## CSC 284/484 Advanced Algorithms - applied homework 1

 due: February 12th, 11:59pm EST
## Grading:

- 284: 1 problem solved $=\mathrm{A}$
- 484: 2 problems solved $=\mathrm{A}, 1$ problem solved $=\mathrm{B}$

This homework has different rules than the theoretical homework, most importantly, do not discuss any aspect of the applied problem with anybody else (except me), do not search for a solution online, do not use any written material when writing any part of the code (for example, no copy-paste, no open textbook when writing code, no reediting of an old source file from an old project, etc).

Implement any $s$ - $t$-max-flow algorithm.
INPUT FORMAT: The first line contains $k$, the number of problems. Then descriptions of the problems follow. The first line contains $n$ (the number of vertices) and $m$ (the number of edges). The second line contains $s, t \in\{1, \ldots, n\}$ (the source and the sink). Then $m$ lines follow. Each line contains three integers $u, v, c$, where $u, v \in\{1, \ldots, n\}$ and $1 \leq c \leq 1,000,000$; this means that there is edge $(u, v)$ with capacity $c$ in the graph. We have $2 \leq n \leq 1,000$ and $1 \leq m \leq 10,000$.

OUTPUT FORMAT: The output contains one line for each problem - the value of the maximum $s$ - $t$ flow.

EXAMPLE INPUT:

2
21
12
1210
21
21
1210
EXAMPLE OUTPUT:
10
0

We are given a directed graph $G=(V, E)$, two vertices $s$ and $t$ and a positive integer $K$. We want to find $s$ - $t$-walks $P_{1}, \ldots, P_{K}$ such that no two walks have the same $i$-th edge (for any $i$ ) and the length of the longest walk is minimized.
(We describe the problem more formally. Let walk $P_{j}$ be $v_{j, 0}, \ldots, v_{j, \ell_{j}}$ where $v_{j, 0}=s$ and $v_{j, \ell_{j}}=t$. We want to minimize $\max _{j \in[K]} \ell_{j}$. The condition on the walks is: for any distinct $j, h \in[K]$ and any $i \in\left[\min \left\{\ell_{j}, \ell_{h}\right\}\right]$ we have $\left(v_{j, i-1}, v_{j, i}\right) \neq\left(v_{h, i-1}, v_{h, i}\right)$.)
INPUT FORMAT: The first line contains the number of test cases. Each test case is described on several lines. The first line contains $n$ (the number of vertices) and $m$ (the number of edges). The second line contains three numbers $s, t, K \in\{1, \ldots, n\}$.

Then $m$ lines follow. Each line contains two integers $u, v$, where $u, v \in\{1, \ldots, n\}$; this means that there is edge $(u, v)$ in the graph. We have $2 \leq n \leq 100$ and $1 \leq m \leq 1,000$.

OUTPUT FORMAT: The output contains one line for each test case. If no collection of valid walks exists then the line should contain NO. Otherwise the line contains a single integer, the length of the longest walk in the optimal solution.

## EXAMPLE INPUT:

2
21
122
12
56
152
12
13
34
24
42
45

## EXAMPLE OUTPUT:

NO
5
(For the second problem in the example we can take walks $1,2,4,2,4,5$ and $1,3,4,5$; note that pair of walks $1,2,4,5$ and $1,3,4,5$ is not a valid solution (they have the same 3rd edge).)

