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An Implementation of Chaum's Voter Verifiable Voting System

Background and Motivation

Electronic voting machines are in use around the world. One goal of developing an electronic 

voting system is to allow voters to verify that their votes are counted without revealing or giving them 

proof of who they voted for. This second condition is to prevent vote buying, where a voter is paid to 

vote for a particular candidate. Electronic systems are prone to failure and many don't have a way for a 

voter to be sure that their vote is counted. It may not be possible to correct a mistake or even detect if 

one was made. Another vulnerability of electronic voting machines is that an error, either intentional or 

unintentional, can cause damage on a large scale. Since electronic systems are more prone to failure 

either accidentally or on purpose and this failure can happen on a large scale, it is preferable to use one 

where the results can be verified by voters. Since electronic machines are being used, they can perform 

mathematical computations, for example using public key cryptography, to ensure that votes are only 

readable by a set of Trustees, but pieces of the vote can be published later. A voter may compare a 

receipt or piece of her vote to information published on a website to be sure that her vote was counted.

Prior Work

Rivest describes a system where the voter casts three ballots, voting for her candidate twice and 

for everyone else once (2006). The voter leaves with a copy of one ballot, which cannot be used to 

determine who she voted for, so all of her ballots can be posted on a website. Even though she does 

not have direct evidence of who she voted for, there may be enough ways to fill out her ballot that all 

three ballots posted on the website are unique. She can agree ahead of time how to fill out the ballots 

and use the posted results as evidence of her votes. This demonstrates the difficulty of designing a 

system that keeps votes private, while still being verifiable. A solution to this problem is to have the 

voter vote on an electronic machine that prints out the three ballots with marks distributed randomly. 

The voter can verify that there are two marks for her candidate and one for the others as before.

If an electronic voting machine must be used, it may be better to use one that gives some 

computational security to the voters' votes. Chaum describes a verifiable voting system where each 



vote is printed on two layers (2004). The voter can see that the layers create a readable vote when 

viewed together, and she destroys one layer. The other layer is retained electronically and by the voter. 

Its information is secure because it is encrypted by a onetime pad. This half of the ballot can be 

decrypted securely because the seeds to a random number generator used to generate the onetime pad 

are encrypted used the public keys of a set of trustees. These trustees must decrypt the ballot in a 

particular order using their private keys. The interesting part of Chaum's system is how an error in 

generating the initial two layers can be detected, and half of the process of the trustees decrypting the 

receipts is revealed along with all of the partially decrypted receipts at each step. The revealed links 

between the ballots at each decryption step can verify the decryption, but that ballot cannot be traced 

further in either direction.

Vora explains Chaum's system with examples of how receipts are verified and decrypted (2004).

Voting Procedure

The people involved in the voting procedure are the Voter and Trustees. The Voter casts a vote 

and verifies that it is correctly computed. The Trustees maintain the privacy of the Voter's vote. Each 

trustee has a public and private key. There is also a voting machine, which has two public and private 

key pairs.

The ballot is printed as two layers, and the optical sum of these layers form the ballot. One of 

these two layers, which the voter chooses after they are printed, becomes the voter's receipt. The voter 

leaves the polling station with the receipt. After the voter chooses which layer is her receipt, additional 

information is printed on it. This additional information can be used to verify that the layer was 

generated correctly, but it cannot be used to decode the vote. Before Alice leaves the polling station, 

she destroys the layer she didn't choose using a paper shredder. Any electronic copy of this layer is also 

destroyed.

The voter, Alice, walks up the the voting machine and enters her vote. She votes for Lincoln. The 

machine then prints out the two transparent layers together. Alice can read the name Lincoln through 

the two layers. The machine then asks Alice which layer she would like to keep. Alice may choose either 

the top or bottom layer. Additional information is printed on the layer she chooses. Some of this 

information is encrypted so the Trustees can decrypt the receipt into the ballot, and other information 

allows Alice or someone else to verify that her layer of choice was generated correctly. 



Sum of the top and bottom layers

Between the two layers, half of the pixels represent Alice's vote and the other half are random. 

This is also true of the pixels on each individual layer. This forms the equivalent of a one-time pad 

since, given one layer, all possible sums are equally likely. Half of the pixels on each layer are 

generated by a pseudo-random number generator from two seeds, one seed for each layer. The non-

random pixels on each layer are determined by the corresponding random pixel on the opposite layer 

and by the voter's ballot. As with a one-time pad, a pixel on the top layer “added” to a pixel on the 

second layer to form the voter's original ballot. Normally, the XOR operation is used to add each half of 

a one-time pad together. The works fine for a computer, and it is how the Trustees will later decrypt 

the ballot electronically, but for Alice to be sure that the layers sum to her ballot, they must be added 

optically, when 1 + 1 = 1. Visual cryptography can be used to visually implement the XOR operation.
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Visual Cryptography Between 2 Layers

Visual cryptography was introduced in 1994 by Naor and Shamir. Each pixel is represented as 

four subpixels in a square. Two of the subpixels are clear, and the other two are black. The combination 

of subpixels used to represent a white pixel are the opposite of the subpixels used to represent a black 

pixel. When two of the same pixels are overlaid, the result is a clear pixel made up of two clear 

subpixels and two black subpixels, and when two different pixels are overlaid, the result is a black pixel 

made up of four black subpixels. With this implementation, 1 + 1 = 0 because each 1 is represented by 

the same four subpixels.

Visual cryptography was easy to implement because it relied mostly on the abstraction of a 

Layer. Layers can be combined through either an XOR or an OR operation. Converting a layer that can 

be used in visual cryptography from a normal layer just involves creating four new pixels for each 

existing pixel.



Top Layer

Bottom Layer

Overview of Decrypting the Receipt

The random pixels on each layer are arranged in a checkerboard pattern. The Trustees decrypt 

the receipt by decrypting the destroyed layer's seed and generating the destroyed layer's random 

pixels. The Trustees combine this information with the non-random pixels on the receipt to produce half 

of the original ballot. This half of the original ballot is in the checkerboard pattern; every other pixel is 

recovered. The other half of the pixels cannot be recovered because that half's non-random pixels were 

on the destroyed layer.

Recovered ballot; half of the original

Since half of the pixels of each letter are lost, a special redundant font must be used. No two 

letters can differ by only one pixel because that pixel will be lost in half of the decrypted ballots. Any 

pair of letters must differ by at least two pixels that are an odd Manhattan distance away from each 

other. The letters in my implementation are based on an example ballot by Chaum. An example of 

redundancy is the dot at the top of letter “i”, which is represented by two adjacent pixels. At least one 

of these pixels will appear in every decrypted ballot.



Overview of Verifying the Accuracy of the Receipt

After Alice leaves the polling place with her receipt, she or a third-party can verify that it was 

generated correctly. Information on the receipt allows Alice to verify that the random numbers were 

generated correctly and that the information given to the Trustees was encrypted correctly. If the 

voting machine made a single error, Alice has a ½ chance to detect it because there is a ½ chance that 

the mistake is on the layer she chose.

For every error that is made by the voting machine, there is a ½ chance that it will be detected. 

If two errors are made, there is a 75% chance that at least one of them will be detected. Errors will be 

detected even if only a small fraction of the receipts are checked because each checked receipt halves 

the chance of all errors going undetected. To make receipt-checking easier, third-party groups can 

collect receipts from voters as they leave the polling station. The additional information on each receipt 

would be stored as a bar code. The public keys of the Trustees and the voting machine are needed to 

check all of data available.

When implementing receipt checking, I checked that the machine's signature of the receipt's id 

number was valid. I was not able to check that the seed corresponding to the chosen layer was 

encrypted correctly because of random padding used when encrypting with RSA. The two encryptions 

were always different. One other check that is possible to perform is checking that the random pixels on 

the chosen layer where correctly generated from the hashed signature.

Details on Decrypting the Receipts

To decrypt a receipt, a Trustee needs only the encrypted seed and the graphical part of the 

receipt (the pixels). Before the seed is encrypted, it is generated by the voting machine using an id 

number on the receipt. This id number is signed by the voting machine and run through a hash 

function: seed = hash(sigchosen(id)). This hash allowed me to encrypt the seed because the length of the 

output of the hash function is smaller than the length of the signature. Java uses 1024 bit keys for RSA, 

but only allows encryption of up to 936 bits. It provides a separate abstraction for signatures. The 

signature is used to sign the id so that only the voting machine can encrypt ballots. This is important 

because the receipts and decrypted ballots are published and someone should not be able to encrypt 

and trace ballots backwards through the decryption process. There should be no way to link the ballots 



with the receipts. To encrypt ballots, you need the voting machine's private key. To decrypt receipts, 

you need the Trustee's private key.

Although my implementation uses only one Trustee, Chaum's voting procedure allows for 

multiple Trustees. The voting machine generates one seed for each Trustee. The receipt is the result of 

adding the random pixels generated from each seed together along with the ballot, so each trustee can 

add his decryption to the previous trustee's partial decryption before passing his partial decryption onto 

the next Trustee. Each Trustee has a different public and private key.

Chaum ensures that the seeds are decrypted in a particular order by encrypting the last 

Trustee's seed with the second to last, with the third to last, and so on. The result is a single “Doll” that 

can be given to the first Trustee. Chaum uses an analogy of Russian dolls to describe the encryption 

because the first doll contains both the first seed and the second doll. Within the second doll is the 

second seed and the third doll and so on. By ensuring an ordered decrypted process, parts of the 

decryption process can be randomly revealed to prove that no trustee is changing the results. It would 

otherwise be easy for a trustee to change the results because the decrypted ballot is the result of a 

simple XOR operation, which is very predictable and any Trustee would have full control over the 

results. It is fine to assume that the Trustees know the private key that the voting machines use to sign 

the id numbers of each receipt.

Auditing the Decryption Process

Chaum describes how half of the decryption process can be revealed without revealing the path 

of any one vote from start to finish. Each Trustee can process two adjacent seeds and shuffle the order 

of the receipts for each processing operation. After the decryption process is complete, a third-party 

can specify half of the links between the first and second to be revealed. The opposite set of links are 

revealed for the second operation.



   Original Intermediate Sent to next Trustee

Two Decrypting Operations per Trustee

By revealing some links between stages of decryption in pairs, some ballots are still more likely 

to be associated with some receipts. To counter this, Chaum explains how each Trustee can perform 

four decryption operations to preserve the privacy of all of the ballots. A third-party specifies which 

links between the first and second set (the first decryption operation) should be revealed and the rest 

follows. The links revealed for the second operation are the complement of the first. The links for the 

third operation are half of those from the first and half of those from the second. The links for the 

fourth and last operation are the complement of those revealed for the third.

Original    Sent to Next Trustee

Four Decrypting Operations per Trustee

Details on Verifying the Receipt

Information on the receipt:



Chosen Layer (pixels)

id

Encrypted hash(sigtop(id))

Encrypted hash(sigbottom(id))

sigchosen(id)

sigchosen(everything above)

The receipt contains these 6 pieces of information. The first four pieces of information are 

printed before the voter has chosen which layer to keep, so the voting machine is committed to their 

values. sigchosen(id) is the voting machine's signature of the id with one of its two private keys. When 

hash(sigchosen(id)) is encrypted with the Trustee's public key, it should equal one of the two seeds that 

the voting machine encrypted. hash(sigchosen(id)) can also be used to generate the random pixels on the 

chosen layer, which should match the random pixels on the receipt. With multiple trustees, one of the 

two Dolls would be computed instead of the encrypted hash(sigchosen(id)).

Analysis

An advantage of Chaum's voting procedure is that the Trustees are accountable for decrypting 

the votes. The voter can also check to see if her receipt was among those decrypted. It would appear in 

the first set of receipts to be decrypted. The procedure balances voter privacy against accountability 

using probability. Every error has a ½ chance of being detected.

A possible disadvantage of Chaum's voting system is that errors may not be correctable if they 

are caught once decryption has begun. Key management is another issue. After the private keys on the 

voting machine are used they are no longer needed, but the Trustees must still maintain their private 

keys from when the voting machines are initialized to when the votes are decrypted. Chaum states that 

using secret sharing, it is possible for decryption to proceed without all of the Trustees present. Another 

issue is that voters must believe that their receipt does not contain enough information for anyone but 

the Trustees to determine their ballot, but only a small percentage must be willing to give up their 

receipts for the verification process to be successful.

Conclusion

Chaum's voting procedure succeeds at balancing accountability with voter privacy. It is not 



possible for a voter to prove who she voted for, but any error in either generating the receipt or 

decrypting the receipt can be detected with a ½ probability. The procedure's use of a one-time pad 

means that some parts of the voting system would remain secure as technology improves. The part of 

the system's security that is based on computation uses public key encryption, which is well-understood 

and used in many applications today. Most importantly, Chaum shows that a voter does not have to 

trust either the voting machine or even the Trustees when using electronic voting machines.
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