
THE CRAMER-SHOUP ENCRYPTION SCHEME

NATHANIEL T. WILLIAMS

CSC290 Final Project

Prof. Chris Brown

1. INTRODUCTION

The Cramer-Shoup cryptosystem was first described in 1998 by Ronald Cramer
and Victor Shoup[CS98]. It is essentially an extension of the ElGamal system, with
the addition of a hashing function and extra computations, rendering it provably
secure versus adaptive chosen ciphertext attacks.

I have written the basic elements of an implementation of Cramer-Shoup in
Perl, and will address the specifics of that later. What prompted this project in
the first place was the fact that despite Cramer-Shoup having addressed supposed
flaws in ElGamal, it has not seen any sort of significant adoptation in the 8 years
since its proposal.

2. GOALS AND CONCERNS

First and foremost, I set out to write what I guess you might call a “toy” imple-
mentation of Cramer-Shoup. To put it mildly, I did not expect to write anything
even remotely usable. Rather, I just wished to understand the practical issues of
the scheme, and how we go about handling them.

I also had the idea that I would possibly be able to expound on some of the
theory behind Cramer-Shoup’s improvements over ElGamal. However, to do this
in any adequate sense proved to be somewhat more than I was capable of. Proofs
of security based on statistical simulations and abstract probabilistic spaces shall
continue to vex me for at least a little while longer.

However, even without having to get too deep into any of the proofs, there was
one thing that seemed apparent. I suppose it should be, as it is summed up in this
theorem from [CS98], page 9:

Theorem 1 The above cryptosystem is secure against adaptive chosen
ciphertext attack assuming that (1) the hash function H is chosen from a
universal one-way family and (2) the Diffie-Hellman decision problem is
hard in the group G

Date: December 19, 2006.
1

2 NATHANIEL T. WILLIAMS

This may be a slightly too cynical interpretation, but it seems to me that Cramer-
Shoup is just ElGamal with hashing tacked on to it. Granted, its done in a nice way
and all, but I can understand why almost every description of it uses the phrase
“extension of ElGamal”.

But essentially, all of this provable niceness and security depends entirely on
the strength of your hashing function. Given the necessity of hashing onto an
arbitrary group, I can see how this might be something worth being concerned
over. They do, however, suggest in [RS03] that SHA-1 might be sufficient to satisfy
their theorem, “in practice, one might simply use SHA-1 directly, without a key —
it is not unreasonable to assume that this already satisfies our definition of target
collision resistance”.

Another issue that much of the literature glosses over is your choice of the
group G. For instance, in the above theorem, it is all too easy to take the sec-
ond part for granted and not worry about Diffie-Hellman. But just as part one
depends on the hash function, part 2 depends on your choice of group, something
I found to be much more confusing than expected.

Section 4.2 in [RS03] discusses schemes for finding suitable groups over which
elements can be easily computed, and elements of Z∗

p can be encoded. In particu-
lar, they mention a scheme involving Sophie Germain primes, that is, subgroups
of Z∗

p of order q, such that p = 2q + 1. However, when I actually sat down to write
the code for finding these primes, things didn’t work so well.

You may notice that as it is now, the primes that I am generating in my imple-
mentation are only 128 bits. The reason for this, I think, is that one of the math or
arbitrary precision packages that I am using is doing something for which the time
required goes up very steeply. I initially tried to first find Sophie Germain primes
and construct the group that way, but I found that what I thought was a very sim-
ple algorithm was taking non-trivial lengths of time for numbers with only 4 or 5
digits (around 12-18 bits). Past around 128 bits, any operation past simple arith-
matic or modding became seemingly impossible. For finding the generators g1

and g2, I did occasionally have slightly better luck when I merely incremented p

instead of generating a random new one, but it was still unusable. I honestly don’t
know if it was a problem with the packages, or the way I was going about using
them. But, I do not think that only using a 128 bit prime with affect any of this
project’s deep educational value.

3. IMPLEMENTATION

The program itself consists of three subroutines: keygen, encrypt, and decrypt.
The first generates suitable random numbers and computes the corresponding

THE CRAMER-SHOUP ENCRYPTION SCHEME 3

group elements as described. All the elements for the public and private key are
returned and the public key, along with a message is passed to the encrypt.

It is worth noting that the ciphertext is about four times as large as the corre-
sponding plaintext. Large ciphertext was the complaint I saw the most often about
ElGamal, and this is twice again as big as that. However, I don’t think this is re-
ally a huge factor, as any “serious” implementation would be a hybrid one, where
the asymmetric system is just used to encrypt the key for a symmetric one. DES
keys are not that large, so the increased size would probably only be an issue in
pathological cases like embedded systems on smart cards or the like.

The step that I thought was the strangest was at the end, when it says to test
whether ux1+y1α

1 ux2+y2α
2 = v. If they are not equal, then the decryption wouldn’t

work, as in it would spit out gibberish. The fact that they are not equal does not
tell us anything that we wouldn’t be able to infer from a nonsense output.

4. SOURCE CODE

1 #!/usr/bin/perl

an investigation of the Cramer-Shoup encryption scheme

by Nat Williams

CSC290A

6

use Crypt::Random qw(makerandom_itv);

use Math::BigInt lib => ’GMP’;

use Crypt::Primes qw(maurer);

use Bit::Vector;

11 use Digest::SHA1 qw(sha1_hex); #160 bit hash

use Math::Prime::XS qw(is_prime);

use Crypt::Random qw(makerandom_itv);

use Math::Pari qw(:DEFAULT :number :conversions);

16

0 1 2 3 4 5

PublicKey = (g1,g2,c,d,h,p) (I’m leaving the hash out, assume sha1)

#

PrivateKey = (x1,x2,y1,y2,z,p)

21 #

annoyingly, perl flattens out arrays in subroutine input and output

($pub[0], $pub[1], $pub[2], $pub[3], $pub[4], $pub[5], $priv[0], $priv[1], $priv[2],

$priv[3], $priv[4],$priv[5]) = keygen();

26 #chomp($pt=<STDIN>);

$pt = "444444444444444444444444444444";

print "\nPublic Key:\n";

print "g1 = ",$pub[0],"\n";

31 print "g2 = ",$pub[1],"\n";

4 NATHANIEL T. WILLIAMS

print "c = ",$pub[2],"\n";

print "d = ",$pub[3],"\n";

print "h = ",$pub[4],"\n";

print "p = ",$pub[5],"\n";

36 print "\nPrivate Key:\n";

print "x1 = ",$priv[0],"\n";

print "x2 = ",$priv[1],"\n";

print "y1 = ",$priv[2],"\n";

print "y2 = ",$priv[3],"\n";

41 print "z = ",$priv[4],"\n";

print "p = ",$priv[5],"\n";

and p is priv[5]

@ct = &encrypt($pt,@pub);

46 print "\nCiphertext:\n";

print "u1 = $ct[0]\n";

print "u2 = $ct[1]\n";

print "e = $ct[2]\n";

print "v = $ct[3]\n";

51

$m = &decrypt(@ct,@priv);

print "\n";

56 print "original plaintext: $pt\n";

print "D(E(pt)): $m\n";

sub keygen { #generate a key, oddly enough

61 # any bigger than this seems to freeze the program

I don’t know if it is a problem with one of the

packages I’m using, like PARI, or one of my "algorithms",

but go much higher, and the program just sits there using

about 90% CPU

66 my $p = Math::BigInt->new(maurer(Size => 128));

my $g1 = Math::BigInt->new(makerandom_itv(

Lower => 2,

Upper => $p-1,

71 Uniform => 0));

but who will generate the generators?

until(znorder(Mod($g1,$p))==($p-1)) {

$g1 = Math::BigInt->new(makerandom_itv(

76 Lower => 2,

Upper => $p-1,

Uniform => 0));

}

81 $g2 = Math::BigInt->new(makerandom_itv(

Lower => 2,

Upper => $p-1,

Uniform => 0));

THE CRAMER-SHOUP ENCRYPTION SCHEME 5

until(znorder(Mod($g2,$p))==($p-1)) {

86 $g2 = Math::BigInt->new(makerandom_itv(

Lower => 2,

Upper => $p-1,

Uniform => 0));

}

91 # g1 and g2 with order p-1 ˆˆˆ

random elements in Z_p

96 my $x1 = Math::BigInt->new(makerandom_itv(

Lower => 1,

Upper => $p-1,

Uniform => 1,

));

101

my $x2 = Math::BigInt->new(makerandom_itv(

Lower => 1,

Upper => $p-1,

Uniform => 1,

106));

my $y1 = Math::BigInt->new(makerandom_itv(

Lower => 1,

Upper => $p-1,

111 Uniform => 1,

));

my $y2 = Math::BigInt->new(makerandom_itv(

Lower => 1,

116 Upper => $p-1,

Uniform => 1,

));

my $z = Math::BigInt->new(makerandom_itv(

121 Lower => 1,

Upper => $p-1,

Uniform => 1,

));

126 my $c = $g1->copy()->bmodpow($x1,$p)->bmul($g2->copy()->bmodpow($x2,$p))->bmod($p);

my $d = $g1->copy()->bmodpow($y1,$p)->bmul($g2->copy()->bmodpow($y2,$p))->bmod($p);

my $h = $g1->copy()->bmodpow($z,$p);

131 return ($g1,$g2,$c,$d,$h,$p,$x1,$x2,$y1,$y2,$z,$p);

}

sub encrypt{

136

my $m = Math::BigInt->new($_[0]);

6 NATHANIEL T. WILLIAMS

my $g1 = Math::BigInt->new($_[1]);

my $g2 = Math::BigInt->new($_[2]);

my $c = Math::BigInt->new($_[3]);

141 my $d = Math::BigInt->new($_[4]);

my $h = Math::BigInt->new($_[5]);

my $p = Math::BigInt->new($_[6]);

my $r = Math::BigInt->new(makerandom_itv(

146 Upper => $p-1,

Lower => 1,

Uniform => 1,

));

151 my $u1 = $g1->copy()->bmodpow($r,$p);

my $u2 = $g2->copy()->bmodpow($r,$p);

my $e = $h->copy()->bmodpow($r,$p)->bmul($m)->bmod($p);

this isn’t my proudest coding moment here...

the sha1 function outputs hex, which then goes into a

156 # Bit::Vector, which outputs decimal, into a BigInt.

kind of gross.

my $foo = Bit::Vector->new_Hex(160,sha1_hex("$u1$u2$e"));

my $alpha = Math::BigInt->new($foo->to_Dec())->bmod($p);

my $v = $c->copy()->bmodpow($r,$p);

161 #print "v first stage = $v\n";

my $foo = $d->copy()->bmodpow($r->copy()->bmul($alpha),$p);

#print "foo = $foo\n";

$v->bmul($foo);

#print "v after mult = $v\n";

166 $v->bmod($p);

#print "v after mod = $v\n";

return ($u1,$u2,$e,$v);

171 }

sub decrypt() {

my $u1 = $_[0];

176 my $u2 = $_[1];

my $e = $_[2];

my $v = $_[3];

my $x1 = $_[4];

my $x2 = $_[5];

181 my $y1 = $_[6];

my $y2 = $_[7];

my $z = $_[8];

my $p = $_[9];

186 my $alpha = Math::BigInt->new(Bit::Vector->new_Hex(160,sha1_hex("$u1$u2$e"))->to_Dec

())->bmod($p);

my $ex1 = $alpha->copy()->bmul($y1)+$x1;

my $ex2 = $alpha->copy()->bmul($y2)+$x2;

THE CRAMER-SHOUP ENCRYPTION SCHEME 7

my $foo = $u1->copy()->bmodpow($ex1,$p)->bmul($u2->copy()->bmodpow($ex2,$p))->bmod(

$p);

191 if ($foo->bcmp($v) != 0) {

print "foo doesn’t match v, something is wrong.\n";

}

else {

my $m = $e->bmul($u1->copy()->bmodpow($z,$p)->bmodinv($p))->bmod($p);

196 return $m;

}

}

REFERENCES

[BJN00] Dan Boneh, Antoine Joux, and Phong Q. Nguen, Why textbook elgamal and rsa encryption are

insecure, Advances in Cryptology—ASIACRYPT 2000 (Tatsuaki Okamoto, ed.), LNCS, no.

1976, Springer, 2000, pp. 30–43.

[Bon98] Dan Boneh, The decision Diffie-Hellman problem, Algorithmic number theory, LNCS, vol.

1423, Springer, 1998, pp. 48–63.

[BS99] Mihir Bellare and Amit Sahai, Non-malleable encryption: equivalence between two notions, and

an indistinguishability-based characterization, Advances in cryptology—CRYPTO ’99, LNCS,

vol. 1666, Springer, 1999, pp. 519–536.

[Buc01] Johannes A. Buchmann, Introduction to cryptography, Springer, 2001.

[CP05] Richard Crandall and Carl Pomerance, Prime numbers: a computational perspective, second

ed., Springer-Verlag, 2005.

[CS98] Ronald Cramer and Victor Shoup, A practical public key cryptosystem provably secure against

adaptive chosen ciphertext attack, Advaces in Cryptology—Crypto ’98, LNCS, vol. 1462,

Springer, 1998, pp. 13–25.

[CS02] , Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key

encryption, Advances in cryptology—EUROCRYPT 2002, LNCS, vol. 2332, Springer, 2002,

pp. 45–64.

[Gro05] Jens Groth, Cryptography in subgroups of Z∗n, Second Theory of Cryptography Conference,

TCC 2005 (Joe Kilian, ed.), LNCS, no. 3378, Springer, 2005, pp. 50–65.

[MSVV05] Consuelo Mart́inez, Rainer Steinwandt, Marı́a Isabel González Vasco, and Jorge L. Villar, A

new cramer-shoup like methodology for group based provably secure encryption schemes, Second

Theory of Cryptology Conference, TCC 2005 (Joe Kilian, ed.), vol. 3378, Springer, 2005,

pp. 495–509.

[RS03] Ronald and Victor Shoup, Design and analysis of practical public-key encryption schemes secure

against adaptive chosen ciphertext attack, SIAM Journal on Computing 33 (2003), no. 1, 167–

226.

[Sch96] Bruce Schneier, Applied cryptogaphy, second ed., John Wiley & Sons, 1996.

[Sho92] Victor Shoup, Searching for primitive roots in finite fields, Mathematics of Computation 58

(1992), no. 197, 369–380.

[Sho01] , Using hash functions as a hedge against chosen ciphertext attack, Advances in

Cryptology—Crypto 2001, LNCS, vol. 1807, Springer, 2001, pp. 239–259.

[SJ00] Claus Peter Schnorr and Markus Jakobsson, Security of signed elgamal encryption, Advances

in Cryptology—ASIACRYPT 2000 (Tatsuaki Okamoto, ed.), LNCS, vol. 1976, Springer,

2000, pp. 73–89.

