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Abstract

This tutorial is dedicated to our long-suffering 442 students, and to the excellent authors
from whom I shamelessly cribbed this work. It is a pure cut-and-paste job from my favorite
sources on this material. This is nol my own work — think of me as an editor working
without his authors’ permissions. Readers should know that original authors are usually
easier to understand than rehashed versions. If this presentation helps you, good. If not it
at least helped me sort a few things out.

I assume knowledge of all necessary linear systems theory, differential equations, statis-
tics, control theory, etc. We start with the ideas of filtering, smoothing, prediction, and
state estimation. Wiener filtering and its associated intellectual framework follows, with
a brief foray into ARMA filtering. The idea of recursive estimation is introduced to give
some motivation for the slog ahead, and then we start with basic concepts in maximum
likelihood, maximum a posteriori, and least-squares estimation. The strategy is to work
toward the Kalman Filtering equations by showing how they are simply related to general
least-squares estimation. After Kalman filtering, some simpler versions of recursive filters
are presented. There are appendices on the orthogonality principle, the matrix inversion
lemma, singular value decomposition, partial C and LISP code, and a worked example.

The University of Rochester Computer Science Department supported this work.
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1 Filtering, Smoothing, and Prediction

In this context, a filter is a procedure that looks at a collection or stream of data taken
from a system, or plant, or process. The system is described by a state equation. The filter
estimates parameters or system state variables. System parameters are usually taken to be
time-invariant or slowly-varying properties of the system. The set of system state variables
is any set of variables that completely describe its state as far as you care. You are you
are trying to control or discover the system’s state, and you want to estimate these state
variables from the collection of data you gather. For instance you could be interested in the
position, velocity, and acceleration of an object, so these would be its state variables. The
state equation might be that of a point moving under constant acceleration. The data you
might have available is a stream of noisy position measurements.

Usually in this business one thinks of data ordered through time, and a procedure that
does not use “future” data is causal, else it is non-causal. Non-causal temporal filters are
non-physical (impossible). In image processing the literature often assumes the signal comes
in through time in scan-line order. Computer vision people often deal with images that have
been captured and are now static in time. That means that a simple-minded computer-
vision image smoothing filter that takes a boxcar average of a pixel and its 8-neighbors is
“non-causal” if you think of the image as arriving in scanline order. Some image processing
people use that sort of terminology, so watch for it: to them “the future” is any scan line
below you or anything to the right on your scanline.

Back in the time domain, say you are getting a vector of data x(k),k = 0,1,2...,7T
through time (for the most part I stick to discrete data throughout this note) and feeding
it to your filter. There are three estimation problems you could want to solve.

e Estimate the current value x(1') given all the data so far, including x(7'): this is called
filtering (in a restricted technical sense).

e Estimate some past value of x(k), k < T given all the data so far, including x(7'): this
is called smoothing.

e Estimate some future value of x(k),k > 1 given all the data so far, including x(7'):
this is called prediction.

You should be able to see why these forms of estimation have these names.

“Optimal” estimation techniques assume you have a model for some underlying form
of the data you are observing, and for the noise processes that affect your measurements,
and that you have an error criterion you want to minimize. A good example is the family
of least-squared error estimates (of which we’ll see a lot). Consider fitting a straight line
to some scattered data in some normal, intuitive way (you could use techniques you may
have learned under the names of linear regression, principal components analysis, least-
squares fit, etc. or you just eyeball it and draw a line through the middle with a ruler).
Why would you do that? Why pick that particular line, or indeed any straight line at all?
You’d have to believe that the “true” data actually are produced by a linear process. If
you believed it was an exponential decay type phenomenon you’d want to fit a straight line



on a log scale, for instance. If you knew you were looking at positions of a freely falling
object you might want to fit a parabola. Further, you have to believe that the noise that is
affecting your measurements (measurement noise) or its behavior (plant noise) has mean
zero. Otherwise your whole data set would be displaced in one direction or the other. Thus
running through all of this work are certain important assumptions about the underlying
properties of the systems or processes being estimated, and about the various noise processes
that can interfere with the estimation.

2 Pseudoinverse Methods

This section and the next are written from the context of image processing. The techniques
are of course more general than this family of applications, but this application has the
advantage that the results can be shown visually. You should go to the real literature for
these compelling images.

2.1 Vanilla Pseudoinverse Approach

Pratt’s book [8] has excellent coverage of all manner of digital image processing lore, with
many illustrative images of the effects of various processing methods. This section is stolen
from his treatment.

Idea: if your image degradation could be modeled as a linear transformation of the image
(this of course includes any degradation like blurring that results from a convolution), then
why not just write down the transformation matrix and invert it? This idea is the basis
of pseudoinverse and SVD (Appendix B) methods. These methods have some practical
difficulties but they are elegant in conception.

Recall that the pseudo-inverse is the canonical way to solve over-determined equations
in a least squared-error sense. Recall (e.g. the appendix of [1]) that if B is a matrix, then
Bt is the pseudoinverse, where

B = (B'B)"'B’

where as always in this document the prime denotes matrix transpose.

Then if the blurring is described by
g = Bf

and the best restoration is given by
f = Big.

Easy, eh? There are several problems, such as that for a 512 x 512 image and observa-
tion, B has 68,719,476,736 elements. Of course for a normal blurring-type distortion B is
very sparse and very structured, but still... Luckily if the blur function is separable into row
and column blur operators, then the pseudoinverse is also separable, and the restoration
can be found by applying the generalized inverse of the row blur matrix to the observations,
then the inverse of the column blur to the result.



Furthermore, think about getting an “over-determined” observation from the blurred
image. Suppose you just sample the blurred input at a very high resolution, higher than
the desired output? What happens is that the rows of the blur matrix become more and
more linearly dependent, and the rank of the matrix drops relative to its size.

If a noise vector n is added to the blurred image, then the reconstruction will be off by
the additive vector Bfn.

There are some techniques for making this approach practical [8].

2.2 SVD Approach

The strategy is to decompose the blur matrix B into eigenmatrices via the SVD (Appendix
B). Then sequentially estimate by iteratively taking into account eigenmatrices of smaller
and smaller singular values. Since conditioning problems occur when you start effectively
using rank-deficient matrices, and the SVD measures how rank-deficient the matrix is and
orders its components by their contribution to the blur matrix, the SVD (as always) allows
you to control the effects of rank-deficiency.

Formally and for example, consider an image that has been corrupted by a blur matrix
and then has had noise added:
g=Bf+n

By eq. (42) in Appendix B, write B as

B = UAY2V/

Since U and V are unitary (if real, they are orthogonal) it is easy to write down the

pseudoinverse B! as
R

Bf = VA~2U" = Y A (3)] 73V

i.
=1

The generalized inverse estimate is then just the result of multiplying this expression
for BT on the right by g. Note then that u'g is a scalar and so can be moved around like a
scalar, and the resulting sequential estimation formula is

fi = fi1 + [A\(0)] 7/ *(u}g) v

This looks like we are just summing up weighted column vectors, and it’s true: re-
member here we are representing the whole image as a column vector. Again, considerable
computational savings can be achieved if the blur is spatially invariant [8].

3 Stochasticity, Stationarity, Wiener Filtering

We’ll start out with the motivation of reconstructing or removing noise from signals that
have been perturbed by additive Gaussian noise. We shall use linear theory so we can
characterize our reconstructing or noise-removing filters as convolutions with a filter kernel.



What is normally distributed or Gaussian additive noise? The idea is that whatever
you are dealing with (state variable, measurement...) has added to it a Gaussian random
variable with mean zero and variance o2. Remember that the probability density function,
or PDF, of such a variable is
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p(z) = N(z;2,0%) = . exp {—M} . (1)

(Here and throughout I use = to denote “defined as”.)

In the context of stochastic signals, if the amplitude of the noise process varies with (spa-
tial) frequency it is called “colored noise”; if the noise is equally powerful at all frequencies
it is called “white”.

This section is stolen from Horn’s excellent chapter on continuous signal processing [6].
We want to reason about classes of signals that are random in the sense that they cannot
be exactly predicted: telephone conversation sound waveforms, weather radar returns, tele-
vision images. Characterizing such ensembles and their joint behaviors is very difficult, and
a usual approximation is to talk about the first few moments of the relevant distributions.
Thus to describe the ensemble of random signals emitted by some process we could talk
about its mean value, or its mean and (auto)covariance (the generalization of the variance
of a random variable). In what follows, we indeed simplify things by assuming that the
signals in which we are interested are described only up to this rather rough statistical
level. Further, if the statistics of the noise and signal do not vary in time, the processes
are called stationary; there are several sorts of stationarity and the technical definitions are
straightforward, but all we need to know is that stationarity captures the time-invariance
of the process. Another useful word and concept in this area is ergodicity, which captures
another sort of invariance; basically the ergodic property is what lets us assume that we
can learn about “along-the process” behavior by looking at samples of the signals that are
obtained from the ensemble “across the process”.

Another way to think about the mean and (co)variance properties of the signal is in terms
of (spatial) frequencies.! The auto-covariance is intimately related to the autocorrelation (a
sign difference in the integral) and the autocorrelation is the Fourier transform of the power
spectral density. So we are going to be designing filters that work optimally on signals with
particular power spectra. So you might imagine that all “talking heads” images look about
alike in their spatial frequency content, or that outdoor nature scenes or city scenes might
have characteristic amounts of high- and low-frequency image content, and we might be
designing filters for them.

Now there is really only one idea in this whole filtering game:

Pay more attention to the signal as it overpowers the noise,
and pay less attention as the noise overpowers the signal.

'In this document, “frequency” should be interpreted as spatial or temporal depending on context.
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Figure 1: The optimal filter of impulse response h minimizes the difference (in a least-
squared sense) e between its output and some desired signal d (here equal to the input
signal b), assuming that noise n has been added to b.

So in terms of power spectra, imagine that we can characterize the signal’s power spectrum,
so we know at what frequencies there is most signal power. Also suppose we know the
noise’s power spectrum. At any frequency we could imagine attenuating the signal by the
ratio of noise to signal at that frequency; this would mean we would lose information about
the signal but we would not inject the noise into our estimate as good data. As it happens,
exactly this strategy is what gives the best (least squared error) expected estimate of the
signals from the ensemble.

To hammer this point home, imagine the normal 2-D plot of a power spectrum (squared
modulus of Fourier transform) of an image. A bandpass filter that rejects certain frequencies
reduces or eliminates an annulus in the Fourier transform, and inverting the transform gives
the filtered image. Attenuating or removing a pair of symmetric pie-slices from the transform
removes a range of spatial frequency orientations (thus removing vertical edges, say). The
filters we are describing do that sort of thing by attenuating the signal for frequencies at
which noise power is highest.

Fig. 1 describes the situation for optimal filtering. The problem is formalized as least-
squares minimization of e in any book on filtering, and the result is the Wiener-Hopf
equation. Pratt’s book [8] shows an elegant solution based on the orthogonality principle
(Appendix A).

Consider the image and our observations of it to be written as column vectors. Let the
observation be a P X 1 vector i and the image be a Q X 1 vector d. We desire a linear
operation to estimate i:

i=Wd+b,

where W is a () X B restoration matrix and b is a ¢) X 1 bias vector. We must choose W
and b to minimize the mean-squared error of our estimate. Orthogonality principle to the
rescue. From the last equation and eq. (40),

b = E[d - WEi, 2)

And from eq. (41),
E[(W +i-d)(i- E[])]=0. (3)

-~



Substituting in this last equation for b using eq. (2) yields directly
W = KiK',

where K;; is the P x P covariance matrix of the observation vector (assumed nonsingular)
and K;4 is the @ X P cross-covariance matrix between image and observation. Just to
repeat, this shows that the optimal restoration matrix is determined only in terms of first
and second moments of the image and observations — truly elegant. Further, this solution
is true even for nonlinear and space-variant degradations.

The following completely outrageous demonstration is just to make the result reasonable
and does NOT constitute a derivation of the Wiener-Hopf equation. Let us denote the
convolution operation by *, and let’s leave off the (z, y) indices for the quantities like input,
output, desired signal in Fig. 1. The resulting equations then work for time series too.
Assume that the filter output should equal the desired signal

d=o.
We know that the output is the convolution of the input with h:
h*t=o.

Now practically we don’t know much about these inputs and outputs, but as we have argued
above it is reasonable that we might measure basic statistical properties like their power
spectra, or equivalently that we would know their autocorrelation and cross-correlation
functions. Thus if we have 0o = d, we can convolve both sides of 0o = 7 x h with :

hxix1=o0x1.

Now ¢ 7 is the autocorrelation of the input (often written ¢;;) and o * ¢ is the cross-
correlation of the input and desired signals, often written ¢;4q. The Wiener-Hopf equation
can be written (with continuous versions of the autocorrelation etc functions) as

Giq = Pi; * h.

To solve it, Fourier transform both sides: the convolution goes to a multiplication and the
convolutions go to power spectra:
Qg

H =
®;;

To see how a solution to the Wiener-Hopf equation in a particular instance fits with
our intuition of paying attention to the data that is less noisy, consider the goal of signal
estimation, or noise removal, when b is an image we want to recover and n is additive noise
that is uncorrelated with the signal?. We want the output o to be a close as possible in a
least squares sense to b. Thus

d=2».

?Many noise processes are correlated with the signal — the natural variation in the number of photons
captured by a sensitive detector is dictated by “photon statistics” in which the variance in the number of
detections goes up with the number of detections.



We know
1 =b+ n,

so correlating each side of this last equation with d (that is, also b) gives
1xd=0bxb+nxb.
Likewise with the expanded expression for z above we can write
t1x1=bxb+bxn+nxb+nx*xn.
Since the noise is uncorrelated with the signal, we can substitute
bxn=nxb=0.

Fourier transforming, we get

Sy Oy, 1
O, Py +Pnun 14 Lond

o35

H =

In the last form of this equation, you can see that the filter passes the signal unmodified
if ®@,,, the noise power, is zero. For any frequency, as the ratio of noise power to signal
power grows, the denominator grows, and the filter attenuates more.

I refer you to [6; 5] for more examples and two different derivations of the Wiener-Hopf
equation.

4 ARMA Filters: Filtering meets Control Theory

In 1994 Jeff Schneider and I were trying to design a simple-but-stable controller for a
simulated flexible beam. The model had springs in it and the beam “rang” at different
frequencies when hit with an impulse. (To get the impulse response, Jeff torqued the
simulation one way on tick 0 and back the other way at tick 1, kept a record of the tip
deflections, Fourier transformed them and wvoila!). These frequencies were being excited by
the output of the PID (proportional, integral, derivative) controller, which was demanding
very jerky torques, and eventually they would make the system go unstable. We knew the
system was approximately linear, and that if we could filter out those frequencies in the
control output, we’d keep the beam from ever responding to them.

Now as it happened we had an analytical handle on these frequencies, and it may have
been possible to design a PID (thus second-order) controller to cancel out the first couple
of poles (resonances). But we had a lot of empirical work behind us from B.J. Fesq, who
had tried lots of different PID gains and couldn’t find a combination to damp out those
vibrations effectively.

So Jeff went to the MATLAB signal-processing workbench and got coefficients for a filter
to damp out those frequencies, implemented as a tapped delay-line line that just outputs a
linear combination of the last n inputs. The coefficients were provided by MATLAB, the
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Figure 2: Amplitude response of digital “band-stop” filter

elegant and simple implementation of the tapped-delay line was provided by Jeff. MATLAB
was useful because as you know, sharp cutoffs in filters cause nasty ringing effects, and you
pay MATLAB to know how to give you coeflicients for filters with nice smooth properties.
Since the system was almost linear it didn’t much matter where we put the filter, and
Jefl put it in the feedback path, to remove the two resonant frequencies from the reported
tip position. It worked: the resonant frequencies were banished, and a slight adjustment
to the PID controller stabilized the system. Figs. 2, 3, and 4 show frequency, phase,
and impulse responses of a “Butterworth” filter designed by MATLAB that is to block
frequencies between 100 and 200Hz.

This section is a very brief introduction to these sorts of digital filters, and it relates
them and their behavior to the concepts of “poles” and “zeros” that are common in the
traditional control- and filter-theoretic literature. Basically, the poles are eigenvalues that
tell you the resonant frequencies of a system whose transfer function is a rational function.
The poles are roots that make the denominator of the transfer function go to zero, hence
its response goes to infinity. Zeros are roots of the numerator, which make the response go
to zero.

A general tapped delay-line filter that produces a combination of a moving average (MA)
of its input and a feedback auto-recursive (AR) component is shown in Fig. 5. It is easy to
see that with only the upper MA connections an impulse input (that is, a single 1 coming
down the wire, preceded and followed by infinite zeros) will yield a response that dies away
after a certain time (the length of the delay line, in fact) — it is a finite impulse response
(FIR) filter. Contrariwise, the loopback of the AR connections means that the output can
be fed back into the filter forever; it is an infinite impulse response (1IR) filter.

We can write the time-domain behavior of an ARMA filter as a difference equation:

10



Figure 3: Phase response of the digital filter of Fig. 2.
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Figure 4: Impulse response of the digital filter of Fig. 2.
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MOVING AVERAGE (FINITE IMPULSE RESPONSE) (MA, FIR)

n
lb?’ bsy b,
-1 -1 .
z z v
a3 a2
AUTO-RECURSIVE (INFINITE IMPULSE RESPONSE) (AR, IIR)
Figure 5: ARMA filter

y[n] = brz[n] + byz[n — 1]+ - -+ bppp1@[n — nb] — agy[n — 1] — -+ — apep1y[n — nal, (4)

where na, nb are the numbers of AR and MA weights a; and b;.

Going over into the transform domain (here it’s z-transforms), we are after the transfer
function, defined as the z-transform of the impulse response h[t]. We know

Y(z) = H(2)X(2)
by definition, and so from eq. (4) we can just write

bbbz
Tl azt e g1z

Y(2)

X(2). (5)

The fraction in eq. (5) is a pretty, rational transfer function of the sort you're used to
dealing with in control theory. You find the roots of the upper and lower polynomials and
those are your zeros and poles. Note that MA filters have all their a; = 0 so all their poles
are at zero, hence for instance they are stable.

I'd like to relate the poles and zeros of the transfer function of a controller or a filter to
its frequency response. A linear filter transforms an input sine wave of a given frequency
in two ways: it attenuates or amplifies its magnitude and it advances or retards its phase.
Recall that at the start of this section, Jeff and I were interested in attenuating certain
frequencies. You can imagine that if a filter retarded the phase of a periodic signal by 180
degrees, its output would be the sign-reversed input. If the output were to be proportional
to the input, as in a P controller, instead it would have exactly the wrong sign for that
frequency. Thus phase phenomena can be devastating for control systems. In fact, if you do
the math (or just think about it) you’ll see that pure delay in a control system is equivalent
to pure phase lag, with the phase of higher frequencies affected more than lower ones; this
is why delay is devastating for control.

The frequency response can be described as the response to a set of frequency inputs
that form a unit circle in the z-plane (Fig. 6). We want to compute the magnitude M (w)
and the phase ©(w) for any given position around the unit circle. The math for this

12
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Figure 6: Frequency response as filter response around unit circle. 7T is the sampling period.

involves expressing the effect of the transfer function for any sinusoidal input as a product
of magnitude and phase effects

H(eT) = M(w)e’®W),

and rewriting the factorized rational H. The details are available in several books or you
can work them out yourselves. The result is given by eqs. (6,7). In these equations, there
are n zeros and m poles, M,; is a length and ¢,; is an angle, with semantics shown in Fig.
7. The magnitude of the frequency response is determined by the ratio of distances of poles
and zeros from its point on the unit circle, and the phase is determined by the difference
of angles as shown. I hope this is some help in visualizing the effect of controllers or filters

displayed as pole and zero diagrams.

— HO H?:l Mzz

M) = gt ()

Ow) = Zj: Gzi — i Ppi (7)

Finally, I should mention lattice filters. These are tapped delay line MA filters, slightly
enhanced in the sense that the input signal is split and routed forward along two delay
lines, with weighted connections connecting the two lines at each step. The picture is
like a ladder with X’s for rungs. The weighting coeflicients can be “learned” by using
the orthogonality criterion (Appendix A), which demands that for an optimal filter the
innovation sequence (unexplained part of the signal emerging from the filter) should look
like white noise. Anyway it’s all easier than it sounds (see /u/brown/src/pred). It turns out
that the reflection or partial correlation coefficients in the filter have the same information
about the signal as does its power spectrum, so lattice filters are intellectually in the same
world as other filters that assume an ensemble of signals characterizable by their first and
second order statistics. The lattice filter can be used as a predictor, and will learn to track
a sine wave or more complicated periodic signal much better than will a Kalman filter that
has the usual (for periodic signals, wrong) assumptions of constant velocity or acceleration
signals. Lattice filters have been used at U. Sheffield in the COMODE project [11], and are
described in the filtering literature [10; 4; 5].
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Figure 7: Computing effect of poles and zeros on frequency response amplitude and phase.

5 Recursive Estimation

In the remainder of this tutorial the primal filtering idea is very slightly elaborated. In the
techniques to come, we have a prediction of the signal as well as a current input that is
corrupted by noise. The new primal idea becomes:

Pay more attention to the signal as it overpowers the noise,
and pay more attention to the prediclion as the noise
overpowers the signal.

You’'re probably used to batch estimation techniques, where for instance you have all
your data in a table and you want to construct the best-fit line to that batch of data.
However, recursive techniques exist. Remember how to compute a running average? If
you’ve got an average z° for the first k terms in the series, the updated average given the
k+ 1" term 2Ft! is

1

—k+1 _ =k
v Jrk+1

(e — 2%, (8)
Here the current value of the average serves as our prediction. Congratulations, you’re

already doing estimation by recursive filtering. As a matter of fact, if you care to look
forward to results at the end of this tutorial, such as eq. 30 on page 24 or the Estimate row

14



of Table 1 on page 28, you’ll see that a very close relation of this little formula forms the
climax of our story. Thus while we are here we should note the form of this equation. Your
new estimate is just the old estimate plus an innovation term, which is how much the new
data point deviates from your current estimate, weighted by some gain that tells you how
seriously to take the disagreement, (surprise, or innovation.) Remember these ideas!

R.E. (no, not “Recursively Estimating”) Kalman formulated a recursive form of least-
squares estimation for possibly time-varying parameters of linear systems like we have been
studying in CSC442, under conditions of Gaussian noise. Thus Kalman Filter (KF') denotes
such an “optimal” filter, but often the pure filter equations are modified, the assumptions
aren’t met, etc. etc. and the generic idea of linear prediction techniques is often called
“KFing” in a very loose way.

In a general KF, the state estimate and data become vectors, the gains become matrices,
and the KF also maintains a running account of quality, or how well it is doing, something
like the sum of squared innovations. The KF equations simply tell you how to update your
guess and its quality (called the state covariance) recursively. It turns out that the KF
estimate ezactly is a Gaussian distribution, characterized by a mean (the estimate) and a
(co) variance, as usual. If your plant is not linear, you can apply KF techniques locally
to the data by linearizing it around the current guess, and you have an Fzxtended Kalman
Filter. 1f the system behavior is time-invariant and kinematic (e.g. it is a moving point with
approximately constant velocity (or acceleration)), KFing has a very simple form, called an

a — [(—~) filter.

In every case, it turns out that the form of the estimation equations is basically that of
eq. 8; your new estimate is your old estimate plus a weighted innovation.

The reader should know that almost all, if not absolutely all, of the following material
is lifted directly, i.e. basically transcribed, from [2]. I'm not really sure what my added
value is, but one thing I’ve done is slightly reorder the presentation. The other classic text
on estimation is [3], and [ like [5] for its treatment of linear filters, Wiener filters, Lattice
Filters, and of course Kalman filters. Horn’s book [6] has a nice short section on optimal
image restoration that is related to the math that comes up in Wiener filtering. Another
classic you should know about is Goodwin and Sin [4].

When do you want to use a (predictive or smoothing or filtering) filter? Whenever your
problem fits nicely into a state-estimation formalism: you need a plant model, a gaussian
noise model, and you are estimating some plant parameters or state varibles from noisy
data. KFs or their kin should always spring to mind when you are tracking some physical
system in physical terms...e.g. tracking a centroid of a blob in an image, tracking a point
in a scene. Less obviously, KFs are used to track grey-level values in dynamic scenes. In
the Electrical Engineering Department at UR, Prof. Murat Tekalp puts a filter on every
individual pixel’s grey-level to follow its changes in moving scenes.
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6 Basic Concepts in Estimation

6.1 Maximum Likelihood and Maximum A Posteriori

Suppose you are estimating a time-invariant parameter z, and you get measurements or
observations in at discrete times indexed by j. Your observations are some function A(.) of
the time, the parameter, and some noise process that might also depend on the time.

2(j) = hlj, 2, w(f)], =1, ..
Let the collection of k such observations be
78 = {z2(4),5 =1, ..., k},

and say we want to estimate the value of z with a function
& (k) = @[k, Z"].
There are two ways to think about the time-invariant parameter x.

e There exists a true value but it is unknown. This is a non-random, non-Bayesian,
Fisher approach.

e There is no single true value; the parameter is a random variable with some (prior)
PDF p(z). This is a Bayesian approach.

Both these estimates should converge in their own ways as k& — oc.

In a Bayesian approach, knowing the prior PDF allows its posterior PDF to be computed
from Bayes Rule:

p(Z" | z)p(z)
p(Z%)

For a non-random case there is no prior PDF and we cannot define a posterior one, but
we can talk about the likelihood function

pla| 2%) = (9)

A(z) = p(Z* | @)
Thus a common method for estimating nonrandom parameters is the mazimum likeli-

hood method, which gives the ML estimate, or that value of z which makes the observed
measurements most likely:

#ME (k) = argmaz,p(ZF | z). (10)

The corresponding estimate for a random parameter is the mazimum a posteriori (MAP)
estimate
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FMAP (1) = argmazqp(x | Z%) = argmazp(Z* | 2)p(z). (11)

Note that for the maximization we can ignore the denominator in eq. 9, since it is indepen-
dent of z.

How do these two estimates differ? In the second you have some prior idea of the answer
and in the first you don’t. In the second case you are able to make an estimate that combines
your knowledge of the prior probability with the measurement you get. In a homey example,
say you guess some person’s age knowing nothing about her and you get an estimate (say
35). If I then tell you a fact, like she’s a grandmother or a high-school student, that might
cause you to raise or lower your estimate since the prior age distributions of those groups
might not agree with your initial judgment.

In a less homey example, you can work out fairly easily ([2], p. 11) that if you are esti-
mating an unknown parameter  from a measurement z which is just z’s value with additive
zero-mean noise (say Gaussian), then z just is the ML estimate for . Geometrically, it is
the value at the peak of xz’s PDF since the noise is mean zero. However, you may know
something about the parameter z you are trying to estimate. Suppose you know it is drawn
from another Gaussian distribution with mean # and some variance o2, and that the value
of z is independent of the measurement noise. Then it turns out that your optimal estimate
is a weighted sum of your prior mean # and the innovation (z —z). And as you might expect,
the weight, or gain, depends on the variances of the noise and of the prior knowledge. If the
measurement noise has lots more variance than the prior PDF, you trust your measurement
less and you weight the innovation less. Contrariwise, if your prior knowledge is only that
the true value can vary hugely about its mean, but you have low-variance, high-certainty
measurements, you weight the innovation more. We are already seeing duplication of our
original running-average idea (eq. 8), and it seems that the results so far are intuitive and
not surprising. Suppose you really don’t know anything about your parameter? You can
still do MAP with what is called a diffuse prior. The obvious thing to do is let the variance
of your prior PDF go to infinity, so even a Gaussian looks like a uniform density. It turns

out, again unsurprisingly, that in this case M4 coincides with M7,

6.2 Least Squares and Minimum Mean-Square Error Estimation

For nonrandom parameters, the least squares (LS) method takes measurements

Z(j):h(j7$)+w(j),j21,.... (12)
and produces an estimate
k
:Z‘Ls(k) = argmin, E[z(]) — h(y, x)]2 (13)
7=1

If the noises w(j) are independent, identically-distributed (IID), zero-mean Gaussian ran-
dom variables, then least squares gives the same result as ML for those assumptions.
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For random parameters, we wish to minimize the mean-square error
E[(& - 2)* | 2"], (14)

where FE is the expectation operator. Thus by definition, the minimum mean-square error
(MMSE) or minimum variance estimate is:

GMMSE — qrgming E[(¢ — x)? | Z%). (15)

The solution is the conditional mean. Finding the solution is easy; you just differentiate
the expected value you’re minimizing with respect to &, set equal to zero, and voila.

FMMSE (1) — Ele | 7] = /xp(x | Z)de. (16)

This solution is expressed in terms of the conditional PDF (see eq. 9). The estimate is
called minimum variance because eq. 16 implies that the mean-square error actually is the
variance. This relation between (co)variance and error is basic and must be got used to.

Practically speaking, we may not know p(z | Z¥). That’s a lot to ask, actually. So
we desire a way to estimate that is simple — for instance make an estimate that is a linear
combination of the observables. Also we may have to get along with less information
than the full PDF. In fact usually one assumes that only its first two moments (mean and
variance, basically) can be measured.

7 Gaussian Random Variables

Just a motivational reminder: The Kalman Filter equations we are working toward turn
out to be straightforward consequences of these basic facts about matrices and Gaussian
random variables. In fact the Kalman Filter produces a Gaussian estimate, which (like all
Gaussian random variables) can be described by its first two moments, the mean and the
variance. Here the mean is the conditional mean of the data, or the estimate itself, and
the variance is the state covariance matrix, or the sum of squared error in the estimate.
So we are interested in how Gaussians interact; normally they’re pretty clannish, in that
Gaussness tends to be preserved across the outcome of all sorts of operations, and we take
advantage of that elegance in the Kalman recursive filtering, which may be looked at as
creating one Gaussian from another, plus some new information (also Gaussian).

This approach has a bottoms-up feeling I regret, but in a way it is a tops-down approach
too. The hope is that after establishing these basics, we can slide downhill, applying them
in increasingly complex and specialized situations with increasing ease. Basically 1I'd like
everything that follows to be seen as a corollary of this fundamental stuff.

OK, vorwdrts! The Gaussian PDF has wonderful properties: the convolution of two
Gaussians is Gaussian, Gaussian random variables remain Gaussian under either linear or
affine (linear plus a constant) transformations, and on and on. So here we are going to show
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that the conditional probability of two Gaussians is Gaussian. First, here is a Gaussian PDF
for one random variable, z.

p(z) = N(z;2,0%) = ! exp{—M}.

2wo

Now for a vector random variable, there is a parallel but more complex formula. In it,
/ means “transpose”, P is a covariance matriz, | . | means “determinant”, and vectors are

boldface. )
N(x;%,P) =| 27P |2 exp[—5 (x = %)'P" (x - %)].

If P is a diagonal, then the components of x are uncorrelated, and they are independent
too, since the joint PDF = the product of marginal densities.

Two vectors x and z are jointly Gaussian if the stacked vector
b
Z

p(x,z) = p(y) = N(¥;¥, Pyy),

y:

is Gaussian. Then

and
_ X
(3]
and
. Pxx Pxz
Pyy [sz Pzz]’
where

Pys = E[(x — %)(z — 2)'] = Pyx.

Now the conditional PDF of x given z is

p(x|z) = : (17)

So our problem is to write down the explicit form of eq. 17. Dividing out the normal
densities is the same as subtracting their exponents. Defining some intermediate variables:



the resulting exponent is (after multiplication by -2)

! -1
Gl ] ] e

Rewriting the inverse matrix terms Pxy etc as Ty etc. via the block matrix inverse
equations 44 — 47 from Appendix C, we get for instance that

TexTxz = —PxzPoa. (19)
In fact, the exponent can be rewritten as
(€ + TxxTxan)' - Txx - (€ + Tx Txcal),

which (you recall) is of the form mean’ - CovarianceInverse - mean.

This result is a quadratic form in x, so the conditional PDF of x given z is also Gaussian.
If you use eq. 19 to substitute for the T’s in the expression for the mean, and substitute
the original definitions of ¢ and 7 as difference of x’s and z’s, you can find the conditional
mean of x given z to be

X = E[x|2z] =%+ PxzPy,(z — 2). (20)

Does this last equation look familiar? Although it’s just derived from facts about Gaus-
sians it looks like an estimation equation (e.g. see eq. 8 on page 14.) Read on.

The estimation’s covariance is (using eq. 18)

8 Linear Estimates — Static Case

8.1 Gaussian Random Vectors

OK enough background, let’s get to work. Let’s make an estimate that is a linear combi-
nation of the measurements, in the case that the parameters we are estimating do not vary
with time.

Here we simply copy eqs. 20 and 21 over from the last section. The MMSE estimate of
two jointly Gaussian random vectors x (to be estimated) and z (the measurements) is the
conditional mean, given by

X = E[x|2z] =%+ PxzP,,(z — 2). (22)
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We know the corresponding conditional error covariance to be:

Clearly, eq. 22 is in a familiar form: it fits the mold of all our estimation equations.
It says that the MMSE estimate is just the mean of x plus a term that is proportional
to the innovation in z — the departure of z from its expected value. The constant of
proportionality (the gain) depends directly on the variation of x with z and inversely on the
variance of z itself. The gain term scales the contribution and attenuates the contribution
of measurements known to have large variance about their mean value.

Eq. 23 says that the variance goes down as you take measurements. It goes down by the
inverse of the variation of measurements (highly varying measurements don’t help much),
and proportional to the square of the covariance of the measurements with x.

8.2 Least-Squares Estimation

Here the problem is to estimate, according to the criterion of eq. 13, an unknown, nonran-
dom, constant vector x from the measurements

z(i) = H()x+w(i),i=1,2,..,k

Our job is thus to develop an estimate X that minimizes the squared error, which is

k
Iy = Yla(i) - H(i)xR2(i) - H(i)x]

where
H(1)
H* = :
H(k)
is a stacked measurement matrix,
z(1)
7" = : = H'x + w*

z(k)

is the stacked vector of measurements, similarly w” is the stacked vector of measurement
errors, and

R(1) ... O
RF = : :
0 ... Rk
is a block-diagonal, positive-definite matrix. Here we’re assuming x is an unknown constant,
and the x(k) is a random variable if the measurement errors are modeled as random. The
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LS criterion assumes the errors are zero-mean and independent, with covariance R(z). If
they are Gaussian, then minimizing the LS error criterion is equivalent to maximizing the

likelihood function i

A(x) = p[zk | x] = Hp[z(z) | x],

=1
so the LS and ML estimates are the same for Gaussian disturbances.

Further we have seen this sort of calculation before every time we do a least squares
problem (e.g. in the appendix of [1]). To work through it, you set J(k)’s gradient to zero:

Vi (k) = 2(HY (RF)~L[zF — HFx] = 0,

SO

x(k) = [(H")(RY)7'H ] (HY) (R*) 12", (24)
If the noises are independent, zero-mean random variables with covariances R(7), the LS
estimate is unbiased; the expected value of x(k) is x. Further, the estimation error

% = x— %(k) = ~[(HY) (RY) A~ (HY) (RY) ' wh.
Thus, finally, the mean-square error or covariance of the estimate is (after a little algebra)
P(k) = B[x(k)X' (k)] = [(H")'(R")"'H*] 7L, (25)

This is telling us that if the noise has high variance, P(k) will be big.

8.3 Least Squares Estimation Example
We’re given noisy observations of a scalar . Our observations are
z() =+ w(i),i=1,2,...k

For a batch LS formulation like we’ve just gone through, the measurement matrix is simple
since we're observing z every time:

1
H* = !
1
and let
R* = o1,

with I the k x k identity matrix. We just substitute into eq. 24 and get our estimate:

1 (1)

1 z(2 k
E(k) = [1... 1) | . [1...1](c21)"! (:) :%Zz(i).

1 (k) =
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So Z(k) is the sample mean of the observations, which makes sense. The variance of this
estimate is, by eq. 25,
2
o
?7

which is what we expect: it goes down with the number of measurements.

P(k) =

8.4 Recursive Least Squares Estimation

Just to take stock for a minute, we are working through lots of well- known least-squares
estimation techniques in a rather general vector formulation that is generalizable easily to
recursive (iterative, one measurement at a time) reformulation. When we get to the end of
this subsection, we are basically done.

Now we are going to formulate our batch least-squares estimator of eq. 24 and eq. 25
recursively by stacking the past observations and the current one, likewise the measurement
matrices, noises, and covariances like this:

. [ z*
z(k+1)
Hk-l—l — [ Hk
H(k+1)
[ k
k41 w
T wik+1) ]

Rk-}—l — Rk 0
0 R(k+1) |

We want to work out the recursive form of our estimate and also we need to do the
accumulated covariance, since our Gaussness demands both moments to be calculated and
brought along. First the covariance (eq. 25), which we need to work out at time k4 1. It
is expressed recursively as

P l(k+1) = (H*YRHHYTIHM = P H) + H (k+ DR Y (E+ DH(E+1).

You get this by writing out the stacked forms and working it through. One interpretation
of the inverse covariance is (Fisher) information, and this says that the information at time
k 4+ 1 is the information at time k plus the new information gained at time k& + 1 from
z(k+1).

Now the derivation gets a little long-winded so I’'m going to wave my hands a bit. The
matrix inversion lemma (Appendix C) is used to get a rather large expression for the new
covariance P(k + 1), which I shall spare you, but which is written compactly in terms of
two new concepts, the measurement prediction covariance S(k+1) and the gain W(k+1)
(nothing to do with lower case w, the noises), defined as follows:

Sk+1)=H(k+1)PEH (k+ 1)+ R(k+1) (26)
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W(k+1)=PE)H (k+ 1S k+1). (27)

As an aside, these pesky H matrices are to convert from state variables to measurement
variables, which is why they keep cropping up. Ignoring H in the equation for the gain,
you recognize a gain very much like that in eq. 20, which is again inversely proportional to
the measurement covariance. So you’re still on familiar ground.

Using these two definitions, the recursive equation for the covariance may be written
neatly as

P(k+1) = P(k) - W(k + 1)S(k + 1)W'(k). (28)

or perhaps even more neatly as
Pk+1)=I-W(k+1)H(k+ 1)|P(k+1). (29)

OK, now to figure out the recursive form of the estimate. We start with the batch form
of the estimate (eq. 24), replace k by k£ + 1 in that equation and eq. 25, do some not too
obvious rewriting of a few terms to get rid of H**' and R**!, and the final result is

x(k+1) = Pk+1)(HMD/(RF)ZFH

= %(k)+ Wk + 1)[zlk+ 1) — H(k + D)x(k)]. (30)

If you’re still conscious at all, you’ll see that Here we are again. The new estimate is
equal to the previous one plus a correction term. The correction depends on the innovation,
or the difference between the observation and the predicted value of the observation based
on what we knew at the time before, at time k. The innovation is weighted by a gain W.
Shades of the “running average”!

Equations 26, 27, 28, and 30 are our recursive least-squares estimator.

8.5 Recursive Least Squares Estimator Example

Let’s do the previous least-squares estimation problem recursively. We take from Section
8.3 the values of H* and RF, which tell us about the measurements (we measure z) and
variance of the noise (each measurement is disturbed by a random process whose variance
is 0%). Look back if you don’t believe me. We computed the value of P(k) there...that
is the declining variance of our estimate, which drops proportionally with the number of
measurements we make. We need to compute our prediction covariance:

: k41
S(k—l-l):HPH’+R:1-%-1+02:02(%).
Likewise we work out the gain:
2
_prpa—t 0 k41 5 1
W(k+1)=PH'S =7 1 (—k a?) o
Finally, using eq. 30:
. . 1 .
as(k—l—l)_as—l—k+1[z(k—|—1)—x(k)].



If you want to check this last, deja-vu-ridden equation, you can get it from simple
manipulation of the batch equation...just write k£ 4+ 1 for k£ in the batch solution and work
it out (hint: you have to add zero in the form of plus and minus &(k)).

9 The Kalman Filter

The Kalman filter extends least-squares estimate to téme-varying quantities. In that sense
it is a generalization of Wiener filters, ARMA filters, lattice filters, and other linear estima-
tors. All these latter sorts of filters assume time-invariant (in statistical terms, stationary)
processes. The Kalman filter description given below (with some notable gaps in the deriva-
tion) is the discrete version. It turns out that the discrete KF mathematics introduces terms
that complicate the semantics of the filter, which (you can bet) is actually just the same as
all the other least-squares estimators we’ve seen so far. To get us started, I’d like to jump
to the punch-line for the continuous Kalman filter, which can be derived from the discrete
formulation by taking a few limits (e.g. see [3]).

In the continuous formulation the system of interest is modeled
x = Fx+ Gw,

z=Hx+v
with the usual semantics (v,w noise processes with covariance matrices R and Q).

The equation for the (here, derivative of the) estimate is (again, this is without-proof
preview just to show the non-mysterious semantics of the filter)

x = Fx 4+ PH'R '[z — Hx]. (31)

This equation is similar in form and semantics to eqs. 23 and 27.

The propagation of covariance is, again as a differential equation, expressed by
P = FP + PF' + GQG' - PH'R'HP. (32)

The first two terms involving F result from accumulation of covariance from the homo-
geneous, unforced dynamic system before any measurements are taken. The term in Q
accounts for the increase of uncertainty due to process noise in the system, and the last
term measures the decrease in uncertainty as a result of measurements. The quadratic
dependence on the unknown P in eq. 32 makes it by definition a (matrix) Riccati equation.
The Riccati equation turns up in optimal control too, because of the quadratic, “squared
error” dependencies we are interested in.

Now let us turn to the discrete Kalman filter. The time-varying systems considered are
the familiar linear, discrete-time dynamic systems. Thus the plant equation is

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k), (33)

25



where x(k) is the state at time &, u(k) is the (known) input or control signal, and v(k)
is a sequence of zero-mean, white, Gaussian process noise with covariance Q(k). The
measurement equation is

z(k) = H(k)x(k) + w(k)

where w(k) is a sequence of zero-mean, white, Gaussian process noise with covariance R (k).
The initial x(0) is assumed to be Gaussian with mean %(0 | 0) and covariance P(0 | 0). The
two noise processes are assumed independent. All this Gaussness is useful because we know
(from Section 7) that the PDF of a Gaussian conditioned on a Gaussian is Gaussian again,
and we are looking for the conditional mean of the state given the measurements. Thus the
estimation preserves the Gaussian nature of the estimate.

One cycle of the estimation algorithm starts with the current estimate
x(k | k) = Elx(k) | 2%,

(that is the conditional mean of the state given the measurements) and the “how’re we
doing?” quantity, the state error covariance (i.e. the squared error) matrix

P(k | k) = B{[x(k) — x(k | k)][x(k) — x(k | k)] | 2"}

The cycle derives the corresponding variables at the next stage, which are written %(k+
1[k+1)and P(k+1]|k+1). We only need the estimate (mean) and the covariance to
characterize our Gaussian estimate. One of the neat things about the KF is that all the
memory it needs is provided by the current estimate and covariance.

Just to get a bit more practice with the notation, the one-step prediction of the state
is written x(k+ 1 | k), the predicted measurement is z(k + 1 | k), the one-step prediction
covariance is P(k+ 1| k).

The mathematical derivation of the state estimate and its covariance follow from sub-
stituting all the dynamic system generality into equations 20 and 21. For details, see any
book, but the answer is pretty succinct.

Let us specialize away much of the generality of the Kalman filter to see how it works
for a time-invariant prediction problem. Suppose we have a single measurement that gives
us a linear combination of the state vector components

z; = a; * X;.

Let the variance associated with measurement 7 be 0. Suppose our current estimate of
the state is %; and its covariance is P;. We want to produce the new estimate x; and the
updated covariance P;. (This notation is different from the (k4 1|k) indices but we don’t
need all that power here.)

The Kalman gain matrix is
W, = Pzaz(a;f’zaz + 02-2)_1.

The Kalman filter increments the state estimate by adding the weighted residual or
innovation
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Figure 8: The Discrete Kalman Filter State Estimator for Linear Systems

X; = X; + Wi(z

and decrements the covariance matrix

A more interesting example (and code) is given in Appendix E. The full-blown algorithm
is shown in Fig. 8, which has a few equations to define intermediate steps and also refers

f’i = PZ - VVZa;PZ

to Table 1 for the rest of the relevant equations.

The strong relation of the Kalman Filter to the static least square estimator is brought
out in Table 1. The equations on the left are all copies from Section 8.4. The control input
u is known, and so its effects are only seen in the state prediction step and do not appear

elsewhere.

As a practical matter, initialization of a Kalman filter (or an o — § filter, see below) is
a problem. For constant acceleration or constant velocity plants with observable positions,
one can just initialize estimates with an average position difference (velocity) or second
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Quantity | Least Squares Kalman Filter

State x constant x(k+1) = F(k)x(k) + G(k)u(k) + v(k)

Noise R R

Covar.

State X x(k+1|k)=F(k)x(k| k) + G(k)u(k)

Predict.

Meas ment| (k) = F(x+ w(k) 2K) = AO(9) + wik)

Innovation| v(k+ 1) =z(k+ 1) —H(k+ 1)x(k) |vk+1)=2zk+1)—Hk+ )x(k+1]k)

Gain W(k+1)=Pk)H (k+1)S7 (k+1) | Wk+1)=P(k+1|k)H (k+1)S7 (k+1)

Estimate | x(k+1)=x(k)+W(k+1Dvk+1) [x(k+1]k+1) =x(k+1]k) +W(k+
Nv(k+1)

State Pk+1) =[I-W(k+1)H(k+1)P(k) | P(k+1) = I-W (k+1)H(k+1)|P(k+1 | k)

Covar.

Table 1: Comparing LS to KF estimation.

difference (acceleration). As another practical matter, coming up with a time-varying plant
model that can be synchronized with the unknown one is often difficult. Time-invariance
simplifies the mathematics and assumptions, and often is a practical way out. Possibly the
biggest advantage of Kalman (or recursive LS) filtering is the running covariance estimate,
which allows you to put “error ellipses” around your estimate. So if you can simplify much
of the machinery that is fine, just don’t throw the baby out with the bath.

A practical issue is the matrix inverses that appear in the KF calculation. These can
cause numerical problems and so often an LU decomposition technique is employed...the
resulting method is known as a square root method.

Of course one of the paradigmatical state-estimation problems is that of an observer in
a control system. As you probably know, a feedback control system is often formulated as
feeding back state information. The control system often computes the difference between
the desired state and the current one and emits a signal to the plant accordingly. Practically
speaking, one can often not measure the state directly. For instance, one may be interested
in speed but can only measure position, or in position but can only measure acceleration,
or in temperature but can only measure spectrum of emitted light. Well, this calls for an
H matrix, or its inverse...we need to estimate the state from these indirect readings. So KF
is just the ticket here, and the H matrix relates the observables to the state. The normal
and familiar considerations of observability come in here (e.g. see [7]). You have to have

enough of the right kind of measurements to describe the state.

KFs have an interesting dual relationship with optimal control, which tries to minimize
some measure of squared error over time as the system to be controlled deviates from the
desired trajectory. Generally filtering and control techniques are closely related: controllers
are just filters really: feedforward control is a form of moving average (MA) filter, and
feedback provides autorecursive (AR) filtering. Both filters and controllers are often char-
acterized by their frequency response, which (for the rational algebraic transfer functions
you see in linear theory) is determined by the poles and zeros of the transfer function (Sec-
tion 4). Kalman filtering goes beyond these models because it allows the plant model to
vary with time.
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The KF can be derived from the point of view of the orthogonality principle. 1 won’t
say much here, but consider looking at the sequence of innovations produced by the filter
as a random process to be studied in its own right. It makes sense that if this sequence of
“surprises” has too much structure in it then you’re doing something wrong. For instance
suppose it is not mean 0. Then you’d clearly want to change your state estimate until it
was mean zero, no? Similar with other kinds of structure, like in particular its second
moment, or autocorrelation. You want your innovation sequence also to be white noise.
Optimal filters, such as the Kalman, drive the innovation sequence to look like white noise.

You can thus check the innovations sequence for clues about “how your model is doing”.
For example if you are using a constant-velocity model to track some airplane, you can notice
when your performance is not consistent with this assumption and change your dynamic
model in the filter. For instance, you could substitute a constant-acceleration model. Many
books (e.g [5]) unify their treatment of all filters around this “innovations process” approach,
so be warned.

10 A More Accessible Alternative: Time-Invariant KF's

10.1 The o — (3 filter

In a time-invariant filter, plant variations through time are accommodated by modeling
them as noise. This is a bit of a hack but it is often the most realistic assumption if the
variations are unknown to you in advance. Also, the equations are a lot simpler.

Linear dynamical systems with time-invariant coefficients in their state transition and
measurement equations lead to simpler optimal estimation techniques than are needed for
the time-varying case. The state estimation covariance and filter gain matrices achieve
steady-state values that can often be computed in advance. Two common time-invariant
systems are constant-velocity and constant-acceleration systems, so called kinematic sys-
tems.

Let us assume a constant velocity model: starting with some initial value, the object’s
velocity evolves through time by process noise of random accelerations, constant during each
sampling interval but independent. With no process noise the velocity is constant; process
noise can be used to model unknown maneuverings of a non-constant velocity target. The
cumulative result of the accelerations can in fact change the object’s velocity arbitrarily
much, so we model a maneuvering object as one with high process noise. We assume position
measurements only are available, subject to measurement noise of constant covariance.
Clearly the more that is known a priori about the motion the better the predictions will
be. Some sensors or techniques can provide retinal or world velocity measurements as well.

Assume the object state (its position and velocity) evolves independently in each of the
(X,Y, Z) dimensions. For instance, in the Y dimension, it evolves according to

y(k+1) = Fyy (k) + v(k), (34)
Fy = [ o ] (35)
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for sampling interval At, error vector v(k), and y = [Y, Y]T The equations for the other
two spatial dimensions are similar, and in fact have identical F matrices. Thus for the
complete object state x = [X,X,Y, Y, Z, Z]T, F is a (6 x 6) block-diagonal matrix whose
blocks are identical to Fy. The error vector v(k) can be described with a simple covariance
structure: E(v(k)vI(j)) = Qd;.

The o — 3 filter for state prediction has the form

x(k+1k+1)=x(k+ 1|k) + [ ] [z(k+ 1) — z(k + 1]k)], (36)

o
B/
where %(k + 1|k + 1) is an updated estimate of x given z(k + 1), the measurement at time
k+1. Here we assume that z(k+ 1) consists of the three state components (X, Y, Z) (but not
(X,Y,Z)). The state estimate is a weighted sum of a state x(k+1|k) predicted from the last
estimate to be FX(k|k) and the innovation, or difference between a predicted measurement
and the actual measurement. The predicted measurement z(k+1|k) is produced by applying
(here a trivial) measurement function to the predicted state.

The « — § filter is a special case of the Kalman filter. For our assumptions, the optimal
values of a and § can be derived (see [2], for example) and depend only on the ratio of the
process noise standard deviation and the measurement noise standard deviation. This ratio
is called the object’s maneuvering index A, and with the piecewise constant process noise
we assume,

A2+ 8A — (A +4)VAZ 4 8
a=— 3 (37)

and

5= A2+ 44X — M/AZ 48X
= 1 :

The state estimation covariances can be found in closed form as well, and are simple func-
tions of «, 3, and the measurement noise standard deviation.

(38)

10.2 The « - § - v Filter

The « - 3 - ~ filter is like the « - g filter only based on a uniform acceleration assumption.
Thus it makes a quadratic prediction instead of a linear one. Broadly, it tends to be more
sensitive to noise but better able to predict smoothly varying velocities. Its equation is the
following.

%(k+ 1k +1) =%k + 1/k) + | 8/At | [2(k+1) — 2(k + 1]k)], (39)
v/ A

With the maneuvering index A defined as before, the optimal « and 8 for the case that
the target experiences random small changes in acceleration (random jerks) are the same
as before and the optimal v = 3%/a.
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Both the v - § and « - 3 - ~ filters have been implemented as C++4 classes, in versions
with uniform and nonuniform timesteps. The nonuniform timestep versions are easy exten-
sions in which the timestep is calculated at each iteration as the difference of the last two
timestamps. Code for various a - § and « - 3 - 7 filters is available from CB and is only a
couple of pages long. Appendix D gives some code for the filter.

11 References

[1] D. Ballard and C. Brown. Computer Vision. Prentice-Hall, 1982.

[2] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association. Academic Press,
1988.

[3] Arthur C. Gelb. Applied Optimal Estimation. The MIT Press, 1974.

[4] G. C. Goodwin and K. S. Sin. Adaptive Filtering, Prediction and Control. Prentice-
Hall, 1984.

[5] Simon Haykin. Modern Filters. MacMillan, 1989.

[6] Berthold K.P. Horn. Robot Vision. MIT-Press, McGraw-Hill, 1986.

[7] D. G. Luenberger. Introduction to Dynamic Systems. John Wiley and Sons, 1979.
[8] W.K. Pratt. Digital Image Processing, 2nd ed. Wiley, 1991.

[9] W.H. Press, B. P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes
in C. Cambridge University Press, 1988.

[10] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall, 1985.

[11] Y. Zheng, J. E. W. Mayhew, S. A. Billings, and J. P. Frisby. Lattice predictor for 3-d
vision and intelligent tracking. Technical report, University of Sheffield, 1991.

31



A The Orthogonality Principle

Here is a fundamental and simple fact about estimation, which can be used to derive lots
of the results in a slightly different way. Quite often we are going to construct our estimate
out of a linear combination of some of our measurements (say all of them in a past finite
interval). So what does this imply? It implies that our estimate must lie in the hyperplane
spanned by those measurements. But the real value may not lie in this hyperplane. It is
easy to see that the best linear estimate (the one that minimizes the difference between the
real value and the estimate) is a point on the hyperplane that is the orthogonal projection
of the real value onto the plane. In other words,the error is orthogonal to the estimate. By
more or less accessible mathematics, it turns out that the best (in a MMSE sense) linear
estimate of a random variable in terms of another, observable random variable is such that

e The estimate is unbiased: the error has mean zero.

e The estimation error is uncorrelated from the observables: they are orthogonal.

For image restoration, the consequences of the orthogonality principle are simple. Con-
sider the image and our observations of it to be written as column vectors; just scan them
out column-wise. Let the observation vector be g and the image be f.

First, the expected value of the image estimate f must equal the expected value of the
image:

E[f] = EI[f] (40)

Second, the error in the restoration must be orthogonal to the observation about its
mean:

E[f-f)(s - Elg])]=0 (41)
Here the prime means matrix transpose, as elsewhere in this document.

This result is of practical use in thinking about and implementing other forms of linear
estimators, such as the lattice filler, and figures heavily in Kalman’s 1960 paper. It provides
an elegant tool for reasoning about least-squared error solutions, as in the derivation of the
Wiener Estimator (Section 3).

B Singular Value Decomposition
Any M x N matrix F of rank R can be decomposed into the sum of a weighted set of

unit-rank M x N matrices by SVD. The decomposition (See [9] or better its 2nd edition or
MATLAB) yields

F = UA'/?V' (42)

It turns out that the columns of U are the eigenvectors of the symmetric matrix FF’,
the columns of V are the eigenvectors of the symmetric matrix F'F, and that A2 g a
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matrix with an R X R upper left diagonal block, the diagonal being inhabited by singular
values or eigenvalues A/2(3).

The way I like to think of this construction is that the singular values A'/2(j) are weights
that multiply simple “eigenmatrices”, whose sum is the original matrix. Each of the simple
eigenmatrices is the outer product of two eigenvectors, one from U and one from V. Each
of these outer products of course has rank one, since each row (or column) is just a scaled
version of any other row (or column). There are R of these eigenmatrices since the original
matrix was rank R. In short, we can also write

R
F=>" /\1/2(j)u]-V;-.
7=1

C The Matrix Inversion Lemma

Some of the central manipulations in deriving state estimation filters are based on the
Matrix Inversion Lemma (MIL). The MIL is a simple-minded set of relations between the
blocks of a block-structured matrix and the blocks of its inverse.

Consider the following matrix formula:

-1

ny N2 np Ny
9 C D M9 G J

(This looks terrible but the n’s are meant to be the sizes of blocks A ....J.)

Now all you have to do is notice that if this equation is true, then
AF+BG =1,AF+BJ =0
CE4+DG=0,CF+DJ=1

From these, we get relations like this:

E=A"1'4+A"'BJCA™ = (A-BD'C)! (44)
F=-A"'BJ=-EBD™! (45)
G=-JCA™' = -D7'CE (46)

J=(D-CA'B)y' =D '+ D 'CcEBD™! (47)

The matrix inversion lemma follows from these relations by the substitutions
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R=—-AP=D'H=B=('

First, note that C’ = C”, or C transpose. Then note the symmetry inherent in the above
substitutions. Then, by substituting into eq. 47, then for F in eq. 44,

(P'"+H'R'H)Y'=P - PH'(HPH'+ R)"'HP
(R+HPH) ' =R~ R'H(P '+ HR'H)"'H'R™.

Whew. Well, you can well ask yourself what sort of progress this is. It will turn out that
we can use these re-writings to remove some inverse matrices from our calculations, or at
least to replace them.

D Partial Code for a — 3 — v Filter

/* this structure passes parameters to the filter */

typedef struct filter_paramsf{

double time_step; /* if don’t use timestamp method */
double timeout_secs; /* when to give up for lack of data */
int init_ticks; /* how long to spend initializing */

double alpha, beta,gamma; /#* determined as in paper */
char *name;
} *filter_params_t;

/* filter struct contains lots of boring intermediate storage.
user mainly wants to know the values shown here */

typedef struct abc_filter{

struct filter_params f_params; /* all the setup information */
filter_activity activity; /* state of filter...initializing,
tracking, estimating, timed out. */

double x_est, v_est, a_est; /* estimated variable */

double x_future, v_future, a_future; /* predicted variable at some
time in the future;*/

int age_ticks; /* total age; */
int data_ticks; /*how long we’ve been tracking#*/
int nodata_ticks; /* how long since seen target */

/* times in secs are also kept*/
} *abc_filter_t;

/*Here is the version of the call that takes the current timestamp.
An alternate version of run() takes no timestamp argument and assumes
it is called on every tick. */
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void run(abc_filter abc, enum signal, double X, double advance,

double time_stamp)

{

/* The abc filter takes in positional data and estimates the current and
future values of position, velocity, and acceleration.

The run() function expects a filter, an indication of

whether you have good data or not (the signal variable),

the value of the signal (one-dimensional), how far

you want the filter to estimate the signal’s value into the future,

and the current time. At any time while the filter is tracking or estimating
the variables like x_est and x_future may be accessed for current estimates
and predictions.*/

/* 1 am omitting a code segment to initialize the filter. It uses the input
data value to keep a running average of the velocity and acceleration.*/

if (signal == data) /* now come the a-b-c equations */
{
abc->data_ticks++;
abc->data_secs+= this_step; /* update some times --

this_step is time since last timestamp*/

abc—>x_pred = abc->x_est + this_step * abc->v_est
+ 0.5 * abc->a_est * this_step * this_step;

abc—>v_pred = abc->v_est + this_step* abc->a_est;

abc->innov = X - abc->x_pred;

/* we computed predicted x and velocity. now have our innovation */
abc—>x_est = abc—>x_pred + abc->f_params.alpha * abc—>innov;
abc->v_est

abc->v_pred + (abc->f_params.beta / this_step) * abc->innov;

abc->a_est = abc->a_est + (abc->f_params.gamma /
(this_step * this_step)) # abc->innov;

/* now we have our new estimated velocity, position, accel.*/

}

abc->x_future = abc->x_est + abc->v_est * adv

+ 0.5 * abc—>a_est * adv * adv;
abc—->v_future = abc->v_est + adv * abc—>a_est;
abc->a_future = abc->a_est;

/* just roll the plant (i.e. the accel, vel, pos) forward in
time to get the estimated state in the future at time adv ahead.*/

¥ /* end of run() definition */
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E Kalman Filter Example, Results, Code

E.1 The Problem

This example problem is again stolen from Bar-Shalom (his Example 2.4.1.); I chose it so
you could go to the source if you don’t believe me. This is a filter for tracking; it estimates
the position and velocity of a point moving in a straight line. The state of the system is a
column 2-vector of position and velocity (z,%). The system evolves with constant velocity
plus noise: )
x(k+1) = l N l : ]v(k)

0 1 1

for £ =0,1,.... The initial state is

x0)=| 1 ] ,

so it is moving with velocity 10 starting from 0. The process (plant) noise is mean 0, white,
with variance ¢ = E[v%(k)]. The measurements are only of the position (as usual), and
corrupted by noise:

z(k) = [1 0]x(k) + w(k),
where measurement noise is mean 0, white, and variance E[w?(k)] = 1.

For this exercise I initialized the filter arbitrarily, somewhat near the correct values, at

om=[ %]

E.2 LISP Code

The following code fragments show how I translated this problem into arrays (I had to make
2 x 2 arrays for P and Q, for example, and some scalars (like the measurement) are turned
into 1 x 1 matrices for generality. To avoid turning over storage, I tend to preallocate arrays
and reuse them. In C I use statics that are allocated on the first call to the routine. Here in
Lisp everything is global. To adapt this code for another problem, all that is needed is to
change the noise values and matrices: all the computations should be the same. Needless
to say this would have been easier in MATLAB, but Lisp Is Good For You.

;55 This code relies on a simple matrix package that

;35 provides matrix-inverse, matrix-transpose, etc.

;55 Syntax pretty obvious; if function seems to have an

;55 extra argument, the last one is the result, which is also
;55 the value of the S-expression.

(defparameter *v-stdev* 0.0) ; plant noise can go up to 1.0

(defparameter *w-stdev* 1.0) ; observ. noise
(defparameter *w-var* (* *w-stdev* *w-stdev* )) ; observ. noise var.
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(defparameter *v-var* (* *v-stdev* *v-stdev* )) ; plant noise var.

;5 s¥xxxxxx  Here we start defining matrices and kalman-filter

(setq F (make-array ’(2 2) :initial-contents ’((1.0 1.0)(0.0 1.0))))
(setq F-transpose (make-array ’(2 2) ))

(matrix-transpose F F-transpose)

(setq plant-noise (make-array ’(2 1) ))

(setq plant-noise-weights (make-array ’(2 1) :initial-contents ’((0.5)(1.0))))

(setq measurement-noise (make-array ’(1 1) ))
(setq measurement (make-array °(1 1) ))
(setq measurement-prediction (make-array ’(1 1) ))
(setq innovation (make-array ’(1 1) ))
(setq state (make-array ’(2 1))) ; position and velocity
(setq initial-state (make-array ’(2 1) :initial-contents ’((0.0) (10.0))))
(setq state-prediction (make-array ’(2 1) ))
(setq state-estimate (make-array ’(2 1) :initial-contents ’((0.5) (11.0))))
(setq H (make-array ’(1 2) :initial-contents ’((1.0 0.0))))
(setq H-transpose (make-array ’(2 1)))
(matrix-transpose H H-transpose)
(setq S (make-array ’(1 1) ))
(setq S-inv (make-array ’(1 1) ))
(setq R (make-array ’(1 1) :initial-element *w-var*))
(setq P-updated (make-array ’(2 2)))
(setq initial-P (make-array ’(2 2)
:initial-contents (list (list *w-var* *w-vark)
(list *w-var* (* 2.0 *w-var*x)))))
;3 the above initialization is after B-S, but values here not important.

(setq Q (make-array ’(2 2)

:initial-contents (list (list *v-var* 0.0) (list 0.0 *v-var#))))
(setq P-prediction (make-array ’(2 2) ))
(setq filter-gain (make-array ’(2 1) ))

;; the following use a CLOS random number generator package —-—

;; e.g. from now on calling (sample v) produces a normal variate.
(setq v (make-instance ’normal :mean 0.0 :stdev *v-stdevx))

(setq w (make-instance ’normal :mean 0.0 :stdev *w-stdev))

;s ¥kkkkkkkkkk  State and Measurement Simulation skskskkskskskskskskkkkkk
(defun state—evolve () ; x =Fx + v
(setq state (matrix-multiply-mat-mat F state))
(setq plant-noise (matrix-mpy-num-mat
(sample v) plant-noise-weights ))
(setq state (matrix-add state plant-noise)))

(defun measure () ; 2z=Hx +w
(setq measurement (matrix-multiply-mat-mat H state))
(setf (aref measurement-noise 0 0) (sample w))

(setq measurement (matrix-add measurement measurement-noise)))

;s ¥kkkkkkkkkk  Kalman Filter Computations
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;s kkkkkkkkkkk  First update P —- can be done without interacting
;5 s kkkkkkkkkkk  with the world (measurement) and without knowledge
;5 kkEkkkkkkkkk  of state estimation.
(defun state-covariance-predict () ; P =FPF’ +Q
(matrix-add
(matrix-multiply-mat-mat
(matrix-multiply-mat-mat F P-updated) F-transpose) Q P-prediction))

(defun innovation-covariance-compute () ; S =HPH’ + R
(matrix-add
(matrix-multiply-mat-mat
(matrix-multiply-mat-mat H P-prediction) H-transpose) R S))

(defun filter-gain-compute () ; W= PH’S-inv
(matrix-multiply-mat-mat

(matrix-multiply-mat-mat

P-prediction (matrix-transpose H))

(matrix-inverse S S-inv) filter-gain))

(defun state-covariance-update () ; P =P - WSW’
(matrix-sub P-prediction
(matrix-multiply-mat-mat
(matrix-multiply-mat-mat filter-gain S)
(matrix-transpose filter-gain))
P-updated))

(defun update-covars () ; Here’s the order
(state-covariance-predict)
(innovation-covariance-compute)
(filter-gain-compute)
(state-covariance-update))

5 kkkkkkkkkkkx  Now update the state estimation. This must measure

;s ¥kkkkkkkkkk  the state and uses gain computed above

(defun state-predict () ; xhat = F  xhat
(matrix-multiply-mat-mat F state-estimate state-prediction))

(defun measurement-predict () ; z = H xhat
(matrix-multiply-mat-mat H state-prediction measurement-prediction))

(defun innovation-compute () ; nu = z - zhat
(matrix-sub measurement measurement-prediction innovation))

(defun estimate-state () ; xhat = xhat + W nu
(matrix-add state-prediction
(matrix-multiply-mat-mat filter-gain innovation)
state-estimate))

(defun compute-estimate () ; Here’s the order

(state-predict)
(measurement-predict)

38



(innovation-compute)
(estimate-state))

;3 kEkkkkkkkkkkx Heeeeeeeeeere’s Kalman!
(defun kalman-filter ()

(update-covars)

(compute-estimate))

5y dkkkkkkkkkokk Simulate, Filter, and Report.
s k¥kkkkkkkkkk  initialize resets between runs, report writes results

(defun run-filt (n) ; n is number of iters
;3 (dinitialize) ; for convenience, not shown
(dotimes (k n)
(state-evolve) ; world ticks over
(measure) ; We measure position
(kalman-filter) ; we estimate position
e (report k) ; Write results, not shown
))

E.3 The Results

Shown here are two sets of results, one with no plant noise (¢ = 0), corresponding to Bar-
Shalom’s Figs. 2-5 and 2-6, and one with (¢ = 1), corresponding to Bar-Shalom’s Figs. 2-8
and 2-9. Fig. 9 shows the true velocity (10) and the KF-estimated velocity through 50 ticks.
Fig. 10 shows the predicted and updated values predicted position and updated position
from the P matrix Notice how the filter finds the true velocity and how the variance drops
through time. Figs 11 and 12 are similar, but with plant noise of 1. Notice how a “constant
velocity” system evolves to twice the velocity under the random walk in velocity driven by
the plant noise. Also notice how the variances settle down in only a few steps.

E.4 MatLab Code

Jim Vallino coded up the Kalman filter in MatLab. Here is his version, followed by a file
that works the same problem as in Section E.2.

function [Xhat,Zhat,Xpred,Pupdated,Ppredict,K] = Estimator(F,G,Q,H,R,P,Xest,Z)
% [Xhat,Zhat,Xpred,Pupdated,Ppredict,K] = Estimator(F,G,Q,H,R,P,Xest,Z)
[/

% Run a Kalman filter where the parameters represent

[/

% The state equation:

h x(k+1) = F * x(k) + G * w

h w is a gaussian random noise process with covariance Q

% The measurement equation:

hz(k) = H=* x(k) +v

h v is a gaussian random noise process with covariance R
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Figure 9: True and estimated velocities, no plant noise (¢ = 0).
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Figure 11: True and estimated velocities, ¢ = 1.
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Figure 12: Position error variance, predicted and updated, ¢ = 1.
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h P is the previous Kalman estimate covariance

% Xest is the previous estimator value

h Z is the current measurement value

[/

% Output from the function is:

% Xhat - new state estimate x(k+1|k+1)

% Zhat - predicted measurement z(k+1|k)

h Xpred - predicted state vector x(k+1|k)

% Pupdated - new estimate covariance P(k+1|k+1)

% Ppredict - predicted estimate covariance P(k+1|k)

h K - Kalman filter gain

[/

% The system is defined by F,G,Q,H and R. Initial values for P and
% Xest must be provided. After that, the output values Xhat and

% Pupdated from the previous run are used for these parameters. The
% new measurement vector Z is needed as input with each call.

% state covariance prediction
Ppredict = F * P * F’ + G * Q * G’;

% innovation covariance computation
S = H * Ppredict * H’ + R;

h filter gain computation
K = Ppredict * H’ * inv(S);

h state covariance update
[N M] = size(P);
Pupdated = Ppredict - K * S * K’;

% state prediction
Xpred = F * Xest;

% measurement prediction
Zhat = H * Xpred;

% innovation computation
nu = Z - Zhat;

% state estimation

Xhat = Xpred + K * nu;

% This code calls the Kalman Estimator for the Bar-Shalom problem.
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%randn(’seed’ ,550289913)
seed = randn(’seed’);

if (exist(’mismatch’) == 0) mismatch = 1; end

vstd 1.0; Count = 50; x = [0.0 10.0]°;

>
(=
[}
ct
1}

[0 0]°;
P=1[11;110];
F=1[11;01];

G = [0.5 0;0 1];
H = [10];
Q
Q
R

[vstd*vstd 0;0 vstd*vstd];
root = sqrt(mismatch * Q);
= [1]; Rroot = sqrt(R);

zMinus = H * x + Rroot * [randn];

Z = H * x + Rroot * [randn];

Xhat = [z(1) z(1) - zMinus]’;

Xtrue = zeros(size(x),Count);

Xest = zeros(size(x),Count);

Xpred = zeros(size(x),Count);

xVar = zeros(size(x),Count);

Ppred = zeros(size(x),Count * size(x));
nsee = zeros(1l,Count);

Xtrue(:,1) = x;

Xest(:,1) = Xhat;

xVar(:,1) = [P(1,1) P(2,2)]1’;
Ppred(:,1:2) = zeros(2);

for i = 2:Count + 1

W = Qroot * [randn randn]’;
x =F xx + G * w;

v = Rroot * [randn];
z=Hx* x + v;

[Xhat,Zhat,Xp,P,Ppred(:,i # 2 + 1:(i + 1) * 2)] = ...
Estimator(F,G,Q,H,R,P,Xhat,z);

Xtrue(:,1i) = x;

Xest(:,i) = Xhat;

Xpred(:,i) = Xp;

xVar(:,i) = [P(1,1) P(2,2)]1’;

xtilde = x - Xhat;

nsee(i) = xtilde’ * inv(P) * xtilde;

end;
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Range = [1:Count + 1];

figure(1)

subplot(2,1,1);

plot(Range,Xtrue(2,:),2:Count + 1,Xest(2,2:Count + 1));
text(48,13,’s0lid - true’)

text(48,11.5,’dash - est’)

ylabel(’x[2] : Velocity’);

xlabel(’Time step, k’);

subplot(2,1,2);
plot(Range,xVar(2,:));
ylabel(’x[2] : Variance’);
xlabel(’Time step, k’);

figure(2)

if mismatch ==

subplot(2,1,1);

plottitle = ’Matched System and Model’;

else

subplot(2,1,2);

plottitle = ’Mismatched System and Model’;

end
plot(2:Count+1,nsee(2:Count+1),1:Count,5.9*ones(1,Count)) ;
title(plottitle);

ylabel(’Normalized error’);
xlabel(’Time step, k’);
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