
Select(S,k)

S a set of n keys, k less than n is the rank of

item (kth smallest) to be selected and

returned.

0. if | S |≤ 5 return direct solution for kth elt

of S.

1. Divide keys into sets of five each, find

median of each. Call set of medians M. (See

Fig (a)).

2. m* = Select(M, d| M | /2e)
m* the median of medians (Fig. (b)).

3. Partition: Compare each key in sections A

and D of Fig (b) to m*.

S1 = C∪ { keys from A ∪D smaller than m* }
S2 = B∪ { keys from A ∪D larger than m* }

1

4. Divide and Conquer:

if (k =| S1 | +1) return m* as kth-smallest.

elseif (k ≤| S1 |) return Select(S1, k).

else return Select(S2, k− | S1 | −1).

2

ANALYSIS of Selection

W(n) is number of key comparisons in worst

case with n keys. Assume n = 5(2r + 1) for

some r. Counts per step:

1. Medians of all sets of five keys: 6(n/5),

since if you’re clever can find median of 5

with 6 comps.

2. Recursion: W(n/5) comparisons.

3. Compare all section A and D keys to m*:

4r comparsions.

4. Divide and conq. W(7r+2).

3

In worst case, all 4r keys in A and D will be

on same side of m* (all > m∗ or < m∗). B

and C have 3r + 2 elements.

n = 5(2r + 1), so r ≈ n/10. Thus

W (n) ≤ 1.2n + W (0.2n) + 0.4n + W (0.7n)

= 1.6n + W (0.2n) + W (0.7n).

4

W (n) = 1.6n + W (0.2n) + W (0.7n)

Unequal-sized subproblems so Master theorem

no good. But recursion tree shows row-sums

are decreasing geometric series whose ratio is

0.9. Total is Θ of the largest term, so Θ(n).

16n minus a small number is correct then for

this algorithm. The original presentation of

the algorithm had improvements that

dropped it to 5.5n and the best

median-finding algorithm now does about 3n

comparisons worst case.

5

LOWER BOUND FOR MEDIAN-FINDING

E a set of n distinct keys, n odd. we want

(n + 1)/2th key. Algorithm must know

relation of all other key to median. It needs

to establish relations as in Figure.

6

THE GRAPH

Has n nodes, so n− 1 arcs, so n− 1

comparisons must be done. But can an

adversary hurt us worse?

A Crucial Comparsion for x is a comparison

involving key x if it is the first comparison

foere x > y for some y ≥ median, or x < y for

some y ≤ median. Comparison of x and y

where x > median and y < median are

noncrucial (tell us nothing).

The relation of y to median is not necessarily

known at time of comparison with x. Crucial

comps establish the relation of x to median.

7

The adversary wants us to make noncrucial

comparisons. She chooses some value (not a

particular key) to be median. She assigns a

value to a key when the algorithm first uses

that key in a comparison, and as long as

possible she’ll assign values so as to put keys

on opposite sides of median, so we learn

nothing. She can’t assign values > median for

more than (n− 1)/2 keys, ditto with smaller.

8

HER ADVERSARIAL STRATEGY

Let status of key be:
L: assigned a value > median.
S: assigned a value < median.
N: not yet been in comparison.

COMPARANDS ADVERSARY ACTION
======================================
(N, N) Make one key > median, other <.
(L, N), (N, L) Assign a value < median to N key.
(S, N), (N, S) Assign a value > median to N key
—————————————
(L,L), (S,S) Correct response based on values.
(S,L), (L,S) Correct response based on values.

If there are already (n− 1)/2 keys with status
S or L, she must ignore rules and put all new
keys into L (or S). When only one N key
remains, it gets the value median.

All the comparisons above the line table are
noncrucial.

9

HER ADVERSARIAL STRATEGY CONT.

How many noncrucial comparisons does this

strategy force?

Each creates at most one L-key, at most one

S key. So adversary can continue until she

fills up one side or other: until there are

(n− 1)/2 L-keys or S-keys, so she can force

(n− 1)/2 noncrucial comparisons.

Since the algorithm can start out with

(n− 1)/2 (N,N) comparisons, she can’t

guarantee any more than (n− 1)/2 noncrucial

ones.

SO... number of comparisons is at least n− 1

(crucial) + (n− 1)/2 (noncrucial), or

C(n) = 3n/2− 3/2.

10

Actually this adversary is not the worst. The

lower bound has crept up to 1.75− logn, to

about 1.8n, and the best lower bound now is

slightly above 2n. There’s a gap between the

best known lower bound and the best

algorithm.w

