
Cracking the NitNat Cipher
Liam Rafferty

Introduction

The Nit Nat Cipher has alluded cracking from Prof. Brown and previous

students for 30 years. Brown's method of acquiring the enciphering program is a

testament to the Kerchoff Principle, as well as an intriguing story which can be viewed at

http://www.cs.rochester.edu/u/brown/Crypto/assts/projects/challenge.html . But, as with

all ciphers not equivalent to a one time pad, it is flawed.

Quite simply, the Nit Nat Cipher shifts the last six bits of each character

according to a key, clearly surmised from NitNat.pl which can be viewed on Brown's

page linked to above. The first two bits of the byte, of course, do not effect the regular

alphabet, and they're masked out in Brown's recreation of the code in order to avoid

special characters. Also, a cursory view of these six bits in the English will show that A is

000001 and a is 100001. And the capital letters in the alphabet have a 0 in that first of six

position, whereas the lower case letters have a 1, and are otherwise the same. Clearly a

secret message can be read with out proper capitalization, so we can essentially throw out

this capitalization bit. (Also, a computer would have to be able to do an rather

complicated grammatical analysis to be able to know if a message was properly

capitalized, a task more easily performed by a human).

There are five bits left, and from hereon in, the will be referred to as the

first, second, third, fourth, and fifth bits. Each of the shifts can be as long as the message,

the length of the message shall be referred to as “n” from hereon in. Therefore, the

keyspace is n^5. For small n, a brute force attack may be viable. But since the Nit Nat

Cipher's keyspace deviously grows larger with the length of the message, the size of the

keyspace quickly becomes larger than any encountered before in this course, save the one

time pad. The astute reader may notice that the keyspace is really only n^4 since there are

n elements in the keyspace which will yield the plaintext shifted by a constant. (And of

course, a computer would have a hard time finding where the beginning of a message

should be.) So in any method, one of the bits, say the first one, should be fixed and then

the others shifted against it. There still remains a mighty large keyspace.

The chosen plaintext attack is obvious and the algorithm for it is simple. The

known plaintext attack is also obvious, but turns out to be extremely expensive. The

ciphertext only attack, the main result of this report, uses a divide and conquer technique

using a bitwise index of coincidence.

In this course, an index of coincidence proved to be a fatal blow to the

Vigenere Cipher. It allowed the cracker to use statistical knowledge about English on the

ciphertext to determine the keylength without having to decipher anything. There is a

similar statistical knowledge about the bits in English which allows the cracker to

determine each part of the key without being concerned about finding the others. This

analysis proves to be particularly devastating to this seemingly strong cipher.

Disscussion and Analysis

The first, and easiest, attack performed on any cipher is the chosen plaintext

attack. To ferret out the key with clever input, the cracker can give the Nit Nat method a

11111111 followed by lots of nulls. After the encipherment the cracker has only to

examine how far each 1 went to get the key.

The second attack usually examined is a known plaintext attack. The known

plaintext attackis usually easier than a ciphertext only attack, but the Nit Nat Cipher

seems to shield itself from such analysis.

The cipher text given by Brown is entitled MarxCipherText. Perhaps a

politically/economically savvy cracker could guess that the word “bourgeoisie“ was in

the text. The first bits of this word are “0 0 1 1 0 0 0 0 1 0 0” in order for a known

plaintext attack to work, every instance of this string of 1's and 0's in the first bit would

have to be found and matched with every instance of the comparable string in the second,

and so on. The number of times this string appears in the first bit is clearly bounded

below by the number of times the word “bourgeoisie” is used, but unfortunately it seems

that it can happen relatively often randomly. Let p1 be the percentage of 1's in the first

bit, and p0 be the percentage of 0's, statistically, the percentage of the text identical to the

given string would be (p0)^8*(p1)^3 (there are 8 zeros and 3 ones). The resulting

probability of this strings occurence is .0016 . Perhaps this seems small, if the text was

only 10,000 characters long, the it would only happen 16 times, but it can not be ignored.

The probability for the second bit's string is .00072, the third bit's string is .00047, the

fourth bit's string is .00019, and the fifth bit's string is .0003. Therefore, the complexity of

comparing all of them is each of their probabilities times n multiplied together, which

turns out to be 3.11*10^-7 * n ^5. Although this constant coefficient seems small,

O(n^5) is still O(n^5). Interestingly, since we don't get to fix one of the bits as we did in

the brute force attack, the known plaintext attack is O(n^5) and the brute force attack is

O(n^4), the known plaintext attack is more complex than the brute force attack!

The skyrocketing keyspace and being well shielded from known plaintext

attacks may make the Nit Nat Cipher seem uncrackable, but it preserves some statistically

useful information about English.

The bitwise percentages of 1's in some plaintext and the MarxCiphertext

show that the statistical occurence of 1's is very similar:

Using these percentages, it is possible to calculate the likely hood of, say, the first bit

being 0 and the second bit also being 0. Comparing this to the actual occurence of a 00

case in English shows that there is quite a difference in probabilities.

The four cases: 00, 01, 10, 11, can be put into a vector for the random case and the

statistical analysis of English. The difference between these vectors, if large enough, can

be used to identify English from all the other possible shifts of the first bit against the

second bit.

� � � � ���� ���
��� � �
��� � �
��� �	�
��� � �
��� ���
��� � �
��� ���
��� � �
��� �
�
��� � �

������������������������� "!
#$�%�'&(�*)��+��,.-"!/&0���(1324�5�76�89-;:�&����$�<�+6=�

>@?BADCFE GIH
J E KDHILNM"OPLRQ
O

S�- �

TVUW
XU
YZ [
\U

There is no theoretical reason why one bit should be better to compare with

another, so all the possible combinations were analyzed and are shown in the following

graph:

 The data indicates that the second and fourth bits should be compared to the first, and the

third and fifth bits should be compared to the second. Such an analysis will yield the key

]@]]=^ ^_] ^	^`�a `�`
`�a `cb
`�a"^d`
`�a"^	b
`�a e�`
`�a ecb
`�aFf	`
`�aFf�b
`�a g�`
`�a g
b
`�aFb	`

hjilknmpolqcr$s�tvuxwpy{z|r}q�~/u�ols����9y��ils�����r"uc~

���	�$������'�}�d� � �$�

��� ���

� ���
�
¡ ¢£�

¤ ¥ ¦ § ¨©
©
ª ©«¤
©
ª ©
¥
©
ª ©I¦
©
ª ©�§
©
ª ©I¨
©
ª ©x¬
©
ª ©R
©
ª ©
®
©
ª ©x¯
©
ªV¤
©
ªV¤x¤
©
ªV¤'¥
©
ªV¤�¦
©
ªV¤<§

°²±$³µ´x¶¸·º¹¼»¾½¿»�´ÁÀÂ»Ã»Ä·ÆÅÇ·|È¸É}±$³ºÊË¶Ì·ÎÍ¾ÏÐ¶Ì·|ÍÃÑÄÒÓ·|»¸³p³

Ô
Õ Ö�×ÙØ}Ú�Û=ÜÔ
Õ Ö�×ÙØ}Ú�Û@ÝÔ
Õ Ö�×ÙØ}Ú�Û�ÞÔ
Õ Ö�×ÙØ}Ú�ÛàßÔ
Õ Ö�×ÙØ}Ú�Û�á

â�ã ä

å æç
è éê
ëì íè îï
çæ

relative to the first bit. Notice the relative differences in vector distance, in particular how

small all the distances to 5 are.

These distances were entered into the findTheKey_old.pl and then 25 pieces

of text were chopped up and tried for every 100 characters as follows with the analysis.pl

method:

The astute programmer will notice that in the analysis program the text is never

enciphered, but the astute reader will realize that there's no need to. Every possible shift

against the fixed bit is tried so it matters not if it is shifted beforehand. Interestingly this

implies that the success of the method is independent of the key and relies solely on

plaintext chosen.

Clearly, the distance between the English and Random Vectors has a large

effect upon the ability to find the proper key. Finding the fifth key is particularly tricky.

But, even in the fifth position, the longer the text, the more accurate the key finding

ð ñ ò ó ô õ ö ÷ ø ð'ù ðIð ð�ñ ðcò ð	ó ðcô ð�õ ð�ö ð'÷ ð'ø ñ
ù ñúð ñIñ ñ«ò ñxó ñ«ô ñIõ ñBö ñI÷ ñIø
ù

ñ«ûüô
ô

öýûüô
ð'ù

ð'ñúûÙô
ðcô

ð�öDûÙô
ñRù

ñRñúûÙô
ñ«ô

þ ÿ ���������	��
������������������� �����
�� �"!$#%��� &$# �'�

(�) **+)-,(�) .*+)-/

02143652781:94;85=<�3:>�?@?

A-B
CDFEG
HI J
BK
KELL
H BM
HI N O
P GQ R
S L

algorithm.

How complex is this algorithm? It's main component makes n comparisons

n times for each two bits. So, naively, it's O(n^2). But it should be clear to the reader, that

there's no reason to make n comparisons, since a sufficiently large amount, say 10,000

would make the difference between English and randomness obvious (even less if we're

only concerned with the second compared to the first). Unfortunately, the 10,000

comparisons must be tried n times, since there's n possibilities for that relative key. But

O(n) is most likely as fast as any cracking algorithm could get.

The graph and the trials clearly show that the first and second bits are

relatively easy to match up. Perhaps a better method would match the first and second

bits, and then match the third, fourth and fifth with the two. The possibilities would be:

000, 001, 010, 011, 100, 101, 110, and 111. The relative distance between English and

Randomness of this comparison is add to the following graph:

T U V W XYY�Z Y T
Y�Z Y UY�Z Y V
Y�Z Y WY�Z Y X
Y�Z Y\[Y�Z Y^]
Y�Z Y'_Y�Z Y\`
YaZ TY�Z T\T
Y�Z TbUY�Z TcV
Y�Z TdW

e"fhgji'k�lnmporqsotibuvo�o�l�w�ltxzy{f|g~}�k�l�����k�ln������lno�gpg
���:���|���������$���:�������j�����% p¡£¢2��¤c�¦¥§ ~�

¨^© ª|«¬�®'¯±°¨^© ª|«¬�®'¯6²¨^© ª|«¬�®'¯´³¨^© ª|«¬�®'¯¶µ¨^© ª|«¬�®'¯8·¨^© ª|«¬�®'¯±°¶¸º¹d»¼²

½:¾ ¿ÁÀ

Â ÃÄ
Å ÆÇ
ÈÉ ÊÅ ËÌ
ÄÃ

The distance used to find the third and fourth bits is now comparable to the

accuracy had in finding the second relative to the first. The distance used to find the last

bit is now twice what it used to be, but the pesky fifth bit still creates problems. The

analysis using this method per length of text is shown as follows:

Although the accuracy of this method increases much more rapidly with

text, it is clear that some other method should be created to find the fifth bit since finding

the second, third and fourth are so much easier. And once the first four are fixed, shifting

the fifth will yield English, which is easily recognizable.

This method though, despite the fifth bit only being found at about 80% for

Í Î Ï Ð Ñ Ò Ó Ô Õ ÍaÖ Í¼Í Í�Î Í×Ï Í'Ð ÍØÑ Í�Ò ÍÙÓ ÍÚÔ ÍaÕ Î�Ö Î@Í Î¼Î Î8Ï ÎØÐ Î4ÑÖ
Î4Û¦Ñ
Ñ
Ó´Û¦Ñ
ÍaÖ
Í�Î4Û¦Ñ
ÍØÑ
ÍÙÓ´Û¦Ñ
Î�Ö
Î6Î4Û¦Ñ
Î8Ñ

Ü�ÝßÞàÞsáãâäâ åçæ�è£é�ê�ë£é+êßì í@îïá ðváòñ æ¼å�óõô÷ö"Þ�î øùö�óÚí

ú\û ü
ú\û üÚûý
ú\û üÚû þ
ú\û üÚûÿ

�����������
	�������������

���
���
���
�� �
� �
 !
"#%$&
�

the text length of the MarxCiphertext, did succeed in finding the key (the other method

did not) and the decrypted text is given in the results section of this report.

Conclusion

Perhaps the next logical step would be to have the program inform the user

how certain the key is. This could be done by saving the second lowest distance, and if

it's too close to the lowest, informing the user.

The findTheKey method seems to be rather efficient and accurate at the text

length challenged. And perhaps for the smaller values a brute force attack would be

viable.

In any case, the NitNat Cipehr was not nearly as uncrackable as it initially

seemed.

Methods

Following is the findTheKey method, the old method that used the first set of statistics is so similar, only
this one will be printed.

#!/usr/staff/bin/perl

use:
perl findTheKey.pl ciphertext

read the input file into a string
$input = getinput();

unpack input string to array
@arr = unpack("C*", $input);

how many chars is it?
$textlen = @arr;

$mask = 0x01;

my @stats;

$min1_2 = 1;
$min1_2_3 = 1;

$min1_2_4 = 1;
$min1_2_5 = 1;

for($i = 0; $i < $textlen; $i++){

 for($k=0; $k<4; $k++){
$stats[0][$k] = 0;

 }

 for ($byte = 0; $byte < $textlen ; $byte++)
 {

$one = $arr[$byte]>>4 & $mask;
$two = $arr[($byte+$i)%($textlen)]>>3 & $mask;

if($one == 0){
 if($two == 0){

$stats[0][0] += 1;
 }else{

$stats[0][1] += 1;
 }
}else{
 if($two == 0){

$stats[0][2] += 1;
 }else{

$stats[0][3] += 1;
 }
}

 }

 $dist = (($stats[0][0]/$textlen)-.419783992561333)**2+(($stats[0][1]/$textlen)-
0.311100779629497)**2+(($stats[0][2]/$textlen)-0.246629354123453)**2+(($stats[0][3]/$textlen)-
0.0224858736857163)**2;

 if($dist<$min1_2){
$min1_2 = $dist;
$index1_2 = $i;

 }

}

for($i = 0; $i < $textlen; $i++){

 for($j=0; $j < 3; $j++){

for($k=0; $k<8; $k++){
 $stats[$j][$k] = 0;
}

 }

 for ($byte = 0; $byte < $textlen ; $byte++)
 {

$one = $arr[$byte]>>4 & $mask;
$two = $arr[($byte+$index1_2)%$textlen]>>3 & $mask;
$three = $arr[($byte+$i)%($textlen)]>>2 & $mask;
$four = $arr[($byte+$i)%$textlen]>>1 & $mask;
$five = $arr[($byte+$i)%($textlen)]>>0 & $mask;

if($one == 0){
 if($two == 0){

if($three == 0){
 $stats[0][0] += 1;
}else{
 $stats[0][1] += 1;
}
if($four == 0){
 $stats[1][0] += 1;
}else{
 $stats[1][1] += 1;
}
if($five == 0){
 $stats[2][0] += 1;
}else{
 $stats[2][1] += 1;
}

 }else{
if($three == 0){
 $stats[0][2] += 1;
}else{
 $stats[0][3] += 1;
}
if($four == 0){
 $stats[1][2] += 1;
}else{
 $stats[1][3] += 1;
}
if($five == 0){
 $stats[2][2] += 1;
}else{
 $stats[2][3] += 1;
}

 }
}else{
 if($two == 0){

if($three == 0){
 $stats[0][4] += 1;
}else{
 $stats[0][5] += 1;
}
if($four == 0){
 $stats[1][4] += 1;

}else{
 $stats[1][5] += 1;
}
if($five == 0){
 $stats[2][4] += 1;
}else{
 $stats[2][5] += 1;
}

 }else{
if($three == 0){
 $stats[0][6] += 1;
}else{
 $stats[0][7] += 1;
}
if($four == 0){
 $stats[1][6] += 1;
}else{
 $stats[1][7] += 1;
}
if($five == 0){
 $stats[2][6] += 1;
}else{
 $stats[2][7] += 1;
}

 }
}

 }

 $dist = (($stats[0][0]/$textlen)-0.261515628352764)**2+(($stats[0][1]/$textlen)-
0.158268364208569)**2+(($stats[0][2]/$textlen)-0.109291180888348)**2+(($stats[0][3]/$textlen)-
0.201809598741149)**2+(($stats[0][4]/$textlen)-0.126144410271082)**2+(($stats[0][5]/$textlen)-
0.120484943852371)**2+(($stats[0][6]/$textlen)-0.0185966669050855)**2+(($stats[0][7]/$textlen)-
0.00388920678063086)**2;

 if($dist<$min1_2_3){
$min1_2_3 = $dist;
$index1_3 = $i;

 }

 $dist = (($stats[1][0]/$textlen)-0.345826478792647)**2+(($stats[1][1]/$textlen)-
0.0739575137686861)**2+(($stats[1][2]/$textlen)-0.174477862813819)**2+(($stats[1][3]/$textlen)-
0.136622916815678)**2+(($stats[1][4]/$textlen)-0.121057148987912)**2+(($stats[1][5]/$textlen)-
0.125572205135541)**2+(($stats[1][6]/$textlen)-0.0203043416064659)**2+(($stats[1][7]/$textlen)-
0.00218153207925041)**2;

 if($dist<$min1_2_4){
$min1_2_4 = $dist;
$index1_4 = $i;

 }

 $dist = (($stats[2][0]/$textlen)-0.220129103783706)**2+(($stats[2][1]/$textlen)-
0.199654888777627)**2+(($stats[2][2]/$textlen)-0.150382662184393)**2+(($stats[2][3]/$textlen)-

0.160718117445104)**2+(($stats[2][4]/$textlen)-0.157311708747586)**2+(($stats[2][5]/$textlen)-
0.0893176453758673)**2+(($stats[2][6]/$textlen)-0.00455975967384307)**2+(($stats[2][7]/$textlen)-
0.0179261140118733)**2;

 if($dist<$min1_2_5){
$min1_2_5 = $dist;
$index1_5 = $i;

 }
}

print ("\n text length: ".$textlen."||| key: 0 0 ".$index1_2." ".$index1_3." ".$index1_4." ".$index1_5."\n");

some subrs...

read input into a string, toss out carriage returns.
sub getinput
{
 my $fname ;
 $fname = shift(@ARGV);
 $out = "";
 unless (open INFID, $fname)
 {die "\n Can't open $fname for input!\n";}

while ($line = <INFID>)
{
 chop($line);
 $out = $out . $line . " " ;
}
chop($out);
return $out;
}

Results

The statistical information is vast and best viewed in it's original spreadsheet location.

Another excel file was submitted containing all that data.

Decrypted MarxCiphertext:

`and`with`it`the`antagonism`between`intellectual`and`manual`laborll`after`labor`has`bec

ome`not`only`a`means`of`life`but`also`the`Primary`necessitty`of`life{``whenl`with`the`d

evelopment`of`the`individuAl`in`every`sensel`the`productive`forces`also`increase`and`al

l`the`springs`of`collective`wealth`flow`with`abundancemm`onlY`then`can`the`limited`h

orizon`of`the`bourgeois`right`be`Left`behind`entirely`and`society`incscribe`up{on`its`ba

nnerz`bfrom`each`according`to`his`abilitiesl`to`each`according`to`His`needsab`the`labor

`processl`considered`as`the`consumption`of`the`labor`power`sold`to`the`capitalIstl`show

s`us`two`peculiaritiesn``the`laborerr`works`under`the`control`of`the`Capitalistn``the`latte

r`takes`care`that`the`work`is`carried`on`properlyl`and`that`the`means`of`producttion`are`

put`to`a`suitable`usen`in`oTher`wordsz`the`freedom`and`independence`of`the`worker`du

ring`the`labor`process`do`not`existn``secondlyl`the`product`is`the`Property`off`the`capit

alistl`not`of`th`olaborern`as`the`capitalist`mm`accordingt`to`our`hypothesis`mm`pays`th

e`daily`value`of`the`lobor`powerl`it`appErtains`to`him`to`employ`this`ppwern``similarly

`the`other`elements`es`sentail`for`the`manufacture`of`the`productl`Namely`the`means`of

`productionl`belong`to`himn``consequently`the`labor`process`is`carRied`on`amongst`thi

ngs`which`have`all`been`purchased`by`the`capitalist{``and`thus`the`product`is@his`prop

ertynnncapitalist`productionl`thereforelof`itself`reproduces`the`separation`between`labor

`power`and`the`means`of`laborn``it`thereby`reprOduces`and`perpetuates`the`condition`f

or`exploiting`the`laborern```mm`notwithstanding`this`progressl`the@equal`right`is`still

@encumbered`with`bourgeois`limitationsn``the`right`of`the`producers`is`p{roportional`t

o`the`labor`the`supply{`the`equality`consists`in`measuring`this`right`by`an`equal`standa

rdz`laborn``furthermorel`one`worker`is`marriedl`the`other`is`notz`one`has`more`children

`than`the`otherl`etcnl`etcn``in`a`higher`phase`of`communist`societyl`after`the`enslaving

n`subordination`of`the`individual`to`the`division`of`labor`shall`have`disappearedl

' () * +,.- ,/,
,.- , +
,.- ' ,
,.- '0+
,.- (,
,.- (�+
,.-) ,
,.-)/+
,.- * ,
,.- *1+
,.- + ,

243658793;:=<?>@A3CB�DFEHGJI
KL:M</NO3QPR:S@;TVUWISNX>�:SY[ZX>;5]\�^_U�`aN�365]<03�\b<

cedgfihkj lnm
o j pqmnrqsWturnv1t

wRU <

xzy{
|y
}~ ��
y

�e� �O� ��� ������ ���
��� �.�
���J�8�
���J���
��� ���
��� �.�
���k���
���k���
��� ���
��� ���
���k���

���������������;���.�����
�L�� ��F���;¡£¢_�¥¤���;¡§¦¨�%�.

©�ª0«�¬®0¯°±«�²´³ µ ¶�·

¸=¹ º¼»

½ ¾¿À
¾Á
Â ÃÄ¾

Å Æ Ç È ÉÊÊ�Ë ÊÌÅÊ�Ë Ê�ÆÊ�Ë ÊÍÇÊ�Ë Ê�ÈÊ�Ë ÊÍÉÊ�Ë Ê1ÎÊ�Ë ÊnÏÊ�Ë Ê�ÐÊ�Ë Ê1ÑÊ�ËzÅ
Ê�ËzÅ1ÅÊ�ËzÅ/ÆÊ�ËzÅ�ÇÊ�ËzÅ0È

ÒÔÓLÕaÖ1×�ØÚÙ�ÛÝÜÞÛRÖ±ßàÛ�ÛáØãâäØ
å�æ�ÓLÕÚçè×éØ4êÝëì×éØ
ê�íáîïØ
Û�ÕðÕ

ñ�ò ó¼ô%õ�ö�÷9øñ�ò ó¼ô%õ�ö�÷úùñ�ò ó¼ô%õ�ö�÷=ûñ�ò ó¼ô%õ�ö�÷ýüñ�ò ó¼ô%õ�ö�÷=þ

ÿ�� �

� ��
� ��
	
 �� �
��

� � � � ����� � ���� � ���� � ���� � ���� � ���� ������ ������ ������ ������ ���� ������ ������ ������ � �

!#"%$'&�(*),+.-0/1-2&�34-5-6)879)2:<;=">$@?A(B)DCFEG(*),C5HBIJ),-6$.$
KMLONQP>RQSDTULQVXWZYO[]_^`L'Sbadcfe.gihj^`k�Tmlne@L

o�p q>rtsMu�vxwo�p q>rtsMu�vzyo�p q>rtsMu�v|{o�p q>rtsMu�v~}o�p q>rtsMu�v��o�p q>rtsMu�vxw~��� ��y

�O� ���

� ��
� ��
�� �� ��
��

� � � � � � � � � ��� ��� ��� �Z� � � �Z� ��� �¡� ��� ��� ��� �¢� ��� �£� ��� �£� ��� ��� ��� ����
�£¤¥�

�
��¤¥�
���

���¢¤t�
�Z�

�¡�¦¤t�
�§�

�§�¢¤t�
�£�

¨ª©*«¬«5¯®°®²±B³µ´9¶ ·6¸9¶ ·*¹»º½¼* ¾µÀ¿8³�±ÂÁ#ÃXÄf«B¼ ÅXÄÂÁ�º

Æ Ç ÈÈÉÇËÊÆ Ç ÌÈÉÇËÍ

ÎjÏÑÐzÒjÓ�ÏOÔÑÕ�Ò×ÖÀÐOØ½ÙÚÙ

ÛËÜ
ÝÞàßá
âã ä
Üå
åßææ
â Üç
âã è é
ê áë ì
í æ

î ï ð ñ ò ó ô õ ö î�÷ î�î î�ï î¢ð î�ñ îøò î�ó î¦ô î£õ î�ö ï½÷ ïÚî ï�ï ï�ð ïøñ ïÑò÷
ïÑùmò

ò
ô|ùmò
î�÷

î�ïÑùmò
îøò

î¦ô|ùmò
ï½÷

ïzïÑùmò
ï�ò

úJûýüþü1ÿ���� �����	��
�	��
�� ��� ÿ �4ÿ�� ���������#ü� ��� �!�

"$# %"$# %!#'&"$# %!# ("$# %!#')

*,+.-0/21.+43657/98�-;:=<><

?A@
BBCDD
E @F
EG H I
J'KL'M
N D

