
CSC173
Lambda Calculus 2013, some answers

Please write your name on the bluebook. You may use two sides of handwritten notes. There
are 95 possible points, offering choice or insurance. Perfect score is 75. Stay cool and please write
neatly.

1. Lambda Calculus Evaluation (10 min)

Evaluate this λ expression.

((λp.λq.(p q) (λx.x λa.λb.a)) λk.k)

Ans. Greg p. 276 (d)

2. Function Equivalence (10 min)

Show function (A) is equivalent to function resulting from expression (B) by applying each to (two)
arbitrary arguments, which let’s call <fun> and <args>. (Hint: here and throughout, be careful
which name to expand: save work and reduce mistakes).

(A) apply

(B) λx.λy.(((make-pair x) y) identity)

Ans. Greg p. 276 (2.3 (b))

3. Logical Operators (15 min)

Recall we defined logical OR:
def or = λx. λy.(((cond true) y) x),

which simplified to
def or = λx. λy.((x true) y).

3.1 (5 min) : Prove that each of the 16 Boolean functions of two Boolean variables x, y can be
written as a C-style conditional in the form a?b:c, where
a,b,c are expressions that only use x, y, true, false, not (still not a minimal set). (Hint:
a few English sentences is all you need: don’t give 16 separate implementations!).

3.2 (5 min) : Write a one-line, C-conditional-like (like OR above) λ-calculus definition for logical
EQUIVALENT (if and only if, ⇔). Use only one cond, and you may also use x, y for the
arguments, and true, false and not. Do not use or, and, or implies.

3.3 (5 min): Apply your λ-calculus definition from 3.2 to the two arguments false and true and
show it evaluates to the correct answer. In your demonstration you can stay at the level of
defined function names like false, true, not..., so that no λs are needed. In fact, with
judicious use of => ... => the demonstration can also be a one-liner. But if you want to work
from more basic definitions, fine.

Ans: 3.1: the function is a 4-row, 3-col table with x and y values (T or F) in 1st two cols, f the
function the 3rd col. wlog in a?b:c, let a = x. x value of T happens in 2 rows, and the b value

1

depends on y: it is TT or true, FF or false, or =y, or =not(y). Likewise the c value depends on y
given not(x), similar argument. also, false = not(true) so don’t need it. That’s pretty incoherent
(cb 2012). Another nice arg is to think of it as an if then else and note that you may not need the
2nd arg for some functions and if you do you can generate all dependencies you need.

Ans: Greg. p. 280 3.2

4. Recursion (15 min)

Recall from your exercises that this function sum finds the sum of numbers between n and zero:

def sum = recursive sum1 % apply recursive to sum1

def sum1 f n =

if iszero n

then zero

else add n (f (pred n))}

4.1 (5 min). Similarly define functions fac and fac1 that find the product of the numbers between
n and one (a.k.a. the factorial function). So fac n is equivalent to n! = n∗(n−1)∗(n−2)∗...∗1.

4.2 (10 min) Show the steps in evaluating
fac three.

Our goal here is to show how recursive works. We need to know its definition or its effect
on its arguments: what does (recursive f) evaluate to? (Hint: Y ’s mathematical defini-
tion.) We only want to see the names fac1, recursive, mult, pred, three, two, one

in your evaluation (no λs!), so use => ... => and -> ... -> to step past the conditional
statements, and you never have to expand functions by ==, either: keep application results at
this high level. Use applicative-order evaluation where possible, and we’d expect about seven
lines after the ones below, containing five more occurrences of recursive. Here we go....

fac three

recursive fac1 three

...

Ans: Greg 4.2 p. 284

5. Different Integer Representation (25 min) String theory was confirmed when a par-
allel, alternate world Threa was discovered occupying dimensions 5-8. Threans have a slightly
different representation of integers in λ-calculus. They represent zero by select-second, not by
identity. Sticking with the Earthian idea of formalizing integers as zero and recursive successors
where (0, 1, 2, ...) = (0, succ(0), succ(succ(0)), ...), they invented:

def zero == select-second == λs.λz.z
def one λs.λz.(s z)

def two λs.λz.(s (s z))

and so on.

2

5.1 (10 min.) They claim that this definition of succ works:

def succ λw.λy.λx.(y ((w y) x))

Demonstrate that evaluating (succ zero) gives one. With that ’justification’ let’s assume
the general result that (succ (succ zero)) is two, etc.

5.2 (5 min.) Addition: Threans seem to use succ like an infix +, that is, two succ three is
five, for instance. Demonstrate that in fact ((two succ) three) evaluates to (succ (succ

three)), which we believe is five by part 1 above. (Hint: rewrite two using its def, but you
don’t have to rewrite succ or three.)

5.3 (10 min.) Multiplication! Threans believe that the function

def prod λx.λy.λz.(x (y z))

works to multiply x and y with ((prod x) y). Verify that ((prod two) two) evaluates to
four. (Hint: use α-conversion and stay sane.)

6. (Fairly) Short Answers: (20 mins)

6.1 (5 min) State (explain briefly in plain English) the Church-Turing Hypothesis and the Church-
Rosser Theorem (CRT).

6.2 (5 min) The Scheme syntax of the let function is:
(let ([id val] ...) exp1 exp2 ...).

Implement let with lambda: that is, write a Scheme expression that has the same effect as
let but only uses the function lambda. (Hint: “only uses” means it does not use any other
function!).

Ans:
(let ([id val] ...) exp1 exp2 ...).
((lambda (id ...) exp1 exp2 ...) val ...).

6.3 (10 min) Here’s some Scheme:

(define call/cc call-with-current-continuation)

(define (compA cont-arg-A)

(display cont-arg-A)

(newline)

(display "learn")

(newline)

(set! cont-arg-A (call/cc cont-arg-A))

(display "heal")

(newline)

(set! cont-arg-A (call/cc cont-arg-A))

(display "better")

3

(newline)

)

(define (compB cont-arg-B)

(display cont-arg-B)

(newline)

(display "discover")

(newline)

(set! cont-arg-B (call/cc cont-arg-B))

(display "create")

(newline)

(set! cont-arg-B (call/cc cont-arg-B))

(display "ever")

(newline)

)

(a) Why might I need that first define?

(b) Having loaded those functions, we type
> (compa compb)

at the Scheme Listener. What gets printed, if anything?

(c) Does > (compb compa) cause an error? Why or why not?

(d) Suppose we edit the file so that all cont-arg-A’s and cont-arg-B’s are changed to foo.
Then we type
> (compa compb) at the Listener again. Does anything go wrong? What or why not?

Ans: 1.call/cc not defined in DrRacket!!

2.

> (compa compb)

#<procedure:compb>

learn

#<continuation>

discover

heal

create

better

3. no error, works fine:

> (compb compa)

#<procedure:compa>

discover

4

#<continuation>

learn

create

heal

ever

4. no problem, works fine. those args are local, can be called anything we please.

5

