Refereeing Conflicts in
—lardware [ransactional Memory

Arrvindh Shriraman
Sandhya Dwarkadas
Department of Computer Science

186 UNIVERSITY*ROCHESTER
N/

Conflicts affect performance

Conflict: concurrent accesses to the same location from
two different transactions where at least one Is a write

x |n the absence of conflicts, Hardware T™M provides
— low latency and high scalability

x With conflicts, performance can degrade significantly

— Vacation
2 12 . o
= e |[ow High
5 9
O
< .
— 6
N
T 3 *
c $.
> 0
1 2 4 8 16

Threads

Conflicts can be common

Application txs w/ conflicts

Bayes 85%
Delaunay 85%
Intruder 90%
EERE 15%
Vacation 73%
STMBench7 68%

x Ve anticipate that as ™M becomes popular
— large and long transactions will become common
— new Intricate sharing patterns will introduce conflicts

Conflict Management Primer
T1

Time

Store A

Conflict Management Primer

o T T2 x Conflict Type

£ — what type of accesses ?

- — read-write, write-read, write-write

\ 4
Store A . .
x Conflict Detection

b3
;&,‘ n — when to resolve !
(ﬁﬁ Load A — FEager (at access), Lazy (at commit)
K

Conflict Management Primer

T T2 x Conflict Type

— what type of accesses !
— read-write, write-read, write-write

Time

Store A . .
x Conflict Detection

— when to resolve !
Load A — FEager (at access), Lazy (at commit)

x Contention Management
— How to choose loser !
— priority, timestamp, etc.

- x Action
| — What action to take ?
—= — stall, abort self, abort other etc.

Our Contributions

x Comprehensive study of policy in HTMs
— conflict detection and conflict management interplay
— quantify effect on application performance

x |s |azy better than Eager !
— can we do better !

x How does the contention manager help ?
— Is it Important ¢

Experimental Platform
x FlexTM [ISCA'08]

— allows conflict detection to be controlled in software
— permits pluggable software contention managers

x [M Hardware: 16 core CMP, Private L1s, Shared L2
— signatures for conflict detection

— private L1s for speculative buffering
e overflow handled by hardware controller
— transaction commit protocol

e allows parallel transaction commits
e no centralized arbiter

Workloads

x [M Workloads
— STAMP (Stanford)
— STMBench/ database (EPFL)
— Web-cache and Graph stress tests (U.Rochester)

x [M Policies

— Conflict detection: Lazy, Eager, and Mixed
— Contention Management: w/ and w/o stalling,
timestamps, access sets, aborts

s Lazy better than Eager ?

Can we do better 7 : Mixed

s the contention manager important

Conflict Detection

x Fager (manages conflict at access time)

Goal: If transactions can't commit together, save work
— 1o progress, transactions abort enemies
— transactions can stall and try to elide the conflict

x | azy (manages conflict at commit)

Goal: postpone detection hoping conflict disappears
— to commit, writers abort enemies
— writers can stall to elide reader conflicts

Fager's Performance Limitations

» [utile aborts waste work and hinder progress
— stalling access may help avoid the conflict

Time

T1 i - T3
Stoae A I
Noort—< Loald JAY

Abort— &-==**" Store A

x |nability to overlap conflicting transactions

Time

T1 T2 T3

| i I
load A load A
n n

Abort < Abort oo Store A

10

Eagef w/ Stalling

8 16 threads
2 [l Req. wins B Req. wins+stalling Tthread = 1
S
= 0
= v
= 4 X
L
-C__U 2
= 2
° 1
Z 0

G
®<2>Q

x (Can reduce occurrence of futile aborts (livelock ?)
— reduces wasted work due to aborts

x [s 1t good enough !
— cannot exploit concurrency in application

11

Lazy's Benefits (1/2)

Small Contention Window

x Conflicts checked only at commit

— reduces likelihood of conflict winner being aborted
— can reduce the occurrence of futile aborts
— prioritizing the commiter avolids livelock in practice

T1 T2 T3
@
g I
i= Load A Load B
|} I Store A Store B

IR |

Also observed in Software TMs by Spear et al. [PPOPP’09]

12

Lazy's Benefits (2/2): More commits

®x [Even transactions with overlapping accesses
— can execute concurrently
— Ccan commit concurrently

T1 T2 T3
o |
i Load R Load R load R
\4
Loald A Loald B Store R

L1

13

Lazy's Benefits (2/2): More commits

®x [Even transactions with overlapping accesses
— can execute concurrently
— Ccan commit concurrently

T T2 T3
e]
= Load R Load R load R
\ 4
Loald A Loald B Store R
I extra work
Abort Qe Abort < 3 B wasted

x Caveat: Can waste more work than Eager
— postponing conflict detection was futile (T2 commits first)

— may be solved by stalling commit -

Lazy performs better than Eager

| Eager w/ Stalling . Lazy w/ Stalling

= 10
2
o 8
D)
O
< © -5
©
g 4 S
[()
e 2 e
Z 0 =
i > %) A 2\ % Q
P > & & & F
QQ> NS R @b <<0
é& Y

x [azy improves performance over Eager (Avg. 40% , Max. 2x)

®x [nsures progress in non-scalable workloads

®x [azy may lose performance due to wasted work (STMBench?/)
- postponing dueling read-write conflicts Is futile

14
B

s Lazy better than Eager ?

Can we do better 7 : Mixed

s the contention manager important

15

Mixed Conflict Detection

Tunes detection based on conflict type

x Detects Write-Write conflicts eagerly
— may save wasted work, It winner commits

x Detects Read-Write and Write-Read conflicts lazily
— allows useful concurrency

Added Benefit: complexity-effective implementation

— needs to support only single-writer and/or multiple-readers
— at most two versions of data, speculative and non-speculative

16

MINGEe

o Bager [Lazy M Mixed

—_i

o N B~ OO 00 O

Normalized Throughput

Bayes Delaunay Intruder Vacation STMBench7

x Mixed improves performance by ~40% in STMBench/
— saves wasted work on conflicts between long and short writers
— explorits reader-writer concurrency like Lazy

17

Mixed's Problem

x Mixed can suffer from weaker progress conditions than Lazy
— Inherrted from Eager write-write detection
— can be solved with appropriate contention managers

B Lazy/ Stalling B Lazy w/ Age
~ Mixed w/ Staling 1 Mixed w/ Age

43 1.2

€10

=)

© 0.8

<

= 06

N 04

@®

c 0.2

O

Z 0

LFUCache RandomGraph
18

s Lazy better than Eager ?

Can we do better 7 : Mixed

s the contention manager important 7

19

Contention Management

x |s a priority scheme that chooses winner in a conflict

— can help progress by prioritizing starving transactions
— simplified in Hardware TMs since transactions are visible

x Priority arbitration (our implementation)

—

—

—

always stall before making a decision

nigher priority transaction always make's progress
ower priority transaction can stall or abort itself
briority changed on various dynamic events,

nardware performance counters to reduce overheads

20

Priority Schemes

x Age (similar to Greedy [Guerraroui, PODC05])

— global timestamp acquired by transaction at begin, retained
on aborts, discarded on commits
— ensures progress of the oldest transaction

x Aborts
— local abort counter
— 1ries to ensure progress of starving transaction
— theoretically, transaction could always get beaten

x Size (similar to Polka [Scherer, PODC05])
— local read set counter, retained on aborts (like Karma)
— prioritizes transactions which have made progress

21

Centralized Priority (Age)

®x |mplemented in software

x [imestamp suffers from scalability issues

®x Hinders concurrency in Eager by convoying readers
behind a writer (performance drops ~ |1 0%)

. Eager w/ Stalling . Eager w/ Age

00

)]

N

Normalized Throughput
N

Distributed Priority (Size and Aborts)

x Cheaper to implement, no centralized mechanisms
x \Weaker progress guarantees
— no provable starvation or livelock freedom

x Size Is highest performing manager
— maximizes parallelism ensuring reader sharers make progress
— ensures writers don't starve In practice

.| Eagerw/Age [Eager w/Aborts B Eager w/ Size

—

@RISR O 0 O

Normalized Throughput

BIEWES Delaunay Intruder Vacation STMBench7

23

m

Summary
Policy important in HTMSs, tradeoffs similar to STMs

x | azy performs better than Eager (Avg. 40% increase)
— narrows contention window and ensures progress
— exploits reader-writer parallelism to attain more throughput

x Mixed Is a good tradeoff between desire to exploit
concurrency and implementation complexity

x Contention manager
— less important in Lazy
— can help with progress in Eager and Mixed

pL

Summary

Look at paper for det
.

1 ee
2) Im

9

lict patterns Ir

al
O

S OnN

Ur TM work

ementation tradeoff discuss

Acknowledgments
Multifacet Research group, Wisconsin

STAMP group, Stanford
Transaction Benchmark group, EPFL

oads

On

http://www.cs.rochester.edu/research/synchronization 24

http://www.cs.rochester.edu/research/cosyn
http://www.cs.rochester.edu/research/cosyn

