
1

1

Phys4051: C Lectures

Pointers and Address Operators
Pointer to a Variable
Function Calls: Passing by
Value and Passing by Reference
Pointer to an Array

2

Pointers and Variables:
Definition

Variable:
!A variable refers to a memory location

that contains a numerical value.

Pointer
!A pointer refers to a memory location

that contains an address.

3

Pointers: Operators (1)

!Address Operator: &
"Note: it looks identical to the bitewise AND

operator but it is used in a completely
different way!

"Returns the address of a variable

"Example: prt_v = & x;

4

Pointers: Operators (2)

!Indirection Operator: *
"Note: it looks identical to the multiplication

operator but it is used in a completely
different way!

"Retrieves a value from the memory location
the pointer points to.

"Example: *ptr_v = 77;

5

Pointer Declaration

!A pointer must be declared and the variable
type it points to must be specified:

short *aptr; //pointer declaration

double *bptr;

float* fptr; //same as float *fptr

6

Assigning an Address to a
Pointer (1)

!An address is assigned to a pointer using
the address operator: &

2

7

Assigning an Address to a
Pointer (2)

!Example:
short x = 33;
short *aptr; //pointer declaration
aptr = & x;

5012 5014 5016 5018 5020

(The memory addresses are arbitrarily chosen)
8

Pointer Usage with a
Variable: Indirection Op.

!Example:
short x = 33;
short *aptr; //declare the ptr
aptr = & x; //ptr points to x
*aptr = -123; //assign a value to “x”

5012 5014 5016 5018 5020

(The memory addresses are arbitrarily chosen)

9

Pointer Usage with a
Variable:

short x = 33;
short *aptr;
aptr = & x;
*aptr = -123;

short x = 33;

x = -123;

!The following two segments are
equivalent in respect what they do to
variable “x”:

10

Pointers: Additional
Comment

!Pointers refer to an address which is almost always
the address of another variable.

!An (arbitrary) address can be directly assigned to a
pointer. Doing so makes the program less portable
and can be very dangerous!

!Example:
short *aptr = 0x300;

*aptr = 0xff;

11

Pointers: Function Calls
and Function Arguments

!Variables can be passed to a function (as
function arguments) either:

!a) by value
"(as a copy of a local variable)

!b) by reference
"(by a pointer)

12

Function Arguments:
Passing by Value

!This is the method you have used so far
in these examples.

!A (local) copy of the variable is passed to
function.

!Changing the (passed) variable within the
calling function has no effect on the
(original) variable that was passed.

3

13

Ex. 1: Exchange Two
Variables: By Value

!Problem:

!a) Write a function “Xchange” that will
exchange two variables if the “first”
variable is greater than the “second” one.

!b) You are not allowed to use GLOBAL
variables!

14

Ex. 1a: Exchange Two
Variables (2): main

void Xchange_ByVal(short u,
short v);

main()

{

short x = 10, y = 2;

Xchange_ByVal(x, y);

printf("x: %d ", x);

printf("y: %d\n", y);

}

15

Ex. 1a: Exchange Two
Variables (3): Function

void Xchange_ByVal(short u,
short v)

{ short stemp;
if(u > v){

stemp = v; v = u; u = stemp;
}

printf("u: %d ", u);
printf("v: %d\n", v);

}

16

Ex. 1a: Exchange Two
Variables (4): Output

!Output:

u: v:

x: y:
!Conclusion: Works? (y/n)

!Why (not)?

17

Function Arguments:
Passing by Reference

!Allows you to change the value of a
variable which is not local to the function
without having to make it global

!Pass a reference (a pointer) to the
function which tells the function where “to
find” that variable

!Note: (usually) you don’t change the
reference, you change only what the
reference points to!

18

Ex. 1b: Exchange Two
Variables (5): By Reference

!Solution:
Pass the function arguments by
reference!

4

19

Ex. 1b: Exchange Two
Variables (6): main

void Xchange_ByRef(short *u,
short *v);

main()

{

short x = 10, y = 2;

Xchange_ByRef(&x, &y);

printf("x: %d ", x);

printf("y: %d\n", y);

}
20

Ex. 1b: Exchange Two
Variables (7): Function

void Xchange_ByRef(short *u,
short *v)

{ short stemp;
if(*u > *v){

stemp = *v; *v = *u;
*u = stemp;

}
printf("u: %d ", *u);
printf("v: %d\n", *v);

}

21

Ex. 1b: Exchange Two
Variables (8): Output

!Output:

u: v:

x: y:

!Conclusion: Works? (y/n)

22

Function Arguments and
Pointers: Summary

!Passing (a Variable) by Value:
"Variable is local to function and, therefore,

can not alter the original value.

!Passing (a Variable) by Reference
"Since a reference to the variable is passed,

the original value can be accessed and
altered.

23

Summary: Function Calls
a) by Value

! Passing a Variable by
Value:

void FbyVal(int);
main()
{
int y = 3;

FbyVal();

}

! Passing a Pointer by
Value:

void FbyVal(int);
main()
{
int x = 3;
int* y = &x;

FbyVal();
}

24

Summary: Function Calls
a) by Reference

! Passing a Variable by
Reference:

void FbyRef(int*);
main()
{
int y = 3;

FbyRef();

}

! Passing a Pointer by
Refrerence:

void FbyRef(int*);
main()
{
int x = 3;

int* y = &x;

FbyRef();
}

5

25

Arrays and Pointers

!Pointers are most often used in function
calls and with arrays.

!Because pointers are so often used with
arrays, a special pointer has been
designated in C to point to the “zeroth”
element in an array: the array name
itself!

26

Arrays & Pointers: Pointer to
the “Zeroth” Array Element

!Example 2a:

float w[128];

float *w_ptr;

w_ptr = & w[0];

!Example 2b:

float w[128];

float *w_ptr;

w_ptr = w;

27

Pointer to the “Zeroth” Array
Element: Summary

!Each time you declare an array, you also
declare implicitly a pointer to the “zeroth”
element!

!The name of this pointer is the name of
the array!

28

Arrays: Memory Allocation

short x = 2;

short y[4];

y[x] = 12345;

*y = 5121; //where does y point to?

5012 5014 5016 5018 5020

(The memory addresses are arbitrarily chosen)

29

Arrays: Memory Allocation:
Pointer Math (1)
short x = 2;

short y[4];

y[x] = 12345;

*y = 5121; //same as: y[0] = 5121;

*(y+1) = 5122;

5012 5014 5016 5018 5020

(The memory addresses are arbitrarily chosen)
30

Arrays: Memory Allocation:
Pointer Math (2)
short x = 2;

short y[4];

*y = 5121; //same as: y[0] = 5121;

*(y+1) = 5122; //same as: y[1] = 5122;

*(y+x) = 5123; //same as:

5012 5014 5016 5018 5020

(The memory addresses are arbitrarily chosen)

6

31

Arrays: Memory Allocation:
Pointer Math (3)

!Segment 3a:

short x, y[MAX],
val;

y[x] = val;

!Segment 3b:

short x, y[MAX],
val;

*(y + x) = val;

!The following two segments are
equivalent statements:

32

Functions, Arrays and
Pointers

!When an array is passed to a function it is
passed by REFERENCE, i.e., a pointer to the
array is passed!

!Ex:
short sAr[MAX]; //declare array
SortAr(sAr, MAX); //call function

33

Functions, Arrays and
Pointers: Example 3

!A) Write a function that returns the
average of an array of type double.

!B) Write a program that uses above
function.

!C) Change the program above to account
for that the fact that we want to ignore
the first 5 data points in the array when
calculating the average.

34

Functions, Arrays and
Pointers: Example 3 A

double Ave(double* dar, int n)

{

int i;
double dtot = 0;

for(i = 0; i < n ; i++)

dtot += dar[i]; //pntr. or arr?

return(dtot/n);

}

35

Functions, Arrays and
Pointers: Example 3 B

double Ave(double* dar, int n);

main()

{

double dAve, dTemp[1000];

//lines of code to fill array dTemp

// are omitted here...

dAve = Ave(dTemp, 1000);

printf(“%d”, dAve);

}

// code for func. Ave() follows here
36

Functions, Arrays and
Pointers: Example 3 C

double Ave(double* dar, int n);

main()

{

double dAve, dTemp[1000];

//lines of code to fill array dTemp

// are omitted here...

dAve = Ave(dTemp + 5, 995);

printf(“%d”, dAve);

}

// code for func. Ave() follows here

7

37

Example 4: Function to
Sort an Array (1): Problem

!Assignment:

!Write a function that sorts the values
contained in an array.

38

Example 4: Function to
Sort an Array (2): Solution

!Pass arrays whenever possible by
reference! (Also, no need for global
arrays!)

!Passing an array by value takes a long
time (and lots of space) because the
computer has to make a copy of the array
to pass it to the function.

39

Ex. 4: Function to Sort an
Array (3): main
#define MAX 10
void SortAr(short *volt, short n);
main(){
short i, sAr[MAX];
for(i = 0; i < MAX; i++){

sAr[i] = rand();
printf("%d %d\n", i, sAr[i]);
}

SortAr(sAr, MAX); // pass by ref
for(i = 0; i < MAX; i++)

printf("%d %d\n", i, sAr[i]);
} 40

Ex. 4: Function to Sort an
Array (4): Sort Function V1
void SortAr(short *volt, short n){

short x, y, stemp;

for(y = 0; y < n - 1; y++){

for(x = 0; x < n - 1 - y; x++){

if(volt[x] > volt[x + 1]){

stemp = volt[x];

volt[x] = volt[x+1];

volt[x+1] = stemp;
}

}
}

}

41

Ex. 4: Function to Sort an
Array (5): Sort Function V2
void SortAr(short *volt, short n){
short x, y, stemp;
for(y = 0; y < n - 1; y++){

for(x = 0; x < n - 1 - y; x++){
if(*(volt+x) > *(volt+x+1)){

stemp = *(volt+x);
*(volt+x) = *(volt+x+1);
*(volt+x+1) = stemp;
}

}
}

}

