
Chapter 5: Selection and Adversary

Arguments

Selection is the problem of finding, given a

set of some n keys and an integer k,

1 ≤ k ≤ n, the kth smallest number in the set.

The number in question is called the kth

order statistic.

1

1. Finding the Maximum

To find the maximum of n keys using key

comparison, n− 1 comparisons are necessary

and sufficient. The reason is that a number is

known to be the maximum only if everyone

else is lost at least once. So, there have to be

at least n− 1 comparisons.

A same argument holds for the minimum.

2

Finding both the Maximum and the Minimum

Theorem A To find both the maximum

and the minimum of n keys using key

comparison, 3n/2− 2 key comparisons are

necessary and sufficient.

Sufficiency Consider the following strategy

that deals with the input numbers in pairs:

• Take the first pair, (x, y). Compare x and

y; Set A to the larger and B to the other.

• For each remaining pair, (x, y), compare x

and y; set u to the larger and v to the

smaller; set A to the larger of u and A;

set B to the larger of v and B.

• If one key remains, compare it with A and

B.

The number of comparisons is d3n/2e − 2.

3

Necessity

We will show that for each algorithm that

makes less than 3n/2− 2 key comparisons,

there is an input for which the algorithm

either fails to compute the maximum or fails

to compute the minimum.

4

Adversary Argument

To prove this we will use what is called an

adversary argument.

An adversary is an opponent that a

key-comparison algorithm plays against. Its

ultimate goal is to maximize the number of

key comparisons that the algorithm makes

while constructing an input to the problem.

At the beginning there is no restriction on the

input, but when the algorithm asks about a

pair (a, b) of keys the adversary must return

either a < b or a > b, then only the inputs that

are inconsistent with the answer will be

removed from further consideration.

5

Assumptions

We assume the following:

• The keys are pairwise distinct.

• The algorithm cannot remember an key.

• At any point during computation, the

algorithm can infer > or < based on the

outcomes of the comparisons that have

been made so far, and the adversary’s

answers should never contradict them.

6

Graph Representation

The outcomes of the comparisons that have

been made so far can be viewed as a directed

graph, where the nodes represent the keys

and the arcs represent the outcomes.

We draw an arc from a node u to a node v if

the algorithm has asked about the pair (u, v)

and the strategy has provided an answer

u < v.

A relation a < b is inferred from the previous

outcomes if and only if there is a path from a

to b.

Also, the graph has no cycles.

7

Example

The comparisons that have been made are

u < v, v < w, and z < w. It can be inferred

that u < w. So, when asked about the pair

(u,w), the strategy must answer u < w.

v

z

wu

8

Stopping Condition

The algorithm stops examination when the

graph acquires a certain property. For

computing the maximum and the minimum,

the stopping condition is when

• there is a node from which all the other

nodes are reachable (thus, it’s the

minimum), and

• there is a node to which all the other

nodes are reachable (thus, it’s the

maximum).

Since there is no cycle, when the stopping

condition holds,

• each of the other two nodes has at least

one incoming edge and at least one

outgoing edge.

9

u vw

minimum maximum

other nodes
n−2 of this kind

10

Terminology

We say that a key x wins at y (respectively,

loses to y) if x and y have been compared

and the adversary has assigned a value to

each of the two so that x < y (respectively, so

that x > y).

11

Adversary Strategy For each key we

consider the following situations depending on

its number of wins and its number of losses:

state # wins # losses

W ≥ 1 0

L 0 ≥ 1
WL ≥ 1 ≥ 1
N 0 0

That is, W, L, WL, and N stand for “has won

but never lost,” “has lost but never won,”

“has won and has lost,” and “has never

participated in a comparison.” At the

beginning every key is in the N state. The

stopping condition is that there are:

• only one key in the W state,

• only one key in the L state,

• exactly n− 2 keys in the WL state.

12

State Transition

N

W

WL

L

win / loss
win

win

loss

winloss

loss

13

The Basic Rule of the Adversary

x, y Outcome New Status # moves
N, N x > y W, L 2

W, W x > y W, WL 1
WL, N x < y WL, W 1
L, L x > y WL, L 1
W, N x > y W, L 1
L, N x < y L, W 1

W, L x > y W, L 0
WL, W x < y WL, W 0
WL, L x > y WL, L 0
WL, WL Consistent WL, WL 0

with assign.

14

Argument About the Number of Moves

To arrive at the stopping condition, along the

arrows of the diagram one move has to be

made for each of max and min and two

moves for each of the rest, so the total

number of moves that have to be made is

2(n− 2) + 2 · 1 = 2n− 2. The number of key

comparisons is minimized when two N’s are

compared bn/2c times and then the other

moves are made one at a time. In this

happens, the number of comparisons is

bn/2c+ (2n− 2− 2bn/2c).

This is equal to

d3n/2e − 2.

15

2. Finding the Second Largest Key

There is an algorithm that uses n− 2+ dlg 2e

key comparisons:

• Form a tournament so that the height is

the smallest and use that to compute the

maximum.

• Collect all the keys that directly lost to

the maximum and run the tournament on

them to compute their maximum. That

is, the second largest key. (The other

keys are smaller than at least two keys.)

16

Must Identify the Largest Key

Claim B The second largest key cannot be

found without finding the largest key.

The stopping condition has to include: there

is a set S of n− 2 keys such that for each u

of S there are at least two keys from which u

is reachable. Let p and q be the remaining

two. Then one of them must be the largest

and the other must be the second largest. If

both lack incoming edges, there is no way to

tell which is larger, so it is impossible to find

the second largest. So, one of them has an

incoming edge. Now there are n− 1 keys with

an incoming edge, the remaining key must be

the maximum.

17

Counting the Losses

To prove the lower bound, we pay attention

to the number of keys that loses at least once

and the number of keys that loses at least

twice. Let a and b respective be the two

numbers. The total number of losses is at

least a+ b. Since the maximum has to be

identified, it must be the case that a = n− 1.

So, we have only to show that b ≥ dlgne − 1.

18

Counting the Number of Keys Compared

Against the Largest Key

Suppose that the largest key participates in p

comparisons and wins in all. Out of the p

keys that are compared directly against the

largest key, only one can lose exactly once.

Otherwise, there is more than one candidate

for the second largest key.

So, b ≥ p− 1. Thus, it suffices to show:

Lemma C p ≥ dlgne.

19

The Adversary

We’ll use the adversary we used for

max-plus-min with a slight modification.

According to that adversary, when a key loses

for the first time, it does so by losing to a

key that has never lost.

Call a comparison of two keys that have

never lost a critical comparison. We call a

win in a critical comparison a critical win.

The rule we add is the following:

(*) The winner of a critical comparison is the

one having more critical wins than the

other, where a tie can be broken

arbitrarily.

20

The Strategy

x, y Outcome New Status
N/W, L/WL x > y W, L/WL

WL, L x > y WL, L
N, N x < y WL, W
W, N x > y W, L

L/WL, L/WL Consist. with assign. WL, L/WL
W, W * *

* The winner is the one having more critical

wins than the other.

21

Graph of Critical Comparisons

Consider the graph consisting only of arcs

representing critical comparisons. For each

node, label its going edges according to the

order in which they are added.

Each key other than the maximum key loses

at least once. According to the strategy, its

first loss occurs in a critical comparison.

Since a node will never participate in a critical

comparison once it has lost in a critical

comparison, its out-degree is equal to the

number of its critical wins.

When a node u acquires its qth outgoing edge,

say (u, v), v has at most q − 1 wins and u has

just made its qth critical wins. So, we have:

(?) For all u, v, and q, if there is an edge

from u and v and if the label of (u, v)

is q, then the out-degree of v is at

most q − 1.
22

at most 2

at most 1

none

at most q−1

u

v

y

z

x

2

1

3

q

23

Bounding the Number of Reachable

Nodes

Claim D If a node u has out-degree q then

the number of nodes reachable from u is at

most 2q.

We prove the claim by induction on q.

Base Case

The base case is when q = 0. u doesn’t have

a critical win, u is the only node reachable

from u. Since 20 = 1, the claim holds.

24

Induction Step

Let q = k > 0 and suppose that the claim

holds for all q, 0 ≤ q ≤ k − 1.

Let u be a node whose out-degree is q. For

each i, 1 ≤ i ≤ q, let vi be the node to which

there is an edge from u having label i.

For all i, 1 ≤ i ≤ q, the out-degree of vi is at

most i− 1, so by our induction hypothesis,

the number of nodes reachable from vi is at

most 2i−1.

The nodes reachable from u consists of u and

the nodes reachable from one of u1, . . . , uq.

So, there are at most 1 +
∑q

i=1 2
i−1 = 2q of

them. Thus, the claim holds.

25

Every non-maximum key must lose at least

once, so it has to lose in a critical

comparison, and once it’s lost in a critical

comparison it can never participate in a

critical comparison. So, every non-maximum

key has exactly one incoming edge. So, the

graph is a forest. Furthermore, since there are

n− 1 edges in the graph, the graph is actually

a tree. Thus, the maximum is the root and

every node is reachable from the root.

This implies that the degree d of the root has

to be at least dlgne. This proves the lemma.

26

A Linear Time Selection Algorithm

Problem: Given a set of n keys and an

integer k, find the kth smallest key in the set.

Idea: Divide the input array into blocks

of five keys. Compute the median of the

medians of the blocks and use it as a pivot to

partition the array.

If necessary, continue searching in either the

right or the left region.

Use recursion to find the “super-median.”

Also use the following stopping condition:

(*) If the size of the array is less than or

equal to B then use brute-force search to

find the desired order statistic.

27

1. Set m = dn/5e. Add extra ∞ to make the

size 5m.

2. Divide the input array into blocks of five

keys, and in each group find the median.

3. Using a recursive call compute the

“super-median,” x, of the m medians.

4. Partition the input array using x as the

pivot: L = the left region and R = the

right region.

5. Set p = ‖L‖+1. If p = k, return x.

6. If p < k, return the (k − p)th order statistic

in R (remove the extra ∞).

7. If p > k, return the kth order statistic in L.

28

......

29

Assumption on the Algorithm

The algorithm can be modified so that

identification of the order statistic in question

is done as partition.

We will also assume that the keys are

pairwise distinct.

30

Running Time Analysis

Let T (n) be the worst-case running time of

the above algorithm, in terms of the number

of key comparisons.

Our goal is to show that there exists some α

such that for all n, T (n) ≤ αn.

Note that for each block whose median is

smaller than or equal to x, at least three keys

are smaller than or equal to x. So,

p ≥ 3dm/2e.

For much the same reason,

p ≤ 5m− 3dm/2e+1.

So, the size of the array when line 6 or line 7

is executed is at most

5m− 3dm/2e ≤ 7m/2.

31

The Number of Key Comparisons for

Partitioning

Partitioning with x as pivot can be done with

2(m− 1) key comparisons.

• The group from which x is coming does

not need extra key comparison.

• For each group whose median is larger

than x, only the two keys smaller than the

group’s median have to be compared

against x.

• For each group whose median is smaller

than x, only the two keys larger than the

group’s median have to be compared

against x.

32

It is possible to find the median of five keys

using six comparisons. The proof is omitted.

See Exercise 5.14.

Then, the total number of key comparisons,

excluding those required during the recursive

calls, is

6m+2(m− 1) = 8m− 2.

33

So, the running time is

T (n) ≤ 8m− 2+ T (m) + T (7m/2).

Apply the inequality T (s) ≤ αs to each T on

the right-hand side. Then,

T (n) ≤ 8m− 2+ α(9m/2).

Since m ≤ (n+4)/5, the right-hand side is at

most
16 + 9α

10
n+

44+ 36α

10
.

Then, we have only to choose α so that the

above quantity is at most αn. That is,

α− 16

10
n ≥

44+ 36α

10
.

34

Let α = 16+ δ for some positive δ. Then the

above inequality is equivalent to

δn ≥ 620+ 36δ.

Thus,

n ≥ 36+
620

δ
.

This means that our analysis is valid only for

n greater than equal to 36+ 620
δ . For n less

than this, we cannot use recursion and have

to show that finding the median can be done

in αn steps. So, we set B to
⌈

36+
620

δ

⌉

.

35

The choice that satisfies these conditions is

not unique.

Suppose we set δ to 1. Then, α = 17 and

B = 656. Mergesort requires dn lgn− n+1e

key comparisons for sorting. For all n,

2 ≤ n ≤ 656, dn lgn− n+1e < 9.36n < αn.

So, this works.

If we set δ to 0.001, then α = 16.001 and

B ≥ 62,036. For all n, 2 ≤ n ≤ 62,036,

dn lgn− n+1e ≤ 14.93n < αn. so, this works,

too.

36

A Lower Bound for Finding the Median

Theorem E Let n ≥ 3 be an odd number.

The number of key comparisons required for

finding the median of n keys is at least 3(n−1)
2 .

To prove the theorem we will use an

adversary argument.

37

Adversary Argument

Our adversary plays against a given algorithm

and dynamically designates a key to be the

median, (n− 1)/2 keys to be larger than the

median, and (n− 1)/2 keys to be smaller than

the median.

The adversary uses four states for each key

L: the key has been designated to be the

larger than the median,

S: the key has been designated to be the

smaller than the median,

M : the key has been designated to be the

median, and

N : the key has not been given any role.

Every key starts in N . The state of each node

can be changed at most once. There can be

at most one key in M , at most (n− 1)/2 keys

in L, and at most (n− 1)/2 keys in S.

38

Graph Representation

The rest is about how to determine the state

or how to assign/adjust the value of a key.

The information gained by the algorithm can

be represented using a graph, where each

directed edge representing the outcome of

the comparison between the keys.

Then the median finding algorithm finishes its

work when there has emerged a node from

which (n−1)/2 other nodes are reachable and

to which (n− 1)/2 other nodes are reachable.

39

Let λ, σ, and ν be the number of nodes in L,

S, and N , respectively.

Rule 0 As soon as λ+ σ = n− 1, the state of

the remaining key is set to M . Before this, no

key will enter M .

The following are the rules before rule 0 is

applicable. Thus, λ+ σ+ ν = n− 1. Let

δ = λ− σ. During the execution of the

strategy we will maintain that δ ≤ 1.

Suppose that x and y will be compared. We’ll

omit symmetric cases.

40

1. x, y ∈ N , µ ≥ 3

Put x in L, y in S, return x > y.

2. x, y ∈ N , µ = 2, δ = 1

Put x in S, return x < y, apply Rule 0.

3. x, y ∈ N , µ = 2, δ = −1

Put x in L, return x > y, apply Rule 0.

4. x 6∈ N , y ∈ N , δ = 1

Put y in S. Apply one of (8) and (9).

5. x 6∈ N , y ∈ N , δ = −1

Put y in L. Apply one of (8) and (9).

6. x ∈M , y ∈ L

Return x < y.

7. x ∈M , y ∈ S

Return x > y.

8. x ∈ L, y ∈ S

Return x > y.

9. Either x, y ∈ L or x, y ∈ S

Return consistent relation.
41

Counting the Number of Edges

For the algorithm to determine the median,

n− 1 have to be put into either L or S and

n− 1 have to be added to establish

reachability to and from the median. To

accomplish the former (n− 1)/2 comparisons

are necessary. To accomplish the latter n− 1

comparisons are necessary. Thus, we have

3(n− 1)/2, as desired.

42

