
CONTEXT-FREE GRAMMARS

Allows recursion (needs stack, so PDA):

Nonterminals defined in terms of themselves.

Rule: Only single nonterminal, no terminals on

LHS of productions. Supports structure like

nested (()). G=(S,N,T,P): (Start, NonTerm,

Term, Prods). e.g. in BNF:

expr −→ id | number | - expr | (expr)

| expr op expr

op −→ + | - | * | /

(note paren-matching trick). More powerful than

RE: easy to do concat. and alternate, thus

Kleene closure, but can also define things in

terms of themselves, which RE’s can’t. BNF

sometimes augmented: e.g.

id-list −→ id (, id)*

(similarly Kleene + and note | is not needed.)

Parser doesn’t distinguish one terminal symbol

(e.g. id) from another, but semantics has to, so

scanner saves spellings.

1

DERIVATIONS

Starting with grammar’s start symbol and

rewriting non-terminals using the rules lets you

generate (derive) syntactically valid strings of

terminals and non-terminals, called sentential

forms, which are the yield of the derivation.

Here’s a rightmost or canonical derivation.

expr =⇒ expr op expr

=⇒ expr op id

=⇒ expr + id

=⇒ expr op expr + id

=⇒ expr op id + id

=⇒ expr * id + id

=⇒ id * id + id

(slope) (x) (intercept).

2

DERIVATION TYPES

Leftmost Derivation: replace leftmost

non-terminal at each step.

Rightmost Derivation: replace rightmost

non-terminal at each step.

Ambiguous Grammar: has multiple left- or

rightmost derivations for a single sentential form.

3

CFG ADVANTAGES

Precise syntactic specification of programming

language.

Easy to understand, avoids ad hoc definition.

Easy to maintain and add new features.

Can automatically construct efficient parser.

Parser construction reveals ambiguity or other

infelicities.

Imparts structure to language.

Supports syntax-directed translation (parser in

charge).

Strictly more powerful than REs (strict language

inclusion).

- Need to “look ahead”: potential O(n3)

problem. Keep linear by ’good’ (parser-aware)

language design.

4

PARSE TREES

Represent a derivation as a parse tree, with root

the start symbol, internal nodes are

nonterminals, leaves are terminals, children of

node T are symbols on RHS of some production

for T in grammar. Generated terminal string has

≥ 1 parse tree, every tree represents a sting

gen’d by grammar. The simple grammar

expr −→ id | number | - expr | (expr)

| expr op expr

op −→ + | - | * | /

allows two possible parse trees for slope * x +

intercept. It is thus an ambiguous grammar.

There are infinitely many grammars for any CFL,

and ambiguous grammars are much less useful in

CS than unambiguous ones. Also to be avoided

are grammars with useless symbols (nonterminals

that can’t generate any string of terminals (e.g.

A −→ B.)) or terminals that never appear in any

yield. Grammars may be put into canonical form,

which simplifies applications and analysis.

5

AN UNAMBIGUOUS GRAMMAR

expr −→ term | expr add-op term

term −→ factor | term mult-op factor

factor −→ id | number | - factor | (expr)

add-op −→ + | -

mult-op −→ * | /

This unambiguous grammar also captures

arithmetic precedence in the way the productions

use each other, and it captures the usual

left-associativity by building sub-exprs to the left

of the operator. Note precedence is not property

of CFG, it’s property of semantics we choose to

apply to the strings. If grammar reflects what we

want, easier for compiler!

6

PARSER TYPES

Top-Down (LL) Parsers

— Left to right, Leftmost derivation.

— Starts at S, root of tree, and ’grows’ it down.

— Predicts next state with N-lookahead. —

Often use execution stack for PDA.

Bottom-up (LR Parsers)

— Left to Right, Rightmost derivation.

— Starts at the leaves and combines low-level

bits into higher.

— Starts with input string, ends with S (ideally).

— Starts in state valid for legal first tokens.

— Changes state to encode possibilities as input

is consumed.

— Use explicit stacks PDA, storing state and

sentential forms.

7

FOR TOP DOWN PARSING:

No left recursion or common prefixes. A

grammar is left recursive if there exists A in

NonTerms such that A → AΣ for some string Σ.

– Transform the grammar to remove left

recursion:

A → AΣ | µ

⇒

A → µB

B → ΣB | ǫ, where B is new nonterminal.

8

ELIMINATE COMMON PREFIXES

A → Bδ

→ Bµ

⇒

A → BBtail

Btail → δ | µ

9

PARSER CONSTRUCTION

*** Recursive descent parsing

– Top-down parsing algorithm

– Built on procedure calls (may be recursive)

– Write procedure for each non-terminal, turning

each production into clause

– Insert call to procedure A() for non-terminal A

and to match(x) for terminal x

– Start by invoking procedure for start symbol S

10

PREDICTIVE (TABLE-DRIVEN) PARSING

** Actions

– Match a terminal

– Predict a production

– Announce a syntax error

* Push as yet unseen portions of productions

onto a stack

* Use

– FIRST (A)

– FOLLOW(A)

11

PREDICTIVE (TABLE-DRIVEN) PARSING

Table

Code->Scanner->Tokens->Driven<->Stack

Parser

^

|

Grammar->Parser-----> Parse

Rules Generator Table

12

THE FIRST SET

** FIRST(a) is the set of terminal symbols that

begin strings derived from a

** To build FIRST(X):

– If X is a terminal, FIRST(X) is X

– If X → ǫ , then ǫ ∈ FIRST(X)

– If X → Y1 Y2 Yk then put FIRST(Y1) in

FIRST(X)

– If X is a non-terminal and X → Y1 Y2 Yk,

then a ∈ FIRST(X) if a ∈ FIRST(Yi) and ǫ ∈

FIRST(Yj), for all 1 < j < i.

13

THE FOLLOW SET

** For a non-terminal A, FOLLOW(A) is the set

of terminals that can appear immediately to the

right of A in some sentential form.

** To build FOLLOW(B) for all B –

– Starting with goal, place eof in

FOLLOW(¡goal¿)

– If A → aBb, then put FIRST(b)-ǫ in

FOLLOW(B).

– If A → aB, then put FOLLOW(A) in

FOLLOW(B) – If A → aBb and ǫ ∈ FIRST(b),

then put FOLLOW(A) in FOLLOW(B).

14

USING FIRST AND FOLLOW

** For each production A → a and lookahead

token

– Expand A using the production if token ∈

FIRST(a)

– If ǫ ∈ FIRST(a), expand A using the production

if token ∈ FOLLOW(A)

– All other tokens return error

* If there are multiple choices, the grammar is

not LL(1) (predictive).

15

LL(1) GRAMMARS

A Grammar G is LL(1) if and only if, for all

non-terminals A, each distinct pair of productions

A → a and A → b satisfy the condition FIRST(a)

∩ FIRST(b) = φ, i.e.,

For each set of productions A → a1 | a2 mid ... |

an,

— FIRST(a1), FIRST(a2), , FIRST(an) are all

pairwise disjoint

— If ai → ǫ for any i, then FIRST(aj) ∩

FOLLOW(A) = φ, for all j /neq i.

16

THE COMPLEXITY OF LL(1) PARSING

Expect linear since no back-up (look-ahead).

** Instructions inside main loop bounded by

constant (function of symbols on RHS)

** How many times does the main loop execute?

– Number of iterations is the number of nodes in

the parse tree, which is ≤ N*P (N is the number

of tokens in the input, P is the max. number of

productions on a RHS)

– P is a constant, therefore running time is O(N).

17

EXAMPLE NON-LL GRAMMAR CONSTRUCT

stmt --> if condition then-clause else-clause

| other_stmt

then-clause --> then stmt

else-clause --> else stmt | e

if C1 then if C2 then S1 else S2 — the else can

be paired with either then. Neither LL nor LR.

Rather famous problem.

18

FIX? AN UNNATURAL B-UP (LR) GRAMMAR

stmt --> balanced-stmt | unbalanced-stmt

balanced-stmt --> if condition then balanced-stmt

else balanced-stmt | other-stmt

unbalanced_stmt --> if condition then stmt

| if condition then balanced-stmt

else unbalanced-stmt

OR: Use special disambiguating rules, like “use

production that occurs first in case of conflict”.

OR: Use a better syntax!

19

