
CS2LAP: Logi and Prolog 2000/2001 An Introdution to Prolog Programming'

&

$

%

An Introdution to Prolog ProgrammingUlle EndrissKing's College London
Ulle Endriss, King's College London 1
CS2LAP: Logi and Prolog 2000/2001 An Introdution to Prolog Programming'

&

$

%

ContentsIntrodution to Prolog . 3List Manipulation . 26Arithmeti Expressions . 41Working with Operators . 50Baktraking and Cuts . 62Negation as Failure . 74Prolog Programs as Logi Formulas . 86
Ulle Endriss, King's College London 2

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

What is Prolog?� Prolog (programming in log i) is a logial programminglanguage: programs orrespond to sets of logial formulas andthe Prolog interpreter uses logial methods to resolve queries.� Prolog is a delarative language: you speify what problem youwant to solve rather than how to solve it.� Prolog is very useful in some problem areas, like arti�ialintelligene, natural language proessing, databases, . . . , butpretty useless in others, like graphis or numerial algorithms.
Ulle Endriss, King's College London 3
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Literature� Prolog leture notes� I. Bratko. Prolog Programming for Arti�ial Intelligene.2nd edition, Addison-Wesley Publishing Company, 1990.� F. W. Cloksin and C. S. Mellish. Programming in Prolog.4th edition, Springer-Verlag, 1994.� L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.� any other textbook on Prolog
Ulle Endriss, King's College London 4

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

FatsA little Prolog program onsisting of four fats:bigger(elephant, horse).bigger(horse, donkey).bigger(donkey, dog).bigger(donkey, monkey).
Ulle Endriss, King's College London 5
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

QueriesAfter ompilation we an query the Prolog system:?- bigger(donkey, dog).Yes?- bigger(monkey, elephant).No
Ulle Endriss, King's College London 6

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

A ProblemThe following query does not sueed!?- bigger(elephant, monkey).NoThe prediate bigger/2 apparently is not quite what we want.What we'd really like is the transitive losure of bigger/2. In otherwords: a prediate that sueeds whenever it is possible to go fromthe �rst animal to the seond by iterating the previously de�nedfats.Ulle Endriss, King's College London 7
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

RulesThe following two rules de�ne is bigger/2 as the transitive losureof bigger/2 (via reursion):is_bigger(X, Y) :- bigger(X, Y).is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y)." "\if" \and"
Ulle Endriss, King's College London 8

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Now it works?- is_bigger(elephant, monkey).YesEven better, we an use the variable X:?- is_bigger(X, donkey).X = horse ;X = elephant ;NoPress ; to �nd alternative solutions. No at the end indiates there areno further solutions.Ulle Endriss, King's College London 9
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Another ExampleAre there any animals whih are both smaller than a donkey andbigger than a monkey??- is_bigger(donkey, X), is_bigger(X, monkey).No
Ulle Endriss, King's College London 10

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

TermsProlog terms are either numbers, atoms, variables, or ompoundterms.Atoms start with a lowerase letter or are enlosed in single quotes:elephant, xYZ, a_123, 'Another pint please'Variables start with a apital letter or the undersore:X, Elephant, _G177, MyVariable, _
Ulle Endriss, King's College London 11
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Terms (ontinued)Compound terms have a funtor (an atom) and a number ofarguments (terms):is_bigger(horse, X), f(g(Alpha, _), 7),'My Funtor'(dog)Atoms and numbers are alled atomi terms.Atoms and ompound terms are alled prediates.Terms without variables are alled ground terms.
Ulle Endriss, King's College London 12

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Fats and RulesFats are prediates followed by a dot. Fats are used to de�nesomething as being unonditionally true.bigger(elephant, horse).parent(john, mary).Rules onsist of a head and a body separated by :-. The head of arule is true if all prediates in the body an be proved to be true.grandfather(X, Y) :-father(X, Z),parent(Z, Y).Ulle Endriss, King's College London 13
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Programs and QueriesPrograms. Fats and rules are alled lauses. A Prolog program is alist of lauses.Queries are prediates (or sequenes of prediates) followed by adot. They are typed in at the Prolog prompt and ause the system toreply.?- is_bigger(horse, X), is_bigger(X, dog).X = donkeyYes
Ulle Endriss, King's College London 14

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Built-in Prediates� Compiling a program �le:?- onsult('big-animals.pl').Yes� Writing terms on the sreen:?- write('Hello World!'), nl.Hello World!Yes
Ulle Endriss, King's College London 15
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

MathingTwo terms math if they are either idential or if they an be madeidential by substituting their variables with suitable ground terms.We an expliitly ask Prolog whether two given terms math by usingthe equality-prediate = (written as an in�x operator).?- born(mary, yorkshire) = born(mary, X).X = yorkshireYesThe variable instantiations are reported in Prolog's answer.Ulle Endriss, King's College London 16

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Mathing (ontinued)?- f(a, g(X, Y)) = f(X, Z), Z = g(W, h(X)).X = aY = h(a)Z = g(a, h(a))W = aYes?- p(X, 2, 2) = p(1, Y, X).NoUlle Endriss, King's College London 17
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

The Anonymous VariableThe variable (undersore) is alled the anonymous variable. Everyourrene of represents a di�erent variable (whih is whyinstantiations are not reported).?- p(_, 2, 2) = p(1, Y, _).Y = 2Yes
Ulle Endriss, King's College London 18

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Answering QueriesAnswering a query means proving that the goal represented by thatquery an be satis�ed (aording to the programs urrently inmemory).Reall: Programs are lists of fats and rules. A fat delaressomething as being true. A rule states onditions for a statementbeing true.
Ulle Endriss, King's College London 19
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Answering Queries (ontinued)� If a goal mathes with a fat, it is satis�ed.� If a goal mathes the head of a rule, then it is satis�ed if the goalrepresented by the rule's body is satis�ed.� If a goal onsists of several subgoals separated by ommas, thenit is satis�ed if all its subgoals are satis�ed.� When trying to satisfy goals with built-in prediates like write/1Prolog also performs the assoiated ation (e.g. writing on thesreen).Ulle Endriss, King's College London 20

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Example: Mortal PhilosophersConsider the following argument:All men are mortal.Sorates is a man.Hene, Sorates is mortal.It has two premises and a onlusion.
Ulle Endriss, King's College London 21
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Translating it into PrologThe two premises an be expressed as a little Prolog program:mortal(X) :- man(X).man(sorates).The onlusion an then be formulated as a query:?- mortal(sorates).Yes
Ulle Endriss, King's College London 22

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Goal Exeution1. The query mortal(sorates) is made the initial goal.2. Prolog looks for the �rst mathing fat or head of rule and �ndsmortal(X). Variable instantiation: X = sorates.3. This variable instantiation is extended to the rule's body, i.e.man(X) beomes man(sorates).4. New goal: man(sorates).5. Suess, beause man(sorates) is a fat itself.6. Therefore, also the initial goal sueeds.Ulle Endriss, King's College London 23
CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Summary: Syntax� All Prolog expression are made up from terms (numbers, atoms,variables, or ompound terms).� Atoms start with lowerase letters or are enlosed in singlequotes; variables start with apital letters or undersore.� Prolog programs are lists of fats and rules (lauses).� Queries are submitted to the system to initiate a omputation.� Some built-in prediates have speial meaning.
Ulle Endriss, King's College London 24

CS2LAP: Logi and Prolog 2000/2001 Introdution to Prolog'

&

$

%

Summary: Answering Queries� When answering a query Prolog tries to prove the orrespondinggoal's satis�ability. This is done using the rules and fats givenin a program.� A goal is exeuted by mathing it with the �rst possible fat orhead of a rule. In the latter ase the rule's body beomes thenew goal.� The variable instantiations made during mathing are arriedalong throughout the omputation and reported at the end.� Only the anonymous variable an be instantiated di�erentlywhenever it ours.Ulle Endriss, King's College London 25
CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Lists in PrologAn example for a Prolog list:[elephant, horse, donkey, dog℄Lists are enlosed in square brakets. Their elements ould be anyProlog terms (inluding other lists). The empty list is [℄.Another example:[a, X, [℄, f(X,y), 47, [a,b,℄, bigger(ow,dog)℄
Ulle Endriss, King's College London 26

CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Internal RepresentationInternally, the list[a, b, ℄orresponds to the term.(a, .(b, .(, [℄)))That means, this is just a new notation. Internally, lists are justompound terms with the funtor . and the speial atom [℄ as anargument on the innermost level.
Ulle Endriss, King's College London 27
CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

The Bar NotationIf a bar | is put just before the last term in a list, it means that thislast term denotes a sub-list. Inserting the elements before the bar atthe beginning of the sub-list yields the entire list.For example, [a, b, , d℄ is the same as [a, b | [, d℄℄.
Ulle Endriss, King's College London 28

CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

ExamplesExtrat the seond element from a given list:?- [a, b, , d, e℄ = [_, X | _℄.X = bYesMake sure the �rst element is a 1 and get the sub-list after theseond element:?- MyList = [1, 2, 3, 4, 5℄, MyList = [1, _ | Rest℄.MyList = [1, 2, 3, 4, 5℄Rest = [3, 4, 5℄YesUlle Endriss, King's College London 29
CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Head and TailThe �rst element of a list is alled its head. The rest of the list isalled its tail. (The empty list doesn't have a head.)A speial ase of the bar notation { with exatly one element beforethe bar { is alled the head/tail-pattern. It an be used to extrathead and/or tail from a list. Example:?- [elephant, horse, tiger, dog℄ = [Head | Tail℄.Head = elephantTail = [horse, tiger, dog℄YesUlle Endriss, King's College London 30

CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Head and Tail (ontinued)Another example:?- [elephant℄ = [X | Y℄.X = elephantY = [℄YesNote: The tail of a list is always a list itself. The head of a list is anelement of that list. It doesn't have to be a list itself, but it ould be.
Ulle Endriss, King's College London 31
CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Appending ListsWe want to write a prediate onat lists/3 to onatenate twogiven lists.It should work like this:?- onat_lists([1, 2, 3, 4℄, [dog, ow, tiger℄, L).L = [1, 2, 3, 4, dog, ow, tiger℄Yes
Ulle Endriss, King's College London 32

CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

SolutionThe prediate onat lists/3 is implemented reursively. The basease is when one of the lists is empty. In every reursion step we takeo� the head and use the same prediate again, with the (shorter) tail,until we reah the base ase.onat_lists([℄, List, List).onat_lists([Elem|List1℄, List2, [Elem|List3℄) :-onat_lists(List1, List2, List3).
Ulle Endriss, King's College London 33
CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Do MoreAmong other things, onat lists/3 an also be used fordeomposing lists:?- onat_lists(Begin, End, [1, 2, 3℄).Begin = [℄End = [1, 2, 3℄ ;Begin = [1℄End = [2, 3℄ ;Begin = [1, 2℄End = [3℄ ;Begin = [1, 2, 3℄End = [℄ ;NoUlle Endriss, King's College London 34

CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Built-in Prediates for List Manipulationappend/3: Append two lists (same as onat lists/3).?- append([1, 2, 3℄, List, [1, 2, 3, 4, 5℄).List = [4, 5℄Yeslength/2: Get the length of a list.?- length([tiger, donkey, ow, tiger℄, N).N = 4YesUlle Endriss, King's College London 35
CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Membershipmember/2: Test for membership.?- member(tiger, [dog, tiger, elephant, horse℄).YesBaktraking into member/2:?- member(X, [dog, tiger, elephant℄).X = dog ;X = tiger ;X = elephant ;NoUlle Endriss, King's College London 36

CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

ExampleConsider the following program:show(List) :-member(Element, List),write(Element),nl,fail.Note: fail is a built-in prediate that always fails.What happens when you submit a query like the following one??- show([elephant, horse, donkey, dog℄).Ulle Endriss, King's College London 37
CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Example (ontinued)?- show([elephant, horse, donkey, dog℄).elephanthorsedonkeydogNoThe fail at the end of the rule auses Prolog to baktrak. Thesubgoal member(Element, List) is the only hoiepoint. In everybaktraking-yle a new element of List is mathed with thevariable Element. Eventually, the query fails (No).Ulle Endriss, King's College London 38

CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

More Built-in Prediatesreverse/2: Reverse the order of elements in a list.?- reverse([1, 2, 3, 4, 5℄, X).X = [5, 4, 3, 2, 1℄YesMore built-in prediates an be found in the referene manual.
Ulle Endriss, King's College London 39
CS2LAP: Logi and Prolog 2000/2001 List Manipulation'

&

$

%

Summary: List Manipulation� List notation:{ normal: [Element1, Element2, Element3℄ (empty list: [℄){ internal: .(Element1, .(Element2, .(Element3, [℄))){ bar notation: [Element1, Element2 | Rest℄{ head/tail-pattern: [Head | Tail℄� Many prediates an be implemented reursively, exploiting thehead/tail-pattern.� Built-in prediates: append/3, member/2, length/2, . . .Ulle Endriss, King's College London 40

CS2LAP: Logi and Prolog 2000/2001 Arithmeti Expressions'

&

$

%

Arithmeti Expressions in PrologProlog omes with a range of prede�ned arithmeti funtions andoperators. Something like 3 + 5, for example, is a valid Prolog term.So, what's happening here??- 3 + 5 = 8.No
Ulle Endriss, King's College London 41
CS2LAP: Logi and Prolog 2000/2001 Arithmeti Expressions'

&

$

%

Mathing v Arithmeti EvaluationThe terms 3 + 5 and 8 do not math. In fat, when we are interestedin the sum of the numbers 3 and 5, we an't get it through mathing,but through arithmeti evaluation.We have to use the is-operator:?- X is 3 + 5.X = 8Yes
Ulle Endriss, King's College London 42

CS2LAP: Logi and Prolog 2000/2001 Arithmeti Expressions'

&

$

%

The is-OperatorThe is-operator auses the term to its right to be evaluated as anarithmeti expressions and mathes the result of that evaluation withthe term on the operator's left. (The term on the left should usuallybe a variable.)Example:?- Value is 3 * 4 + 5 * 6, OtherValue is Value / 11.Value = 42OtherValue = 3.81818YesUlle Endriss, King's College London 43
CS2LAP: Logi and Prolog 2000/2001 Arithmeti Expressions'

&

$

%

The is-Operator (ontinued)Note that the term to the right will be evaluated to an integer (i.e.not a oat) whenever possible:?- X is 3.5 + 4.5.X = 8YesThat means, a further subgoal like X = 8.0 would not sueed.
Ulle Endriss, King's College London 44

CS2LAP: Logi and Prolog 2000/2001 Arithmeti Expressions'

&

$

%

Example: Length of a ListInstead of using length/2 we an now write our own prediate toompute the length of a list:len([℄, 0).len([_ | Tail℄, N) :-len(Tail, N1),N is N1 + 1.
Ulle Endriss, King's College London 45
CS2LAP: Logi and Prolog 2000/2001 Arithmeti Expressions'

&

$

%

FuntionsProlog provides a number of built-in arithmeti funtions that an beused with the is-operator. See manual for details.Examples:?- X is max(8, 6) - sqrt(2.25) * 2.X = 5Yes?- X is (47 mod 7) ** 3.X = 125YesUlle Endriss, King's College London 46

CS2LAP: Logi and Prolog 2000/2001 Arithmeti Expressions'

&

$

%

RelationsArithmeti relations are used to ompare two arithmeti values.Example:?- 2 * 3 > sqrt(30).YesThe following relations are available:=:= arithmeti equality =n= arithmeti inequality> greater >= greater or equal< lower =< lower or equalUlle Endriss, King's College London 47
CS2LAP: Logi and Prolog 2000/2001 Arithmeti Expressions'

&

$

%

ExamplesReall the di�erene between mathing and arithmeti evaluation:?- 3 + 5 = 5 + 3.No?- 3 + 5 =:= 5 + 3.YesReall the operator preedene of arithmetis:?- 2 + 3 * 4 =:= (2 + 3) * 4.No?- 2 + 3 * 4 =:= 2 + (3 * 4).YesUlle Endriss, King's College London 48

CS2LAP: Logi and Prolog 2000/2001 Arithmeti Expressions'

&

$

%

Summary: Arithmetis in Prolog� For logial pattern mathing use =, for arithmeti evaluation usethe is-operator.� A range of built-in arithmeti funtions is available (some arewritten as operators, e.g. +).� Arithmeti expressions an be ompared using arithmetirelations like < or =:= (without is-operator).
Ulle Endriss, King's College London 49
CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Operators in PrologOperators provide a more onvenient way of writing ertain terms inProlog. For example, we an write 3 * 155 instead of *(3, 155) orN is M + 1 instead of is(N, +(M, 1)).Both notations are onsidered to be equivalent, i.e. mathing works:?- +(1000, 1) = 1000 + 1.YesThe objetive of this leture is to show you how you an de�ne yourown operators in Prolog.Ulle Endriss, King's College London 50

CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Operator PreedeneSome operators bind stronger than others. In mathematis, forexample, * binds stronger than +. We also say, * has a lowerpreedene than +.In Prolog, operator preedenes are numbers (in SWI-Prolog between0 and 1200). The arithmetial operator *, for example, haspreedene 400, + has preedene 500.This is why Prolog is able to ompute the orret result in thefollowing example (i.e. not 25):?- X is 2 + 3 * 5.X = 17YesUlle Endriss, King's College London 51
CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Preedene of TermsThe preedene of a term is de�ned as the preedene of its prinipaloperator. If the prinipal funtor isn't (written as) an operator or theterm is enlosed in parentheses then the preedene is de�ned as 0.Examples:� The preedene of 3 + 5 is 500.� The preedene of 3 * 3 + 5 * 5 is also 500.� The preedene of sqrt(3 + 5) is 0.� The preedene of elephant is 0.� The preedene of (3 + 5) is 0.� The preedene of 3 * +(5, 6) is 400.Ulle Endriss, King's College London 52

CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Operator TypesOperators an be divided into three groups:� in�x operators, like + in Prolog� pre�x operators, like : in logi� post�x operators, like ! in mathIs giving the type of an operator and its preedene already enoughfor Prolog to fully `understand' the struture of a term ontainingthat operator?
Ulle Endriss, King's College London 53
CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

ExampleConsider the following example:?- X is 25 - 10 - 3.X = 12YesWhy not 18?Obviously, preedene and type alone are not enough to fully speifythe strutural properties of an operator.
Ulle Endriss, King's College London 54

CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Operator AssoiativityWe also have to speify the assoiativity of an operator: -, forexample, is left-assoiative. This is why 20 - 10 - 3 is interpretedas (20 - 10) - 3.In Prolog, assoiativity is represented by atoms like yfx. Here findiates the position of the operator (i.e. yfx denotes an in�xoperator) and x and y indiate the positions of the arguments. A yshould be read as on this position a term with a preedene lower orequal to that of the operator has to our, whereas x means that onthis position a term with a preedene stritly lower to that of theoperator has to our.Ulle Endriss, King's College London 55
CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Assoiativity PatternsPattern Assoiativity Examplesyfx in�x left-assoiative +, -, *xfy in�x right-assoiative , (for subgoals)xfx in�x non-assoiative =, is, < (i.e. no nesting)yfy makes no sense, struturing would be impossiblefy pre�x assoiativefx pre�x non-assoiative - (i.e. --5 not possible)yf post�x assoiativexf post�x non-assoiativeUlle Endriss, King's College London 56

CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Cheking Preedene and AssoiativityYou an use the built-in prediate urrent op/3 to hek preedeneand assoiativity of urrently de�ned operators.?- urrent_op(Pre, Asso, *).Pre = 400Asso = yfxYes?- urrent_op(Pre, Asso, is).Pre = 700Asso = xfxYesUlle Endriss, King's College London 57
CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

De�ning OperatorsNew operators are de�ned using the op/3-prediate. This an bedone by submitting the operator de�nition as a query. Terms usingthe new operator will then be equivalent to terms using the operatoras a normal funtor, i.e. prediate de�nitions will work.For the following example assume the big animals program haspreviously been ompiled:?- op(400, xfx, is_bigger).Yes?- elephant is_bigger dog.YesUlle Endriss, King's College London 58

CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Query Exeution at Compilation TimeIt is possible to write queries into a program �le (using :- as a pre�xoperator). They will be exeuted whenever the program is ompiled.If for example the �le my-file.pl ontains the line:- write('Hello, have a beautiful day!').this will have the following e�et:?- onsult('my-file.pl').Hello, have a beautiful day!my-file.pl ompiled, 0.00 se, 224 bytes.Yes?-Ulle Endriss, King's College London 59
CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Operator De�nition at Compilation TimeYou an do the same for operator de�nitions. For example, the line:- op(200, fy, small).inside a program �le will ause a pre�x operator alled small to bedelared whenever the �le is ompiled. It an be used inside theprogram itself, in other programs, and in user queries.
Ulle Endriss, King's College London 60

CS2LAP: Logi and Prolog 2000/2001 Working with Operators'

&

$

%

Summary: Operators� The strutural properties of an operator are determined by itspreedene (a number) and its assoiativity pattern (like e.g.yfx).� Use urrent op/3 to hek operator de�nitions.� Use op/3 to make your own operator de�nitions.� Operator de�nitions are usually inluded inside a program �le asqueries (using :-, i.e. like a rule without a head).
Ulle Endriss, King's College London 61
CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

BaktrakingChoiepoints. Subgoals that an be satis�ed in more than one wayprovide hoiepoints. Example:..., member(X, [a, b, ℄), ...This is a hoiepoint, beause the variable X ould be mathed witheither a, b, or .Baktraking. During goal exeution Prolog keeps trak ofhoiepoints. If a partiular path turns out to be a failure, it jumpsbak to the most reent hoiepoint and tries the next alternative.This proess is known as baktraking.Ulle Endriss, King's College London 62

CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

ExampleGiven a list in the �rst argument, the prediate permutation/2generates all possible permutations of that list in the seondargument through baktraking (if the user presses ; after everysolution):permutation([℄, [℄).permutation(List, [Element | Permutation℄) :-selet(List, Element, Rest),permutation(Rest, Permutation).Ulle Endriss, King's College London 63
CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

Example (ontinued)?- permutation([1, 2, 3℄, X).X = [1, 2, 3℄ ;X = [1, 3, 2℄ ;X = [2, 1, 3℄ ;X = [2, 3, 1℄ ;X = [3, 1, 2℄ ;X = [3, 2, 1℄ ;No
Ulle Endriss, King's College London 64

CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

Problems with BaktrakingAsking for alternative solutions generates wrong answers for thisprediate de�nition:remove_dupliates([℄, [℄).remove_dupliates([Head | Tail℄, Result) :-member(Head, Tail),remove_dupliates(Tail, Result).remove_dupliates([Head | Tail℄, [Head | Result℄) :-remove_dupliates(Tail, Result).Ulle Endriss, King's College London 65
CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

Problems with Baktraking (ontinued)Example:?- remove_dupliates([a, b, b, , a℄, List).List = [b, , a℄ ;List = [b, b, , a℄ ;List = [a, b, , a℄ ;List = [a, b, b, , a℄ ;NoUlle Endriss, King's College London 66

CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

Introduing CutsSometimes we want to prevent Prolog from baktraking into ertainhoiepoints, either beause the alternatives would yield wrongsolutions (like in the previous example) or for eÆieny reasons.This is possible by using a ut, written as !. This prede�nedprediate always sueeds and prevents Prolog from baktraking intosubgoals plaed before the ut inside the same rule body.
Ulle Endriss, King's College London 67
CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

ExampleThe orret program for removing dupliates from a list:remove_dupliates([℄, [℄).remove_dupliates([Head | Tail℄, Result) :-member(Head, Tail), !,remove_dupliates(Tail, Result).remove_dupliates([Head | Tail℄, [Head | Result℄) :-remove_dupliates(Tail, Result).Ulle Endriss, King's College London 68

CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

CutsParent goal. When exeuting the subgoals in a rule's body the termparent goal refers to the goal that aused the mathing of the head ofthe urrent rule.Whenever a ut is enountered in a rule's body, all hoiesmade between the time that rule's head has been mathedwith the parent goal and the time the ut is passed are �nal,i.e. any hoiepoints are being disarded.
Ulle Endriss, King's College London 69
CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

ExeriseUsing uts (but without using negation), implement a prediateadd/3 to insert an element into a list, if that element isn't already amember of the list. Make sure there are no wrong alternativesolutions. Examples:?- add(elephant, [dog, donkey, rabbit℄, List).List = [elephant, dog, donkey, rabbit℄ ;No?- add(donkey, [dog, donkey, rabbit℄, List).List = [dog, donkey, rabbit℄ ;NoUlle Endriss, King's College London 70

CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

Solutionadd(Element, List, List) :-member(Element, List), !.add(Element, List, [Element | List℄).
Ulle Endriss, King's College London 71
CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

Problems with CutsThe prediate add/3 does not work as intended when the lastargument is already instantiated! Example:?- add(dog, [dog, at, bird℄, [dog, dog, at, bird℄).Yes
Ulle Endriss, King's College London 72

CS2LAP: Logi and Prolog 2000/2001 Baktraking and Cuts'

&

$

%

Summary: Baktraking and Cuts� Baktraking allows Prolog to �nd all alternative solutions to agiven query.� That is: Prolog provides the searh strategy, not theprogrammer! This is why Prolog is alled a delarative language.� Carefully plaed uts (!) an be used to prevent Prolog frombaktraking into ertain subgoals. This may make a programmore eÆient and/or avoid the generation of (wrong) alternative.
Ulle Endriss, King's College London 73
CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

Prolog's AnswersConsider the following Prolog program:animal(elephant).animal(donkey).animal(tiger).. . . and the system's reation to the following queries:?- animal(donkey).Yes?- animal(dukbill).NoUlle Endriss, King's College London 74

CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

The Closed World AssumptionIn Prolog, Yes means a statement is provably true. Consequently, Nomeans a statement is not provably true. This only means that suh astatement is false, if we assume that all relevant information ispresent in the respetive Prolog program.For the semantis of Prolog programs we usually do make thisassumption. It is alled the Closed World Assumption: we assumethat nothing outside the world desribed by a partiular Prologprogram exists (is true).
Ulle Endriss, King's College London 75
CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

The n+-OperatorIf we are not interested whether a ertain goal sueeds, but ratherwhether it fails, we an use the n+-operator (negation). n+ Goalsueeds, if Goal fails (and vie versa). Example:?- \+ member(17, [1, 2, 3, 4, 5℄).YesThis is known as negation as failure: Prolog's negation is de�ned asthe failure to provide a proof.
Ulle Endriss, King's College London 76

CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

Negation as Failure: ExampleConsider the following program:married(peter, luy).married(paul, mary).married(bob, juliet).married(harry, geraldine).single(Person) :-\+ married(Person, _),\+ married(_, Person).Ulle Endriss, King's College London 77
CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

Example (ontinued)After ompilation Prolog reats as follows:?- single(mary).No?- single(laudia).YesIn the losed world desribed by our Prolog program Claudia has tobe single, beause she is not known to be married.
Ulle Endriss, King's College London 78

CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

Where to use n+Note that the n+-operator an only be used to negate goals. Theseare either (sub)goals in the body of a rule or (sub)goals of a query.We annot negate fats or the heads of rules, beause this wouldatually onstitute a rede�nition of the n+-operator (in other wordsan expliit de�nition of Prolog's negation, whih wouldn't beompatible with the losed world assumption).
Ulle Endriss, King's College London 79
CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

DisjuntionWe already now know onjuntion (omma) and negation (n+). Wealso know disjuntion, beause several rules with the same headorrespond to a disjuntion.Disjuntion an also be implemented diretly within one rule byusing ; (semiolon). Example:parent(X, Y) :- father(X, Y); mother(X, Y).This is equivalent to the following program:parent(X, Y) :- father(X, Y).parent(X, Y) :- mother(X, Y).Ulle Endriss, King's College London 80

CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

ExampleWrite a Prolog program to evaluate a row of a truth table. (Assumeappropriate operator de�nitions have been made before.)Examples:?- true and false.No?- true and (true and false implies true) and neg false.Yes
Ulle Endriss, King's College London 81
CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

Solution% Falsityfalse :- fail.% Conjuntionand(A, B) :- A, B.% Disjuntionor(A, B) :- A; B.
Ulle Endriss, King's College London 82

CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

Solution (ontinued)% Negationneg(A) :- \+ A.% Impliationimplies(A, B) :- A, !, B.implies(_, _).
Ulle Endriss, King's College London 83
CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

NoteWe know that in lassial logi :A is equivalent to A)?. Similarly,instead of using n+ in Prolog we ould de�ne our own negationoperator as follows:neg(A) :- A, !, fail.neg(_).
Ulle Endriss, King's College London 84

CS2LAP: Logi and Prolog 2000/2001 Negation as Failure'

&

$

%

Summary: Negation and Disjuntion� Closed World Assumption: In Prolog everything that annot beproven from the given fats and rules is onsidered false.� Negation as Failure: Prolog's negation is implemented as thefailure to provide a proof for a statement.� Goals an be negated using the n+-operator.� A disjuntion of goals an be written using ; (semiolon).� (The omma between two subgoals denotes a onjuntion.)
Ulle Endriss, King's College London 85
CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

Logi and PrologToday we shall see how Prolog programs an be interpreted as sets oflogi formulas. In fat, when proessing a query, Prolog is atuallyapplying the rules of a logial dedution system similar to thegoal-direted alulus.
Ulle Endriss, King's College London 86

CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

CorrespondeneProlog First-order Logiprediate prediateargument termvariable universally quanti�ed variableatom onstant/funtion/prediate symbolsequene of subgoals onjuntion:- impliation (other way round)
Ulle Endriss, King's College London 87
CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

QuestionWhat is the logial meaning of this program?bigger(elephant, horse).bigger(horse, donkey).is_bigger(X, Y) :- bigger(X, Y).is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).
Ulle Endriss, King's College London 88

CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

Answerf bigger(elephant; horse);bigger(horse; donkey);8x:8y:(bigger(x; y)) is bigger(x; y));8x:8y:8z:(bigger(x; z) ^ is bigger(z; y)) is bigger(x; y)) g
Ulle Endriss, King's College London 89
CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

Translation of Programs� Prediates remain the same (syntatially).� Commas separating subgoals beome ^.� :- beomes) and the order of head and body is hanged.� Every variable is bound to a universal quanti�er (8).
Ulle Endriss, King's College London 90

CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

Translation of QueriesQueries are translated like rules; the `empty head' is translated as ?.This orresponds to the negation of the goal whose provability we tryto test when submitting a query to Prolog.Logially speaking, instead of deriving the goal itself, we try to provethat adding the negation of the goal to the program would make itinonsistent: P; A)? ` ? i� P ` A
Ulle Endriss, King's College London 91
CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

ExampleThe query?- is_bigger(elephant, X), is_bigger(X, donkey).orresponds to the following �rst-order formula:8x:(is bigger(elephant; x) ^ is bigger(x; donkey)) ?)
Ulle Endriss, King's College London 92

CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

Horn FormulasThe formulas we get when translating all have the same struture:A1 ^ A2 ^ � � � ^ An) BSuh a formula an be rewritten as follows:A1 ^ A2 ^ � � � ^ An) B �:(A1 ^ A2 ^ � � � ^ An) _ B �:A1 _ :A2 _ � � � _ :An _BHene, formulas obtained from translating Prolog lauses an alwaysbe rewritten as equivalent Horn formulas (disjuntions of literalswith at most one positive literal).Ulle Endriss, King's College London 93
CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

ResolutionThe searh tree built up by Prolog when trying to answer a queryorresponds to a logi proof using resolution, whih is a very eÆientdedution system for Horn formulas. A short introdution an befound in the notes; for more details refer to theoretially orientedbooks on logi programming.It is also possible to think of a Prolog goal exeution as agoal-direted proof in �rst-order logi. The data formulas in suh aproof would represent a list of lauses and fats, and a goal formulawould orrespond to a Prolog query.Ulle Endriss, King's College London 94

CS2LAP: Logi and Prolog 2000/2001 Prolog Programs as Logi Formulas'

&

$

%

Summary: Logi Foundations� Prolog programs orrespond to sets of �rst-order logi (Horn)formulas.� During translation, :- beomes an impliation (from right toleft), ommas between subgoals orrespond to onjuntions, andall variables need to be universally quanti�ed. Queries beome(universally quanti�ed) impliations with ? in the onsequent.� Prolog's searh to satisfy a query orresponds to a logial proof.In priniple, any dedution alulus ould be used. Historially,Prolog is based on resolution, whih is partiularly suited as it istailored for Horn formulas.Ulle Endriss, King's College London 95

