
Cosc343: Introduction to Prolog

Lecture 4

Lecture 4 1

In today’s lecture

♦ Prolog and AI research

♦ Clauses and queries

♦ Facts and rules

♦ Constants and variables

♦ Lists and unification

♦ Prolog and search

Lecture 4 2

Prolog and symbolic AI

‘Classical’ AI is basically all about search.

• Early AI researchers (e.g. Newell and Simon) claimed that any task requir-
ing intelligence can be solved using clever look-ahead search strategies.

– You formulate your problem as a state space graph.

– Then you search it systematically to look for a goal state.

Prolog is a language which is designed for (symbolic) AI tasks.

• In Prolog, every program is formulated as a state space and a goal state.

• Prolog comes with an inbuilt tree-search program.

• This makes Prolog very different from other programming languages!

Lecture 4 3

SWI Prolog

Russell and Norvig’s book isn’t tied to any particular programming language.
But in 343 we’ll be using Prolog for the first part of the course.

• To run Prolog on the Linux lab machines, just type pl.

• You’ll get a prompt like this:
?-

• To exit Prolog, type halt.

(N.B. You need the fullstop!)

The variety of Prolog we’re using is called SWI Prolog.

• There are pointers to manuals and other information on the course web-
page.

Lecture 4 4

Prolog syntax: atoms

The central construct in Prolog is the atom.

• An atom consists of a predicate and zero or more arguments (called
terms). For instance:

male(charlie)

child_of(charlie, harry)

charlie_has_big_ears

An atom is basically Prolog’s representation of a fact about the world.

The number of arguments a predicate takes is called its arity.

Lecture 4 5

Prolog syntax: clauses and facts

Prolog operates with a database of clauses.

• The simplest kind of clause is called a fact.

• A fact is just an atom, followed by a fullstop.

• You create a database of clauses simply by editing a text file. (They
conventionally take the suffix .pl.)

For instance: here’s a simple database, which we could save as my db.pl:

male(charlie).

child_of(charlie,harry).

Lecture 4 6

Programming in Prolog

To program in Prolog:

• You create a database offline, using a text editor.

• You start up Prolog, and get a prompt.

• Then you load the database:

?- consult("my_db.pl").

• After it’s been loaded, you can type queries in at the prompt, and Prolog
will return results for these queries. For instance:

?- male(charlie).

Yes

?-

• Syntactically, a query looks just like a fact. But it’s interpreted as a
question.

Lecture 4 7

How Prolog responds to a query

Let’s say we load my db.pl into Prolog:

male(charlie).

child_of(charlie,harry).

When we ask a query, Prolog runs through the facts in the database in order,
trying to match it to one of them.

• If a match is found, Prolog replies with Yes:

?- male(charlie).

Yes

?-

• If no match is found, Prolog replies with No:

?- female(queen_victoria).

No

?-

Lecture 4 8

Constants and variables

The terms (arguments) in a predicate can be constants or variables.

• Constants are lower case

• Variables are Upper case.

If variables are used in a query, then Prolog is allowed to match facts in
the database by unifying or binding variables in the query with constants (or
variables) in the database.

?- male(X).

X = charlie

Yes

?-

To solve this query, Prolog has bound the variable X to the value charlie.

Lecture 4 9

Prolog’s search strategy

Let’s extend the database a bit:

child_of(liz, charlie).

child_of(liz, anne).

child_of(liz, andrew).

child_of(charlie, harry).

child_of(charlie, will).

child_of(anne, zara).

Prolog searches the database of clauses in order (first-to-last), so the first
clause it matches will be the first one entered in the database.

?- child_of(charlie, X).

X = harry

Lecture 4 10

Visualising the search

Prolog basically executes a kind of tree search.

• Each of the system’s actions is an attempt to match a query with one of
the database clauses.

• The query plus the database define a set of possible states.

– Each state reached by a successful match consists of a list of unresolved
queries and a set of variable bindings.

– An unsuccessful match results in a special state called fail.

• The goal state is one where the set of unresolved queries is empty.

 child_of(liz, charlie)
try: child_of(charlie, X)

Queries:{child_of(charlie,X)}
Variable bindings: {}

Queries: {}
Variable bindings: {X=harry}

try: child_of(charlie, X) try: child_of(charlie, X) try: child_of(charlie, X)
 child_of(liz, anne) child_of(liz, andrew) child_of(charlie, harry)

GOAL
STATE

START
STATE

ACTIONS

fail fail fail

Lecture 4 11

Asking for other solutions

If Prolog finds a solution to a query containing variables, it asks the user if
further solutions (involving different variable bindings) should be sought.

• If the user hits <return>, no further solutions are sought.

• If (s)he hits ;, additional solutions are sought.

?- child_of(charlie, X).

X = harry ;

X = will ;

No

Prolog implements this by pretending that the goal state was a fail state,
and continuing with its search.

Lecture 4 12

Prolog rules

Our simple Prolog database just had facts in it.
A more complex kind of Prolog clause is a rule.

A rule has

• a head (a single Prolog atom),

• then the ‘if’ symbol (:-),

• then a body (a comma-separated list of atoms),

• then a fullstop.

For example:

loves(N1, N2) :-

child_of(N2, N1).

(Read this as: ‘N1 loves N2 if N2 is a child of N1’.)

Lecture 4 13

Query-matching with rules

When a query is made, Prolog searches the clauses in order.

• If the clause is a fact, Prolog tries to match the query to it directly.

• If the clause is a rule, Prolog tries to match the query to the rule’s head.
If the head matches, then the result state is defined as follows:

– The query matching the head of the rule is deleted from the list of
queries.

– All the terms in the body of the rule become queries themselves, and
are added to the list.

Rules thus introduce searches of depth greater than 1.

Note: new queries are added to the front of the list of queries.
So Prolog implements a depth-first search.

Lecture 4 14

An example

Consider this simple database:

child_of(charlie, harry).

child_of(charlie, will).

loves(N1, N2) :-

child_of(N2, N1).

And the query loves(will, charlie).

• Prolog runs through the clauses in order, trying to match each one.

• The first two clauses fail directly.

• The head of the third clause matches, if we bind N1 to charlie and N2

to will.

• We now generate a new sub-query to test:
child of(charlie, will).

• We test this query against each clause in the database, left-to-right. And
this succeeds.

Lecture 4 15

Visualising the search

child_of(charlie, harry).

child_of(charlie, will).

loves(N1, N2) :-

child_of(N2, N1). ?- loves(will, charlie).

try: loves(will,charlie)
 child_of(charlie,harry)

try: loves(will, charlie)
 child_of(charlie, will)

fail

Queries: {child_of(charlie,will)}
Variable bindings: {N1=will,N2=charlie}

NEW
STATE

ACTIONS

START
STATE

ACTIONS

Queries: {}
Variable bindings: {N1=will,N2=charlie}

Variable bindings: {}
Queries:{loves(will, charlie)}

try: loves(will, charlie)
 loves(N1, N2) :−
 child_of(N2, N1)

 child_of(charlie,harry) child_of(charlie, will)
try: child_of(charlie,will) try: child_of(charlie, will)

failfail

GOAL
STATE

Lecture 4 16

Tracing

Prolog has a trace facility, to display its reasoning process.

Here’s a trace of the previous query.

?- trace, loves(will,charlie).

Call: (8) loves(will, charlie) ?

Call: (9) child_of(charlie, will) ?

Exit: (9) child_of(charlie, will) ?

Exit: (8) loves(will, charlie) ?

Note:

• The numbers tell us how deep in the search Prolog is. (1–7 are part of
SWI’s user interface.)

• The default trace doesn’t report intermediary ‘fail’ nodes.

Lecture 4 17

Recursion in Prolog

Prolog rules can be recursive.

Here’s an example of a recursive rule for defining ‘descendant of’:

descendant_of(N1, N2) :-

child_of(N1, N2).

descendant_of(N1, N2) :-

child_of(N1, Nmid),

descendant_of(Nmid, N2).

The first of these rules is the base case.
The second rule is the recursive case.

N.B. The base case always has to appear first!

Lecture 4 18

Term unification

When Prolog attempts to match two atoms, their predicates must be iden-
tical, and their arguments have to unify.

We can test matches explicitly using the infix = operator:

?- happy(bill) = sad(bill).

No

We can also use = to test directly for term unification:

?- X = bill.

X = bill

Lecture 4 19

Term unification

A variable can unify with any term, provided that it can be substituted
consistently for that term throughout the predicate.

How will Prolog respond to the following queries?

?- foo(X, X) = foo(bar, bar).

?- foo(X, Y) = foo(bar, bar).

?- foo(X, X) = foo(bar, baz).

Lecture 4 20

Complex terms

Terms don’t need to be constants or variables: they can also be more complex
expressions.

• A whole atom can be a term: e.g. loves(child of(john), mary)

Prolog has a set of inbuilt operators (e.g. :, -, \), which allow the creation
of arbitrarily complex terms (e.g. a:b:c, a-b-X).

How will Prolog respond to the following queries?

?- a/b/c = a:b:c.

?- a/b/c = a/b/X.

?- f(g(a/b), Y) = f(g(Z), p).

Lecture 4 21

Lists in Prolog

One special form of complex expression is a list. For instance:

corgis_of(liz, [rover, fido]).

• Prolog represents the empty list using a special symbol, [].

• Prolog represents a non-empty list as a binary structure [x|y], where

– x is any Prolog term (simple or complex),

– y is a list (empty or non-empty).

A list with one element is shown as [e|[]].
A list with two elements is shown as [e|[e2|[]]].

To make things simple, there’s a shorthand:
E.g. [a] is a shorthand for [a|[]].
E.g. [a, b] is a shorthand for [a|[b|[]]].

Lecture 4 22

Term unification

We can confirm these shorthand representations by unifying:

?- [a|[]] = X.

X = [a]

Yes

?- [a|X] = [a].

X = []

Yes

?- [a|X] = [a, b, c].

X = [b, c]

Yes

?-

Lecture 4 23

A predicate for testing list membership

There’s an inbuilt predicate called member/2 that works like this:

?- member(a, [b, a, c]).

Yes

?- member(a, [b, c, d]).

No

We can define our own version of this predicate. Note the recursion!

member*(X, [X|Rest]). %base case

member*(X, [Y|Rest]) :- %recursive case

member*(X, Rest).

Lecture 4 24

