|z|® < e. Observe that wz* = w|z|*e?™#2} | 5o by the triangle
inequality

|t _ wzk‘ < ‘t _ |t|e27rikx| + Ht|627rikac _ wzk’ _ |t| |627ri(y—{kx}) _ 1| + “tl _ w|z\k’
< (1 + 27|t]),

where in the last inequality we used that for § = 2w (y — {kx}) it holds that
e — 1| = v/2 = 2cos 0 = 2|sin(0/2)| = 2sin |0/2| < |6] < 27e.

Taking e sufficiently small we get a point (wz*) arbitrarily close to . 0

Remark 7.6. Note that the assumption |z| < 1 is necessary—the lemma would be
false for, e.g., z = 1.

The following operation (as we will prove in Lemma 7.9 below) is a first-order
approximation of operation (7.1) when applied to points around w perturbed by
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A1y ...,04:

d
(7.10) (aty...,aq) HzZai.
i=1

We will use a sequence of (7.10) to implement polynomials with nonnegative
integer coefficients; the complexity of a polynomial will be the number of steps in the
sequence.

DEFINITION 7.7. A straight-line program with operation (7.10) is a sequence of
assignments starting with ag =0, a1 = 1, and

ar =z (i, + +ai,,) fork=23,...,

where g1, ... igd €{0,...,k —1}. We say that the straight-line program generates
x € C if there exists integer k > 0 such that ap = x.

Using a finite sequence of (7.10), we can implement any polynomial with nonneg-
ative integer coefficients, up to factors of z. More precisely, we have the following.

LEMMA 7.8. Letp € Zxo[z] be a polynomial with nonnegative integer coefficients.
There exist nonnegative integers k := k(p) and n := n(p) and a straight-line program
with operation (7.10) such that ar, = z"p(z).

Proof. Let p(z) = Z;:O cjz9, where ¢; # 0 or t = 0. We will prove the claim by
induction on ¢ + Zz':o ¢;j. The base case is p(z) = 0; here we can take k(p) = 0 and
n(p) = 0. Now assume ¢ + 22:0 c; > 1.

First assume that ¢ > 1. Let ¢(z) = p(z) — 1. By the induction hypothesis there
exist n, k, and a straight-line program with operation (7.10) such that ax = z"¢(z2).
Let ag41 = za1 and agy; = zags;—1 for j =2,...,n (note that ag4,, = 2™). Finally,
add agyny1 = 2(ar + apyn). Note that agy,1 = 2" ip(2).

Now assume c¢g = 0. Let ¢(z) = p(z)/z. By the induction hypothesis there exist
n,k, and a straight-line program with operation (7.10) such that ay = 2™¢(z). Let
ak+1 = zay. Note that axr1 = 2"p(2). |

From the Taylor expansion we have that close to the fixpoint the multivariate
hard-core recurrence implements operation (7.10) (with a small error).

LEMMA 7.9. Suppose that A € C\R and d > 2. Let w be the fizpoint of f(x) =
T&xd with the smallest norm and set z = w — 1.

There exist reals Cy := Cp(w, \,d) > 1 and dg := dp(w, A, d) > 0 such that for any
ai,...,aq € C with |a;| < dy (for j € [d]) we have

d
1
(7.11) 7 :w+z( aj> + 7,
1+/\Hj:1(w+a’j) j=1
where |7 < Co max;eq |az]?.
Proof. Let by, ...,byq be arbitrary complex numbers with |b1],...,|bs| < 1. Let
1 d
F(t) = a0 where G(t) =1+ A[[(w+b;t).
j=1
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Then, using that w is a fixpoint of f(x) = we have G(0) = 1/w and

_1
14+Azd?

A5 by) (@)t
(7.12) F'(0) = — ((14—1)\(2)‘1)2 =)0,

Note that for all ¢ € [0, 1]

d
(7.13) G/ (8)] = ’)\ij H(w+bkt)( < AN+ |w)).

J=1  k#j

Similarly, we have that for all ¢ € [0, 1]
G (1) < A1+ |wl)”.

Let dp := min {W, 1}. Note that (7.13) implies that for ¢ € (0,8) we

1+|w|
have ) )
IG(t)] > |G(0)] — tdA|(1 + |w)* > ol Sod|A[(1 + |w|)? > TR

and hence for t € (0, dp)

26 (1) G"(1)

1) 0= |G Gy

< 3w d AP+ |w])* =: C,

which implies

(7.15) |F(t) — F(0) —tF'(0)| < Ct2.
Given aq,...,aq such that |a;| < do, let ¢ = max; |a;| € (0,00) and b; = a;/t (for
j € [d]); note,

1

d
=F() and tF'(0)=z) aj.
1+ AT (w+ ay) ;

Let Cp := max{C,2} > 1. The lemma now follows from (7.15), (7.12), and the fact
that F(0) = w. 0

Finally we can prove Lemma 2.10, which we restate here for convenience.

LEMMA 2.10. Let A > 3 and A € Cg \ R, and set d := A — 1. Let w be the
fizpoint of f(x) = ﬁ with the smallest norm. For any €,k > 0 there exists a
radius p € (0,k) such that the following holds. For every X' € B(\w,p), there exists
a tree G of maximum degree at most A that implements X' with accuracy pe.

Proof. Consider arbitrary €,x > 0 and let z := w — 1. By Lemma 7.4, we have
that z € C\R and 0 < |z| < 1. Therefore, Lemma 7.5 gives that polynomials with
nonnegative integer coefficients evaluated at z are dense in C. Hence there exists a
finite collection F of polynomials with nonnegative integer coefficients whose values
at z form an e/2-covering of the unit disk (to obtain the collection take a finite ¢/4-
covering of the unit disk and for every point in the covering, using the density, get a
polynomial whose value at z is at distance at most €/4 from the point).
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By Lemma 7.8 every polynomial p with nonnegative integer coefficients can be
generated, up to a factor 2"(P), using k(p) operations (7.10). Let

N = d K:=N k(p).
glea;m(p) an + max (p)

For every p € F, there is a straight-line program to generate zVp(z) using at most
K applications of (7.10) (the extra N in the definition of K is to allow for extra
operations (7.10) to move from 2"P)p(z) to 2Vp(z)). Let Cop > 1 and dy > 0 be the
constants from Lemma 7.9. Let Z(Co,d, k) := Co(2d)?* for k > 0 and

elz|V 1 K }

. K e
(7.16) 5—m1n{50/d '27Z(Co,d,K)’ Z(Co,d, K)’ 2|\

By Lemma 2.7, there is a hard-core program zg, z1, ... such that for sufficiently large
m,m/, it holds that 0 < |z,, —w| < § and |z, — w| < |2, — w[?. Let y1 = x,, and
Yo = Ty, 50 that 0 < |y; —w| < & and |yo — w| < |y1 — w|?. Finally, let

h =y, —w and set r := |hz"V|.
Since |z| < 1, we have r < |h| < 6 < K/|Al.

We claim that for any w such that (w 4+ u) € B(w,r), there exists a hard-core
program that generates w+u’ with |u —u’| < er. By Lemma 7.2, this implies that, for
p = |A|r € (0, k), any activity in the ball B(Aw, p) can be implemented with accuracy
ep by a tree of maximum degree A, as needed.

To obtain the desired hard-core program, observe first that u/r belongs to the
unit disc, so there exists p € F such that

(7.17) Ip(2) —u/r| <e€/2.

Moreover, there is a straight-line program 9o, 91,...,4yr with k& < K to generate
2Np(2), ie., o =0, 91 = 1, and

(7.18) Qg:z(g]ig’l—i—'~—|—gié’d) for £ =2,3,...,k,

where ig1,...,i04 € {0,...,¢ — 1} and g5 = 2z¥p(z). Note that for all £ € {0,...,k}
we have by induction (using |z| < 1 from Lemma 7.4) that

(7.19) 9] < d71

We will next convert the straight-line program (7.18) into a hard-core program. For
Yo, Y1 as above, let ys, ..., yr be given by

1
= d
L+ A Hj:l Yie

We will prove that for all £ = 0,1, ...,k it holds that

(7.20) Yo for £ =2,3,...,k.

(7.21) Yo = w -+ hije + 10, where || < |h|?Z(Cy,d, 0).

Assuming (7.21) for the moment, let us conclude the proof of the claim by showing that
Yy is at distance < re from w+wu and that it can be generated by a hard-core program.
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In particular, for £ = k, (7.21) gives (using that g, = 2¥p(2), |h| = |y1 — w| < §, and
(7.16))

yr = w + hzVp(2) + 11, where |7, < |h|?Z(Co,d, K) < |h||z|Ne/2.
Combining this with (7.17) and recalling that r = |hzV|, we obtain that
[y — (W + w)| = [hzVp(2) + 7 — ul < rlp(z) —u/r| + || < re.

To finish the proof of the claim, we only need to observe that, since yg,y; can be
generated using a hard-core program, we can also generate the sequence yg, y1, .- ., Yk
using a hard-core program.

It remains to prove (7.21). We do this by induction. Note that yo = w+0-h+ 79,
where |70| = |yo — w| < |h|? and y; = w + 1 - h + 0, covering the base cases of (7.21).
For the induction step, assume that for all 0 < ¢ < / it holds that

(7.22) Yo = w + hie + 70, where |7 < |h|2Z(Co,d, ).

For all ¢ < K, we have by (7.16) that Z(Cy,d,¢) < Z(Cp,d,K) < 1/§ < 1/h and
|h|d*~! < 6¢/d. Therefore (7.19) and (7.22) give that, for all 0 < ¢/ < ¢,

(7.23) \hger + 70| < |R]d" =Y + |R[2Z(Co,d, ') < |h]d“~" + |h] < b.

Hence, we can apply Lemma 7.9 with a;’s of the form hgey +71p (¢ € {0,1,...,0—1}).
From Lemma 7.9 and (7.23) we have

d d
1 N
Yo = - - :w+hz<2yié,].>+rg, where Tg:ZZTiLj‘FT
1+)‘Hj:1(w+hyie,j +Ti£‘j) j=1 j=1
and
7 < Co,, max [k + 7o < Coln (@'~ +1)? < Colhf*d™.
Thus

|7e| < d|R|*Z(Co,d,l — 1) 4 Co|h|?d* = |n|?Co(d(2d)* % 4 d**)
< [h[*Co(2d)* = |1[*Z(Co, d. 1),

completing the induction step. This finishes the proof of (7.21) and therefore the
proof of Lemma 2.10. ]

7.3. Bootstraping e-covering to arbitrary density. Our next step is to use
the “moderately dense” set of points in a small disk around w to create a dense set
of points. We first need a few technical results.

LEMMA 7.10. Suppose that A € C\R and d > 2. Let w be the fizpoint of f(x) =
T&zd with the smallest norm and let z = w — 1.

There exist reals C1 := C1(w, \,d) > 0 and 61 := §1(w, A\, d) > 0 such that for any
ai,...,aq € C with |aj| < 61 (for j € [d]) we have

d—1
1, 1 B
(7.24) X(w—&-ad - 1) j|:|1(w+ak) =w+ [ = —jZIaj +,

where |7 < C1 maxyeq) |a]?.
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Proof. Let by,...,bq be arbitrary complex numbers with |b1],...,|bs| < 1. Let
1 1 1 i
F(t)= - — , where Gi(t) := w + b;t) for k € [d].

Then, G¢(0) = w* and G4 (0) = wF~? Z?Zl bj, so

(7.25) F'(0) = — + =

TONUNS VU > = URITE N

where in the last equality we used that A\w?t! =1 —w = —z. Asin (7.13), for k € [d]
and all ¢ € [0,1], we have that

(7.26) |GL(B)] < d(1+ |w])".
Let §; := min{w(lli’i‘lil)d),l} > 0. Note that (7.26) implies that for k£ € [d] and
t € (0,61) we have
d |l

Ge)] 2 Ge(0)] - ta(1 + | >
Similarly to (7.26), for k € [d] and all ¢ € [0,1], we have
(7.27) GLO] < d*(1+ |w])?,
and hence for ¢ € (0,6;), following the same argument as in (7.14),

6

[F(1)] < W(2/|w|d)3d4(1 +wl)* =: C1,
which implies
(7.28) |F(t) — F(0) — tF'(0)| < Cyt?.
Given aq,...,aq such that |a;| < d1, let ¢ = max; |a;| and b; = a;/t (for j € [d]);
then, from (7.25)
1 1 d—1 B / o &1
X(w o 1) Fl(w +an) T = F(t) and tF(0) = <1 - > aj.

The lemma now follows from (7.28) and the fact that F(0) = w.

LEMMA 7.11. Suppose that A € C\R and d > 2. Let w be the fixpoint of f(x) =

Tﬁ\zd with the smallest norm and let z = w — 1.
There exist reals Cy := Ca(w, A, d) > 0 and 3 := da(w, A, d) > 0 such that for any

ai,...,aq € C with |aj| < 02 (for j € [d]) we have

0 1
0x 1 4 \Nw + z) H?;i(w +a;)'z=aa

(7.29) =z+T,

where || < Cy max;e(q) |ay|.
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Proof. Let Cy,dp be the constants in Lemma 7.9 and let do := min{1, d¢}.
Suppose that aq,...,aq € C with |a;| < 2 < 1. From Lemma 7.9 and the fact
that |z| <1 (cf. Lemma 7.4), we have
(7.30)

1 d
—w‘ < ’zZaj
j=1

‘1 AT (w + aj)

+Cpmax|a;|? < Cmax|a;|, where C := d+Cj.
Jj€ld] jeld]
From (7.13), we have

(7.31) ‘)\ H(w +aj) — )\wd_l‘ < C”Jg[ldaxl laj|, where C':=d\(1+ |w])?.

Note that

equals
r=aq

d—1
_ Ml @) = -+ 1) (w+ )2,

(1A T +ap)

3% 1+ A (w+a) 1‘[ 1 (W+ay)

where |71| < C" max;eq) |a;j| and |m2| < C'maxjeq |a;|. Notice
—()\wd_l + 1) (w+ )2 = At 47

where |7| < |M|72||w| 1 (2|w] + |72]) + |71|(Jw| + |72])2. Using that max;eq la;| <1,
we obtain |7| < Co max;eq |a;|, where

b = |[Aw]*IC2lw| + C) + C'(Jw| + C) > 0

This finishes the proof. ]
LEMMA 7 12. Let A >3 and A € Cg\R, and set d := A—1. Let w be the fizpoint
of f(x) = 1+/\$d with the smallest norm. There is a set of activities {\j, A}, ..., A\}} C
Co\{0} and a real r > 0 such that the following hold for all & € B(w,r):
1. fori=0, 1+)\/GB( 2r);

2. fori=1,...,t, the map ®; : x —

3. B(w,2r) C U§=1 ®;(B(w,2r)).
Moreover, for i =0,1,...,t, there is a bipartite graph G% of degree A with a vertex
w; such that

Hﬁ is contracting on the ball B(w,2r);

Z8r 0, (N A—1 ifi=0
N= —on L g deg, (G)) = ’
TzeE o) 8, (G1) {A—Q ifi=1,....t.

Proof. Take C = max{Cy,C1,Co,1} > 0 and § = min{dy, i1, o, |w|, 1} € (0,1],
where Cy, C1, Ca, dg, 01,02 are the constants from Lemmas 7.9, 7.10, and 7.11. More-
over, let z = w — 1 and recall by Lemma 7.4 that 0 < |z| < 1. Let e = §|z| > 0.
By Lemma 2.10, (A, \) implements a set of activities S = {\1,..., A} which is an
(ep)-covering of B(Aw, p) for some p > 0 satisfying

< A

(7.32) <100

TaA 012 (1 —12]).
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For convenience, for i € [t], define (; by setting

A= M +G) so that max |G| < ! cgolel(1 1] <.

I/\I

By Lemma 2.10, (A, A) also implements an activity Ag such that A\g = A(w + (o) with
d|Co| < ep/|A] (in particular, |(o] < §). Note that since A € Cg we have that S C Cg.

Let r := /73||,\|\ Moreover, let A := A(w + (o)?, while for i = 1,... ¢, let

1

M= Mw + &) (w + ¢o)* ™2 and ®; be the map = T xe

Note that {Aj,..., A} € Cg\{0}, since A € Cq, S C Cq, and for ¢ = 0,1,...,¢ it
holds that |(;] < § < |w].
Consider an arbitrary & € B(w,r). We first show that

(7.33) ®; is contracting on the ball B(w, 2r) for every i € [t].

Let z € B(w,2r). Since |& — w| < r, we have © € B(w,3r). Note that 3r < ¢ and
max;epy [¢i| < d, therefore from Lemma 7.11 (applied to aq = 2 — w, a1 = ¢; and
ag = -+ =ag—1 = (o), we have ®;(x) = z + 7, where

P p 1=z
7l < Cmax{Co, Gl — wl} < Cmax { £ 3r} = 0L < 22E,
Al A7 2
and hence |®}(z)| < Hl = proving (7.33). We next show that
(7.34)  for every x € B(&,2r), there exists i € [t] such that ®;'(z) € B(&,2r).

We first calculate ®; ' (x) for i € [t]. By Lemma 7.10 (applied to ag = = —w, a; = ¢,
and ag = --- = aq_1 = (p), we have

1 1 1
(@) = A (; B 1) (w~+ &) (w+ ¢o)d—2

T —

—wt (2 G- =26 + 7

where

|r|sOmax{\coﬁ\cﬂmz—wﬁ}SO(&') <eland (d=2)|Gol < diGo] < et

A Al

It follows that

(7.35) @;1(x)—w:(w—l—C)—(w—i—Q—)—l—T', where ( := Bl and |T|<26

Al

Note that

|z — \ 3r
<= =
K K
so AMw + ¢) belongs to the ball B(Aw, p). In particular, we can choose A; from the
(ep)-covering such that

AT < A

|Mw + ¢) = Ai| < ep, which gives that |(w + () — (w+ ()| < e&.
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Combining this with (7.35) and using that € = %[z|, we obtain that & (z) —w| <
36‘—§| = 7 and, therefore, by the triangle inequality |®; ! (z) —&| < 2r (since |& —w| <
r). This proves (7.34). Finally, we show that

7.36 —— € B(w,2r).

(7.36) T © (@,2r)

From Lemma 7.9 (applied to a1 = --- = aq = (p), we obtain that
T =w+d¢y + 71, where |7| < C|(|* < eﬁ =r/3.

Since d|{y| < eﬁ = r/3, we obtain that ﬁ € B(w, r) and therefore ﬁ € B(w,2r)
as well (since |@ — w| < r), finishing the proof of (7.36).
In light of (7.33), (7.34) and (7.36), to prove the lemma it remains to show

the existence of the graphs G{, GY,...,G} claimed in the stamement. Since (A, ))
implements the activities Ao, A1, ..., A, fori =0,1,...,¢ there exists a bipartite graph
zZia (A
G; of maximum degree at most A with terminal v; such that \; = quéi”lg)\; Consider
Giv4

first the case where we want to implement A} for some i # 0. Construct the graph
G}, by taking d — 2 disjoint copies of the graph Gy, one copy of the graph G;, and
identifying their terminals into a single vertex w;. Then, the degree of w; in G; is
d—1= A —2 and we have that

in Zin v, ()\) =2 Zin‘v'()\) ou ou — ou
20 (V) = ARt )T (SR e, (V) = (28, ()2, ()

and, therefore,

Zéuw ) _ A0/N)T2 (/X)) = Aw + G (w + )2 = A,

as needed. The construction for the case ¢ = 0 is analogous; to construct Gy, we take

d disjoint copies of the graph G and identify their terminals into a single vertex wy.

Then, wy has degree d = A — 1 and it holds that A\ = Z5, , (X)/Z2",, (N). O
0,Wo 0,Wo

Using Lemma 7.12, we can now prove Proposition 2.6 by applying Lemmas 2.8
and 5.2.

PROPOSITION 2.6. Let A > 3 and A € Cg \ R, and set d :== A — 1. Let w be the
fizpoint of f(x) = ﬁ with the smallest norm. There exists a rational p > 0 such
that the following holds.

There is a polynomial-time algorithm such that, on input X' € B(Aw,p) N Cq
and rational € > 0, outputs a bipartite graph G of mazximum degree at most A with
terminal v that implements X' with accuracy €. Moreover, the algorithm outputs the
values Z5 ,(X), Z&% (N).

Proof. Let r > 0, {\y, \],..., A} € Cop\{0}, and let Gy, ...,G, (with vertices
Wo, - . ., Wy, respectively) be as in Lemma 7.12. Let @ € Cg be such that |w —@| < r
and let p > 0 be a rational such that |w — &] < p/|A| < r. Note that the choice of @
and p ensures that

(7.37) B(w, p/IA)) € B(@,2r)
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since for all z with |z — w| < ITPI’ we have by the triangle inequality |z — @| <
|z —w| + |w—&] < 2r. Let

(7.38) xg = L so that, by Lemma 7.12, xg € B(®, 2r).
14+ X
Now, suppose that we are given inputs X' € B(\w, p) N Cg and rational ¢ > 0.
We want to output in time poly(size(N',€)) a bipartite graph of maximum degree
A that implements ) with accuracy e. By Lemma 7.12, we have that the maps
O,(x) = ﬁ with i € [t] satisfy the hypotheses of Lemma 2.8 (with zp = & and

radius 2r). Moreover, by (7.37) and (7.38), we have that z¢ and z* = /\7/ belong to
the ball B(w,2r). Let é = ¢/|\| and € € (0,¢) be a rational such that size(e’) =
poly(size(€)) = poly(size(e)). Using the algorithm of Lemma 2.8 on input zg, 2*, and
€/, we obtain in time poly(size(zg, x*,€')) = poly(size(N',€)) a number & € B(w, 2r)
and a sequence iy,. .., € [t] such that

(7.39) &=, (D5, (- s, (x0) -+ )) and ‘m - %I’ < < e/

For convenience, let ig = 0.
Now, let P be a path of length k + 1 with vertices labeled vg,v1, ..., vk, Vg1. Let
A be the activity vector on P given by

1._
Mg =Ny = ——2 A, =)\ forje[k], A
) 7

=\

Vg1

ZP i) A

w3y = AZ; moreover,
Progq M)
SVk41

we can also compute the values Z}§71)k+1()\), Z%%,,,(A) in time polynomial in k =
poly(size(N, €)) and size(xg, A}, ..., A}) = O(1).

Now, let G’ be the bipartite graph obtained from the path P by taking for each
7 =20,1,...,k a disjoint copy of the graph G’Z-j and identifying its vertex w;, with
the vertex v; of the path P. Using the degree specifications in Lemma 7.12, we
have that G’ has maximum degree A. Moreover, by Lemma 7.12 we have that A\, =
Z'C';/w(/\)/Zg”,tw()\) foralli=0,1,...,t, so analogously to Lemma 3.2 we have that

Then, by Lemma 5.2, it holds that Z%* = (X\) # 0 and

Pkt

(7.40) n N =C-Z5, (), zZt

G’ vg41 Pvgi1 ! Uk+1

(N =C- 22, (N,

fivk+1

where C' = [['_, (Zzgr, (V) HI€{0-k} 12 =XH  Wo conclude that

ZiGn’,’L]k+1()\> o Ziﬂ,vk+1 (A) _ )\:i'
28 o) 2B )

Combining this with (7.39), we obtain that G’ with terminal vi; is a bipartite graph
of maximum degree A which implements X with accuracy e. Moreover, using (7.40),

we can also compute the values Zi1 A), Z2E, (). d

Cvk+1( JVk+1
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