Select(S, k)

S a set of n keys, k less than n is the rank of
item (kth smallest) to be selected and
returned.

0. if | S |< 5 return direct solution for kth elt
of S.

1. Divide keys into sets of five each, find
median of each. Call set of medians M. (See

Fig (a)).

2. m* = Select(M, [| M | /2])
m* the median of medians (Fig. (b)).

3. Partition: Compare each key in sections A
and D of Fig (b) to m*.

S1 = CU { keys from AU D smaller than m* }
So = BU { keys from AU D larger than m* }

4. Divide and Conquer:
if (k=|S1]|+4+1) return m* as kth-smallest.

elseif (k <| S1|) return Select(Sq1,k).

else return Select(Sy,k— | S1 | —1).

ANALYSIS of Selection

W(n) is number of key comparisons in worst
case with n keys. Assume n =5(2r 4+ 1) for
some r. Counts per step:

1. Medians of all sets of five keys: 6(n/5),
since if you're clever can find median of 5
with 6 comps.

2. Recursion: W(n/5) comparisons.

3. Compare all section A and D keys to m?*:
4r comparsions.

4. Divide and conqg. W(7r+42).

In worst case, all 4r keys in A and D will be
on same side of m* (all > mx* or < mx). B
and C have 3r 4+ 2 elements.

n=52r+1), sor=an/10. Thus

Wi(n) <1.2n+ W(0.2n) + 0.4n + W(0.7n)

= 1.6n+ W(0.2n) + W(0.7n).

W(n)=1.6n+ W(0.2n) + W(0.7n)

Unequal-sized subproblems so Master theorem
no good. But recursion tree shows row-sums
are decreasing geometric series whose ratio is
0.9. Total is © of the largest term, so ©(n).

16n minus a small number is correct then for
this algorithm. The original presentation of
the algorithm had improvements that
dropped it to 5.5n and the best
median-finding algorithm now does about 3n
comparisons worst case.

LOWER BOUND FOR MEDIAN-FINDING

E a set of n distinct keys, n odd. we want

(n+ 1)/2th key. Algorithm must know
relation of all other key to median. It needs

to establish relations as in Figure.

THE GRAPH

Has n nodes, so n— 1 arcs, son —1
comparisons must be done. But can an
adversary hurt us worse?

A Crucial Comparsion for x is a comparison
involving key x if it is the first comparison
foere x > y for some y > median, or x < y for
some y < median. Comparison of x and y
where x > median and y < median are
noncrucial (tell us nothing).

The relation of y to median is not necessarily
known at time of comparison with . Crucial
comps establish the relation of x to median.

The adversary wants us to make noncrucial
comparisons. She chooses some value (not a
particular key) to be median. She assigns a
value to a key when the algorithm first uses
that key in a comparison, and as long as
possible she’ll assign values so as to put keys
on opposite sides of median, SO we learn
nothing. She can't assign values > median for
more than (n — 1)/2 keys, ditto with smaller.

HER ADVERSARIAL STRATEGY

et status of key be:

L: assigned a value > median.
S: assigned a value < median.
N: not yet been in comparison.

COMPARANDS ADVERSARY ACTION

(N, N) Make one key > median, other <.
(L, N), (N, L) Assign a value < median to N key.
(S, N), (N, S) Assign a value > median to N key

(L,L), (S,S) Correct response based on values.
(S,L), (L,S) Correct response based on values.

If there are already (n — 1)/2 keys with status
S or L, she must ignhore rules and put all new
keys into L (or S). When only one N key
remains, it gets the value median.

All the comparisons above the line table are
noncrucial.

HER ADVERSARIAL STRATEGY CONT.

How many noncrucial comparisons does this
strategy force?

Each creates at most one L-key, at most one
S key. So adversary can continue until she
fills up one side or other: until there are
(n—1)/2 L-keys or S-keys, so she can force
(n — 1)/2 noncrucial comparisons.

Since the algorithm can start out with
(n—1)/2 (N,N) comparisons, she can't
guarantee any more than (n — 1)/2 noncrucial
ones.

SO... number of comparisons is at least n — 1
(crucial) 4+ (n — 1)/2 (noncrucial), or
C(n) =3n/2 —3/2.

10

Actually this adversary is not the worst. The
lower bound has crept up to 1.75 — logn, to
about 1.8n, and the best lower bound now is
slightly above 2n. There's a gap between the
best known lower bound and the best
algorithm.w

