Phys4051: C Lectures

Pointers and Address Operators
Pointer to a Variable

Function Calls: Passing by
Value and Passing by Reference

Pointer to an Array

Pointers and Variables:
Definition

Variable:

A variable refers to a memory location
that contains a numerical value.

Pointer

A pointer refers to a memory location
that contains an address.

Pointers: Operators (1)

Address Operator: &

Note: it looks identical to the bitewise AND
operator but it is used in a completely
different way!

Returns the address of a variable
Example: prt _v = & Xx;

Pointers: Operators (2)

Indirection Operator: *

Note: it looks identical to the multiplication
operator but it is used in a completely
different way!

Retrieves a value from the memory location
the pointer points to.

Example: *ptr_v = 77;

Pointer Declaration

A pointer must be declared and the variable

type it points to must be specified:

short *aptr;
doubl e *bptr;
float* fptr;

Assigning an Address to a
Pointer (1)

An address is assigned to a pointer using
the address operator: &

Assigning an Address to a
Pointer (2)

Example:
short x = 33;
short *aptr;
aptr = & x;

Pointer Usage with a
Variable: Indirection Op.
Example:

short x = 33;
short *aptr;

5012 5014 5016 5018 5020

(The memory addresses are arbitrarily chosen)

aptr = & x;
*aptr = -123; //assign a value to “x”
5012 5014 5016 5018 5020

(The memory addresses are arbitrarily chosen)

Pointer Usage with a
Variable:

The following two segments are

equivalent in respect what they do to
variable “X":

short x = 33; short x = 33;
short *aptr;

aptr = & x;

*aptr = -123; X = -123;

Pointers: Additional
Comment

Pointers refer to an address which is almost always
the address of another variable.

An (arbitrary) address can be directly assigned to a
pointer. Doing so makes the program less portable
and can be very dangerous!

Example:
short *aptr = 0x300;
*aptr = Oxff;

10

Pointers: Function Calls
and Function Arguments

Variables can be passed to a function (as

function arguments) either:

a) by value
(as a copy of a local variable)

b) by reference
(by a pointer)

11

Function Arguments:
Passing by Value

This is the method you have used so far
in these examples.

A (local) copy of the variable is passed to
function.

Changing the (passed) variable within the
calling function has no effect on the
(original) variable that was passed.

12

Ex. 1: Exchange Two
Variables: By Value

Problem:

a) Write a function “Xchange” that will
exchange two variables if the “first”
variable is greater than the “second” one.

b) You are not allowed to use GLOBAL
variables!

13

Ex. 1a: Exchange Two
Variables (2): main

voi d Xchange_ByVal (short u,

short v);
mai n()
{
short x = 10, y = 2;
Xchange_ByVal (x, vy);
printf("x: % ", x);
printf("y: %l\n", y);
} "

Ex. 1la: Exchange Two
Variables (3): Function

voi d Xchange_ByVal (short u,

short v)
{ short stenp;
if(u>v){
stenp = v; v = u; u = stenp;
}
printf("u: % ", u);
printf("v: %\n", v);

}

15

Ex. 1a: Exchange Two
Variables (4): Output

Output:
u: V:
X: y:

Conclusion: Works? (y/n)

Why (not)?

16

Function Arguments:
Passing by Reference

Allows you to change the value of a
variable which is not local to the function
without having to make it global

Pass a reference (a pointer) to the
function which tells the function where “to
find” that variable

Note: (usually) you don’t change the
reference, you change only what the
reference points to!

17

Ex. 1b: Exchange Two
Variables (5): By Reference

Solution:

Pass the function arguments by
reference!

18

Ex. 1b: Exchange Two
Variables (6): main

voi d Xchange_ByRef (short *u,
short *v);
mai n()
{
short x = 10, y = 2;
Xchange_ ByRef (&x, &y);

printf("x: % ", Xx);
printf("y: %l\n", y);
}

19

Ex. 1b: Exchange Two
Variables (7): Function

voi d Xchange_ByRef (short *u,
short *v)

{ short stenp;

if(*u > *v){
stenp = *v; *v = *u;
*u = stenp;
}
printf("u: % ", *u);
printf("v: %\ n", *v);
} 20

Ex. 1b: Exchange Two
Variables (8): Output

Output:
u: V:
X: y:

Conclusion: Works? (y/n)

21

Function Arguments and
Pointers: Summary

Passing (a Variable) by Value:

Variable is local to function and, therefore,
can not alter the original value.

Passing (a Variable) by Reference

Since a reference to the variable is passed,
the original value can be accessed and
altered.

22

Summary: Function Calls
a) by Value

Passing a Variable by Passing a Pointer by
Value: Value:

Summary: Function Calls
a) by Reference

Passing a Variable by Passing a Pointer by
Reference: Refrerence:

void Fbyval (int);
mai n()

{

int y=3;

FbyVal ();

}

void Fbyval (int);
mai n()
{
int x = 3;
int* y = &;
FbyVal ();
}

23

void FbyRef(int*);
mai n()

{

int y=3;

FbyRef ();

}

void FbyRef(int*);
mai n()
{
int x = 3;
int* y = &;
FbyRef ()
}

24

Arrays and Pointers

Pointers are most often used in function
calls and with arrays.

Because pointers are so often used with
arrays, a special pointer has been
designated in C to point to the “zeroth”
element in an array: the array name

itself!

25

Arrays & Pointers: Pointer to

the “Zeroth” Array Element

Example 2a: Example 2b:

float w 128];
float *w ptr;

float w 128];
float *w ptr;

woptr = & WO0]; |[|lwptr = w;

26

Pointer to the “Zeroth” Array

Element:. Summary

Each time you declare an array, you also

declare implicitly a pointer to the “zeroth”

element!

The name of this pointer is the name of

the array!

27

Arrays: Memory Allocation

short x = 2;

short y[4];

y[x] = 12345;

*y = 5121;
BN
5012 5014 5016 5018 5020

(The memory addresses are arbitrarily chosen)

28

Arrays: Memory Allocation:

Pointer Math (1)

short x = 2;

short y[4];
y[x] = 12345;
*y = 5121,

*(y+1l) = 5122;

Arrays: Memory Allocation:
Pointer Math (2)

short x = 2;
short y[4];
*y = 5121;
*(y+1) = 5122;
*(y+x) = 5123;

5012 5014 5016 5018

5020

(The memory addresses are arbitrarily chosen)

29

5012 5014 5016 5018 5020

(The memory addresses are arbitrarily chosen)

30

Arrays: Memory Allocation:
Pointer Math (3)

The following two segments are

equivalent statements:

Segment 3a: Segment 3b:
short x, y[MAX], [|short x, y[NAX],
val ; val)
y[x] = val; *(y + x) = val;

31

Functions, Arrays and
Pointers

When an array is passed to a function it is
passed by REFERENCE, i.e., a pointer to the
array is passed!

Ex:
short sAr[MAX];
Sort Ar(sAr, MAX);

32

Functions, Arrays and
Pointers: Example 3

A) Write a function that returns the
average of an array of type double.

B) Write a program that uses above
function.

C) Change the program above to account
for that the fact that we want to ignore
the first 5 data points in the array when
calculating the average.

33

Functions, Arrays and
Pointers: Example 3 A

doubl e Ave(double* dar, int n)

{

int i;

doubl e dtot = 0O;

for(i =0; i <n; i++)

dtot += dar[i];
return(dtot/n);

}

34

Functions, Arrays and
Pointers: Example 3 B

doubl e Ave(double* dar, int n);
mai n()

{

doubl e dAve, dTenp[1000];

dAve = Ave(dTenp, 1000);
printf(“%l”, dAve);
}

35

Functions, Arrays and
Pointers: Example 3 C

doubl e Ave(double* dar, int n);
mai n()

{

doubl e dAve, dTenp[1000];

dAve = Ave(dTemp + 5, 995);
printf(“%”, dAve);
}

36

Example 4: Function to
Sort an Array (1): Problem

Assignment:

Write a function that sorts the values
contained in an array.

37

Example 4: Function to
Sort an Array (2): Solution

Pass arrays whenever possible by
reference! (Also, no need for global
arrays!)

Passing an array by value takes a long
time (and lots of space) because the
computer has to make a copy of the array
to pass it to the function.

38

Ex. 4: Function to Sort an
Array (3): main
#defi ne MAX 10

void SortAr(short *volt, short n);
mai n() {

short i, sAr[MAX |;

for(i =0; i < MAX; i++){
sAr[i] = rand();
printf("%l %\n", i, SAr[i]);
}

Sort Ar(sAr, MAX);

for(i =0; i < MAX; i++)
printf("%l %\n", i, SAr[i]);

} 39

Ex. 4: Function to Sort an
Array (4): Sort Function V1

void SortAr(short *volt, short n){

short x, y, stenp;

for(y =0; y <n - 1; y++{

for(x =0; x <n - 1-vy; x++){
if(volt[x] >volt[x + 1]){

stenp = volt[x];
vol t[x] = vol t[x+1];
vol t[x+1] = stenp;

}

40

Ex. 4: Function to Sort an
Array (5): Sort Function V2

void SortAr(short *volt, short n){
short x, y, stenp;
for(y =0, y <n- 1; y+f){
for(x =0; x <n-1-vy; x+t+t){
if(*(volt+x) > *(volt+x+1)){
stenp = *(volt+x);

*(vol t+x) = *(vol t +x+1);
*(vol t +x+1) = stenp;
}

41

