
 2

Instruction Combining for Coalescing Memory Accesses
Using Global Code Motion

Motohiro Kawahito Hideaki Komatsu Toshio Nakatani
IBM Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan
{ jl25131, komatsu, nakatani }@jp.ibm.com

ABSTRACT
Instruction combining is an optimization to replace a sequence of
instructions with a more efficient instruction yielding the same
result in a fewer machine cycles. When we use it for coalescing
memory accesses, we can reduce the memory traffic by combining
narrow memory references with contiguous addresses into a wider
reference for taking advantage of a wide-bus architecture.
Coalescing memory accesses can improve performance for two
reasons: one by reducing the additional cycles required for moving
data from caches to registers and the other by reducing the stall
cycles caused by multiple outstanding memory access requests.
Previous approaches for memory access coalescing focus only on
array access instructions related to loop induction variables, and
thus they miss many other opportunities. In this paper, we propose
a new algorithm for instruction combining by applying global code
motion to wider regions of the given program in search of more
potential candidates. We implemented two optimizations for
coalescing memory accesses, one combining two 32-bit integer
loads and the other combining two single-precision floating-point
loads, using our algorithm in the IBM Java™ JIT compiler for IA-
64, and evaluated them by measuring the SPECjvm98 benchmark
suite. In our experiment, we can improve the maximum
performance by 5.5% with little additional compilation time
overhead. Moreover, when we replace every declaration of
double for an instance variable with float, we can improve the
performance by 7.3% for the MolDyn benchmark in the JavaGrande
benchmark suite. Our approach can be applied to a variety of
architectures and to programming languages besides Java.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – compilers,
optimization.

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Instruction combining, memory access coalescing, 64-bit
architectures, Java, JIT compilers, IA-64

1. INTRODUCTION
Instruction combining [28] is an optimization to replace a sequence
of instructions with a more efficient instruction yielding the same

result in a fewer machine cycles. Previous approaches for instruc-
tion combining can be classified into two families.

The first family combines “two instructions that have a true de-
pendence” (we call them dependent instructions) [28, 29]. This
family uses global code motion, but it cannot combine instructions
along the conditionally executed path.

The second family combines “multiple instructions that do not have
a true dependence” (we call them independent instructions). This
family includes memory access coalescing [6], which is an optimi-
zation to coalesce narrow memory references with contiguous
addresses into a wider reference for taking advantage of a wide-bus
architecture.

Coalescing memory accesses can improve performance for two
reasons: one by reducing the additional cycles required for moving
data from caches to registers and the other by reducing the stall
cycles caused by multiple outstanding memory access requests.

In general, the latency of FP loads is longer than that of integer
loads, and thus reducing FP loads is more effective. On the other
hand, integer loads appear more frequently, and thus reducing
integer loads is also effective. For example, on Itanium processor
(IA-64) [17], FP loads always bypass the L1 cache and read from
the L2 cache as shown in Figure 1 [18]. The latency of FP loads is
9 cycles, while the latency of integer loads is 2 cycles. To take
another example, on Pentium 4 and Xeon processors (IA-32), both
integer and FP loads are able to read from the L1 cache. However,
the latency of FP loads is 6 cycles (for Model 0, 1, 2) or 12 cycles
(for Model 3), while the latency of integer loads is 2 cycles (for
Model 0, 1, 2) or 4 cycles (for Model 3) [19].

Previous approaches for memory access coalescing focus only on
array access instructions related to loop induction variables [1, 6,
27, 31], and thus they miss many other opportunities.

In this paper, we propose a new algorithm for combining multiple
instructions by using global code motion to combine both depend-
ent instructions and independent ones along the conditionally
executed path. We modify the Lazy Code Motion (LCM) algorithm
[25] to attempt to combine those instructions that are located
separately in a wider region to coalesce memory accesses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSP 2004, June 8, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-941-1/04/06…$5.00.

Memory Bus
L3 Cache
L2 Cache

L1 Cache

Register File

FP Loads
(9 cycle latency,
 2 x 128 bits/clk bandwidth)

Integer Loads
(2 cycle latency,

2 x 64 bits/clk bandwidth)

Figure 1. Characteristics of the memory hierarchy of Itanium

 3

We implemented two optimizations, one combining two 32-bit
integer loads and the other combining two single-precision floating-
point loads, using our algorithm in the IBM Java JIT compiler for
IA-64, and evaluated them by measuring the SPECjvm98 bench-
mark suite. In our experiment, we can improve the maximum
performance by 5.5% with little additional compilation time
overhead. Moreover, when we replace every declaration of dou-
ble for an instance variable with float, we can improve the
performance gain by 7.3% for the MolDyn benchmark in the
JavaGrande benchmark suite.

Although we implemented our algorithm on IA-64, we can also
apply our algorithm to a variety of architectures. Table 1 shows
various architectures and their instructions to which we can apply
our instruction combining. For PowerPC [15], S/390 [16], and
ARM [2], we can combine some load operations by using a load-
multiple instruction. For IA-32 architectures and IBM’s network
processor PowerNP [14], we can combine some 8-bit or 16-bit load
operations into a 32-bit load, because we can access a 32-bit
register per 8-bit or 16-bit (we call it partial register read) on these
architectures. For IA-64, PowerPC, and the TMS320C6000 [33],
we can combine shift and mask operations by using special bit-wise
instructions (e.g. extract or rlwinm).

Table 1. Instruction candidates for our instruction combining

General-Purpose Processors

IA-64
64-bit integer load, single- and double-
precision pair-load, bit-wise operation
(extract)

PowerPC Load-multiple, constant load, bit-wise
operations (rlwinm, …)

IA-32 MMX/SSE instructions, Partial register
read (e.g. AL/AH), memory operand

S/390 Load-multiple, constant load, memory
operand

Embedded Processors
ARM Load-multiple
PowerNP Partial register read, constant load
Embedded PowerPC
(405, 440)

Load-multiple, constant load, bit-wise
operations (rlwinm, …)

TMS320C6000 Bit-wise operation (extract)

The following sections describe our approach, experimental results,
related work, and concluding remarks.

2. OUR APPROACH
It is intuitive to put dependent instructions together because of their
data dependence. However, it is not obvious to put independent
ones together because an instruction can be moved across other
instructions that have no true dependence on that instruction.
Figure 2 shows differences between our approach and the lazy code
motion (LCM) algorithm [25]. Since the LCM algorithm does not
consider the combinable region, it moves instructions independ-
ently as shown in Figure 2(a). In contrast, our approach moves the
target instructions to the last point of the region where they are
combinable and whose execution frequency is low, and then it
combines them as shown in Figure 2(b).

Figure 3 shows two examples to explain our optimizations. Previ-
ous algorithms [1, 6, 27, 31] cannot optimize either example.
Figure 3(a) is an example in which two 32-bit integer loads are
combined. For IA-64, we can transform two 32-bit integer loads
and two sign-extensions into a combination of a 64-bit integer load

and two “extract with sign-extension” instructions for each 32-bit
value if their memory addresses are contiguous. As a result, we can
get equal or better performance1 along the left-hand path of Figure
3(a) than the previous algorithms. Since most of the programs

1 The sign-extension instruction (sxt4) can be eliminated when we

use the sign-extension elimination algorithm [21]. If both sign
extensions can be eliminated, the performance of our approach
will be equivalent to that of the previous approach.

Ins2Ins1 Our algorithm moves two
instructions at the last point
of the region in which they
are combinable and whose
execution frequency is low.

movable
area

The earliest point we can move instruction Ins1 or Ins2
in the program when we attempt to move it backward

The original instruction position

combinable
region

low execution
frequency

region

The result of code movement

b) Our code motion algorithm

Ins2Ins1

movable
area

combinable
region

low execution
frequency

region

a) Original lazy code motion algorithm

Since this algorithm does
not consider the combinable
region, it moves instructions
independently.

Figure 2. Our approach for independent instructions

EA = a + 12
f1 = ldfs(EA)

EA = a + 8
f2 = ldfs(EA)

Original code

EA = a + 8
f2, f1 = ldfps(EA)

Result of our algorithm

EA = a + 8
f2 = ldfs(EA)

ldfs: single-precision floating-point load instruction
ldfps: single-precision floating-point load pair instruction

EA = a + 8
T = ld8(EA)

t1 = extr(T, 32, 32)
t2 = extr(T, 0, 32)

EA = a + 12
t1 = ld4(EA)
t1 = sxt4(t1)

EA = a + 8
t2 = ld4(EA)
t2 = sxt4(t2)

Original code Result of our algorithm

EA = a + 8
t2 = ld4(EA)
t2 = sxt4(t2)

ld4: 32-bit integer load instruction
ld8: 64-bit integer load instruction
sxt4: 32-bit sign extension instruction
extr: extract with sign-extension instruction
 (extr(T, 32, 32) extracts upper 32 bits and then extends sign)

a) Combining two 32-bit integer loads

b) Combining two single-precision floating-point loads

Figure 3. Two examples of our optimization for IA-64

 4

available today are designed for the 32-bit architectures, 32-bit data
types are still used frequently. For example, Java specifies “int” as a
32-bit data type [8]. Therefore, this optimization (Figure 3(a)) is
quite effective for the 64-bit architectures.

Figure 3(b) is an example where two single-precision floating-point
loads can be combined. IA-64 has pair-load instructions, ldfps and
ldfpd, for single- and double-precisions, respectively, with which
we can combine two floating-point loads that read contiguous
memory locations. Our algorithm can take advantage of these
instructions to improve the performance along the left-hand path in
Figure 3(b). We note here that the target registers of a pair-load
instruction must specify one odd- and one even-numbered register
[17], but this restriction can be handled nicely by using a new
register allocation approach based on preference-directed graph
coloring [24].

In addition, our approach can combine instructions along the
conditionally executed path. Both examples in Figure 3 offer an
opportunity to apply instruction combining along the left-hand path,
but not along the right-hand path. By applying our modified version
of the LCM technique [25], we can optimize multiple instructions
that are combinable along the conditionally executed path.

For either example in Figure 3, we need to take the memory
alignment into account. After the optimization, the two contiguous
memory locations need to be aligned at the 64-bit boundary, since
they must be loaded as 64-bit data.

For dynamic compilers, it is important to use a fast algorithm and
its efficient implementation to significantly reduce the compilation
time for time consuming optimizations such as dataflow analyses.
In particular, on a 64-bit architecture such as IA-64, a bit-vector
implementation as we took is an attractive choice because of its
longer word.

2.1 Our Algorithm
In this section, we describe a framework for putting the target
instructions as close together as possible. Figure 4 shows a flow
diagram of the four steps of our core algorithm. We perform this
algorithm on the intermediate language level. Note that our JIT
compiler also performs traditional optimizations in other phases
(such as copy propagation [28], dead store elimination [28],
traditional PRE [25], null check optimization [20], scalar replace-
ment [20], and sign-extension elimination [21]), though we do not
describe them in Figure 4.

For Step 1, we compute the combinable instructions sets (we call
them groups) in the input code. We pre-define combining patterns
in the compiler. Inputs of a pattern are right-hand side expressions
(RHSEs) of instructions. The output of a pattern is an instruction

sequence in which the inputs are combined. We include only the
cases in which combining inputs produces equal or better perform-
ance. The compilation for a method takes the following three steps:

 (1) We collect candidates of the RHSEs of each combining pattern.
For example, we collect all loads for the examples in Figure 3.
If the RHSEs are identical, we treat them as the same candidate.
For example, all "load[L1+8]" are treated as the same candidate
regardless of content of L1. For each candidate, we also sum up
the execution frequency of each position in the method.

 (2) We sort candidates based on the total execution frequency
computed by (1) and limit the number of candidates to reduce
the compilation time.

 (3) We compute the combinable instruction sets from the candi-
dates of (2).

Next, we attach a group attribute, represented in bit-vector form, to
each instruction. As we mentioned before, if the RHSEs are identi-
cal, we allocate the same bit for them. For example, suppose that
there are five instructions in a given method, and the two instruc-
tions corresponding to bits 0 and 1 can be combined, and the two
instructions corresponding to bits 2 and 4 can also be combined.
The former two instructions share the same attribute of {11000},
while the latter two instructions share the same attribute of {00101}.
The instruction corresponding to bit 3 cannot be combined with any
instruction, so that instruction has the special empty attribute of
{00000}. For now, let us assume the simplest case where one
instruction is always included only within a single group. This
assumption sufficient for the two examples in Figure 3, because
they require that the two contiguous memory locations must be
aligned at a 64-bit boundary (that is, each instruction is always
included only within a single group). We will describe a solution in
Section 2.1.1 when one instruction is included within multiple
groups.

For Step 2, we compute five sets for the input of dataflow analysis.
Our code motion algorithm is based on the Lazy Code Motion
(LCM) algorithm [25], which originally has three sets TRANSP, N-
COMP, and X-COMP as the inputs, and two sets N-INSERT and
X-INSERT as the outputs. These five sets are defined as follows
(N- and X- represent the entry and the exit, respectively):

TRANSP(n): the set of instructions that are located in the given
method and which can be moved through basic block n.

N-COMP(n): the set of instructions that are located in basic block
n and which can be moved to the entry point of the basic block.

Compute combinable instruction sets(1)

Compute five sets for the input of dataflow analysis(2)

Solve dataflow equations using the sets computed by step (2)(3)

Transform instructions within each basic block(4)
Figure 4. Flow diagram of our algorithm

for (each n ∈ all basic blocks){
 N-COMPG(n) = N-COMP(n)
 for (each e ∈ N-COMP(n)){
 g = group of e
 N-COMPG(n) += all instructions within g
 }
 X-COMPG(n) = X-COMP(n)
 for (each e ∈ X-COMP(n)){
 g = group of e
 X-COMPG(n) += all instructions within g
 }
}

Figure 5. Algorithm for computing N-COMPG and X-COMPG

 5

X-COMP(n): the set of instructions that are located in basic block
n and which can be moved to the exit point of the basic block.

N-INSERT(n): the set of instructions that will be inserted at the
entry point of the basic block n.

X-INSERT(n): the set of instructions that will be inserted at the
exit point of the basic block n.

In addition, our algorithm requires two new sets as additional
inputs: N-COMPG and X-COMPG (G denotes group). We define
these two sets as follows:

N-COMPG (n): the set of instructions whose forward movements
should be stopped at the entry point of n for instruction combin-
ing.

X-COMPG (n): the set of instructions whose forward movements
should be stopped at the exit point of n for instruction combining.

We first compute the three sets: TRANSP, N-COMP, and X-COMP,
and then compute the two new sets: N-COMPG and X-COMPG,
using the algorithm of Figure 5. Note that we need to correctly find
the barriers for moving a memory load to compute the TRANSP set.
The barriers are the same as those of scalar replacement [7, 13, 22],
which improves the accesses to non-local variables by replacing
them with accesses to local variables.

For Step 3, we solve the dataflow equations using the five sets
computed in Step 2 in order to compute insertion points and
redundant regions. The LCM algorithm consists of two parts. The
first part is the Busy Code Motion (BCM) [25], which moves an
instruction backward if its execution count is not increased. The
second part is the lazy code motion, which moves an instruction

forward in order to minimize the register pressure. Since we use the
original BCM, the execution count of a moved instruction is the
same as that of BCM. We modified the lazy code motion part
(which moves instructions forward) to put the instructions in the
same group as close together as possible, as shown in Figure 2(b).
We call our approach Group-Sensitive Code Motion (GSCM). Our
GSCM stops the forward motion of an instruction B at the point
where it reaches one of the instructions in the group of B. By these
modifications, we achieve the code motion as shown in Figure 2(b).

Figure 6 shows the details of our GSCM algorithm. Bold text
denotes our modifications and additions to the LCM algorithm.
First, the BCM algorithm produces two sets as output: N-
EARLIEST and X-EARLIEST. They denote the earliest points to
which an instruction can be moved backwards on the control flow
graph. By modifying the steps (b) through (d) in Figure 6, the
forward movement of an instruction B is stopped at the point where
it reaches one of the instructions in the group of B.

The LCM algorithm first eliminates redundancies in every basic
block, and then it performs global code motion to eliminate redun-
dancies between basic blocks. In other words, it transforms the code
in a program twice. As long as each instruction is independently
optimized, this approach can be used. When some instructions are
associated and optimized, it is efficient to transform code once in
the last step. For that purpose, we modified Figure 6 Step (e) and
added Step (f). The LCM algorithm computes two sets N-
INSERT(n) and X-INSERT(n), but we combine them into X-
INSERT(n) for local code transformation. Step (f) computes N-
AVAIL and X-AVAIL, which denote sets of those instructions in
the X-INSERT set that are available at the entry point and the exit
point of each basic block, respectively.

(a) Execute the Busy Code Motion algorithm [25]. Inputs are TRANSP, N-COMP, and X-COMP. Outputs are N-EARLIEST and X-
EARLIEST.

(b) Delayability Analysis:

(n)COMP-N

(m)COMP-X

G

G

 DELAYED(n)-N)EARLIEST(n-X DELAYED(n)-X

)DELAYED(m)-X()EARLIEST(n-N DELAYED(n)-N
Pred(n)m

•+=

•+= ∏
∈

(c) Computation of Latestness:

)DELAYED(m)-N (DELAYED(n)-X LATEST(n)-X

 DELAYED(n)-N LATEST(n)-N

Succ(n)m
∑

∈
+•=

•=

(n)COMP-X

(n)COMP-N

G

G

(d) Isolation Analysis:

∏
∈

•+=

+=

Succ(n)m
)ISOLATED(m-N)EARLIEST(m-N)ISOLATED(n-X

)ISOLATED(n-X)EARLIEST(n-X)ISOLATED(n-N

(m)COMP-N G

(e) Insertion Point:
TRANSP(n)))ISOLATED(n-XLATEST(n)-(X))ISOLATED(n-N LATEST(n)-(N INSERT(n)-X ••+•=

(f) Availability Analysis:

TRANSP(n)) (n)AVAIL-(N INSERT(n)- X (n)AVAIL-X

(m)AVAIL- X AVAIL(n)-N
Pred(n)m

•+=

= ∏
∈

Figure 6. Algorithm of our Group-Sensitive Code Motion
(Bold text denotes our modifications and additions to the original LCM algorithm)

 6

For Step 4, we transform the code for each basic block using X-
INSERT and N-AVAIL as computed in Step 3. Figure 7 shows the
algorithm for transforming the code in basic block n. This algorithm
is roughly divided into two parts. The first part scans each instruc-
tion in the block n in order to perform instruction combining in the
block n using N-AVAIL(n). The second part inserts instructions for
X-INSERT(n) into the block n.

2.1.1 One Instruction is Included within Multiple
Groups
This section describes a solution when one instruction is included
within multiple groups. Since the two examples in Figure 3 require
that the two contiguous memory locations must be aligned at a 64-

bit boundary, each instruction is always included only within a
single group. However, in general, it is more common that one
instruction might be included within multiple groups.

For example, we assume that GROUP1 (Ins0 and Ins1), GROUP2
(Ins1 and Ins2), and GROUP3 (Ins2 and Ins3) can be combined in
Figure 8. The easiest solution is to set up only one group for each
instruction as shown in (a). In this example, we exclude GROUP2.
Using this solution, Ins2 in BB5 is moved to BB1 through BB4.
Then the instructions of BB4, both in GROUP1 and GROUP3, can
be combined. However, this solution misses the opportunity for
combining Ins1 and Ins2. In this example, we cannot combine them
in BB3 and BB4.

Therefore, we allow the same instruction to be included within
multiple groups. In this case, each group contains a pair of combin-
able instructions. First, we sort the groups that include the same
instruction, based on the effectiveness of combining for each group.
We start combining based on that order. In Figure 8, we assume
that the order of priority is GROUP2, GROUP1, and GROUP3. In
this case, GROUP2 is transformed first. Next, for GROUP1, we
attempt to combine Ins0 (which has not been transformed) with the
combined result of GROUP2. If it cannot be combined, the original
instruction is left alone. For GROUP3, we attempt to combine Ins3
in the same way.

Figure 9 shows an actual example corresponding to Figure 8. For a
32-bit constant load on the PowerPC, we generally need two
instructions to set the upper and the lower 16-bit values. However,
we can save one instruction by using an arithmetic instruction.

Figure 9(b) shows the results after transforming the instructions in
BB4 in the order of GROUP2, GROUP1, and GROUP3. We first
combine Ins1 and Ins2. Next, we transform Ins0 because we can
compute the result of Ins0 by using the new Ins1. We can also
transform Ins3 by using the new Ins2. If Ins0 or Ins3 cannot be
combined, that instruction will be left as it is.

/* Note: T[expr] has a temporary variable for the expr. */

inner = N-REACH(n);
for (each I from the first to the last instruction in block n){
 R = right-hand expression of I;
 inner = inner – all instructions by which

movement is stopped by R;
 if (R ∈ inner){
 if (there is an R before I in this block && the result of R

does not change in the meantime)
 Insert the code “T[R] = R” at the position;
 replace R at I with the temporary variable T[R];
 } else {
 g = group of R;
 if (there is an instruction in g before I in this block &&

 R can be moved to that instruction){
 Insert “the code C in which the instructions in g

 are combined” at the instruction;
 inner += all instructions in g;
 R is replaced with T[R];
 }
 }
 inner ∪ = R;
 inner = inner – all instructions by which

 movement is stopped by the destination variable of I;
}

// Insert instructions included in X-INSERT(n)
ins = X-INSERT(n);
for (each e ∈ ins){
 e_g = group of e ∩ X-INSERT(n);
 if (instructions in e_g are combinable &&

 e_g – inner ≠ ∅){
 P = the end of block n;
 if (there is an instruction in e_g in block n &&

 the instruction can be moved to P)
 P = position of the instruction;
 Insert “the code C in which the instructions in e_g

 are combined” at P;
 inner += all instructions in e_g;
 ins = ins – all instructions in e_g;
 } else if (e ∉ inner){
 Insert “T[e] = e” at the end of block n;
 } else if (there is an instruction e in the block n that

 can be moved to the end of block n)
 Insert “T[e] = e” at the instruction e;
}

Figure 7. Code transformation algorithm in block n

Ins2

Ins0 Ins1 Ins0
Ins1
Ins3

 Corresponding group
Ins0: {1100} (GROUP1)
Ins1: {1100}, {0110} (GROUP1,2)
Ins2: {0110}, {0011} (GROUP2,3)
Ins3: {0011} (GROUP3)

BB1 BB2 BB3 BB4

BB5

Ins0 and Ins1 are combinable (GROUP1)
Ins1 and Ins2 are combinable (GROUP2)
Ins2 and Ins3 are combinable (GROUP3)

(a) Set up only one group for one instruction
 Corresponding group
Ins0: {1100} (GROUP1)
Ins1: {1100} (GROUP1)
Ins2: {0011} (GROUP3)
Ins3: {0011} (GROUP3)

(b) Set up multiple groups for one instruction

Figure 8. Example in which some instructions are included in

multiple groups

 7

2.2 Two Examples from Figure 3
In this section, we demonstrate how our algorithm transforms the
two examples in Figure 3. Figure 10 shows the output instruction
sequences for the examples of Figure 3 (a) and (b). We note here
that we deliberately generate a redundant sign-extension (sxt4) in
the instruction sequence in Figure 10(a). Since the previous extract
instruction (extr) also performs a sign-extension, the sign-extension
instruction (sxt4) is obviously redundant but necessary for effec-
tively optimizing the sign-extensions. We will explain this in more
detail using Figure 12.

Figure 11 shows the results after applying Steps 2 and 3 to Figure
3(a). As regards Figure 3(b), if ld4 is read as ldfs, the same result
can be obtained. From Step 2, the five sets, TRANSP, N-COMP,
X-COMP, N-COMPG, and X-COMPG, will be obtained as shown
in STEP2 of Figure 11. As the next step, by solving the dataflow
equations as shown in Figure 6 with the five sets computed in Step
2, two sets, X-INSERT and N-AVAIL, will be obtained as shown
in STEP3 of Figure 11. When we perform the LCM algorithm, the
result of X-INSERT and N-AVAIL will be “{00}” for every basic
block.

Figure 12(a) shows the transformation result immediately after
applying Step 4 (that is, the output of our optimization) with the
results (X-INSERT and N-AVAIL) computed by Step 3. In Step 4,
the instruction sequence shown in Figure 10(a) is used.

On PowerPC, to set a 32-bit constant value into a register requires two instructions.
We can add a register and signed 16-bit constant value using one instruction.

r2=0x0002A800

r0=0x0001C800 r1=0x00023800 r0=0x0001C800
r1=0x00023800
r3=0x00031800

BB1 BB2 BB3 BB4

BB5

Ins0: 0x0001C800
Ins1: 0x00023800
Ins2: 0x0002A800
Ins3: 0x00031800

a) Before optimization

r2=0x0002A800 r0=0x0001C800
r2=0x0002A800

r1=0x00023800
r2 = r1 + 0x7000

r1=0x00023800
r2 = r1 + 0x7000
r0 = r1 - 0x7000
r3 = r2 + 0x7000

BB1 BB2 BB3 BB4

BB5

b) After optimization

Ins0 and Ins1 are combinable (GROUP1)
Ins1 and Ins2 are combinable (GROUP2)
Ins2 and Ins3 are combinable (GROUP3)

Figure 9. Constant load optimization for PowerPC

a) For Figure 3(a):
Output instruction sequence in which two instruction se-
quences ld4(a+8) and ld4(a+12) are combined: { EA=a+8;
T=ld8(EA); T1=extr(T, 32, 32); T1=sxt4(T1); T2=extr(T,
0, 32); T2=sxt4(T2); }

b) For Figure 3(b):
Output instruction sequence in which two instruction se-
quences ldfs(a+8) and ldfs(a+12) are combined: { EA=a+8;
T2,T1=ldfps(EA); }

Figure 10. Step 1 for Figure 3(a) and (b)

EA = a + 12
t1 = ld4(EA)
t1 = sxt4(t1)

EA = a + 8
t2 = ld4(EA)
t2 = sxt4(t2)

BB1 BB2

BB3

BB1:
N-COMP X-COMP

bit0: ld4(a + 8) corresponding group {11}
bit1: ld4(a + 12) corresponding group {11}

BB2:
BB3:

01
00
10

01
00
10

N-COMPG

11
00
11

X-COMPG

11
00
11

TRANSP

00
00
00

BB1:
N-REACH

BB2:
BB3:

00
00
10

X-INSERT

11
10
00

STEP2

STEP3

Figure 11. Applying Steps 2 and 3 to Figure 3(a)

EA = a + 8
T = ld8(EA)

T1 = extr(T, 32, 32)
T1 = sxt4(T1)

t1 = T1
T2 = extr(T, 0, 32)

T2 = sxt4(T2)

EA = a + 8
t2 = T2

t2 = sxt4(t2)

EA = a + 8
T2 = ld4(EA)

BB1
BB2

BB3

a) Immediately after applying the Step 4

b) Applying copy propagation and dead store
 elimination to (a)

EA = a + 8
T = ld8(EA)

T1 = extr(T, 32, 32)
t1 = sxt4(T1)

T2 = extr(T, 0, 32)
T2 = sxt4(T2)

t2 = sxt4(T2)

EA = a + 8
T2 = ld4(EA)

BB1
BB2

BB3

Figure 12. Applying Step 4 to Figure 11

 8

Next we apply both copy propagation and dead store elimination
(Figure 12(b)). As we mentioned before, we deliberately generate a
redundant sign-extension to effectively optimize sign-extensions. In
this example, “sxt4(T2)” in BB3 becomes partially redundant
because it appears in BB1. Thus, the original PRE technique can
move it from BB3 to BB2. Finally, this example can be transformed
to Figure 3(a) by performing several traditional optimizations, such
as a sign-extension elimination [21], copy propagation, and dead
store elimination. Regarding Figure 3(b), we can obtain the result of
our approach in the same way as in (a) by using the code sequence
in Figure 10(b).

2.3 Other Optimizations Using Our Algorithm
In the following section, we describe some optimizations that can
be made by performing additional transactions with the algorithm
described in Section 2.1. Section 2.3.1 describes instruction
combining for dependent instructions. Section 2.3.2 describes a
combination of loop transformations and instruction combining.

2.3.1 Optimizing Dependent Instructions
Although our approach is characterized by optimizing independent
instructions, it is also possible to optimize two dependent instruc-
tions. Figure 13 shows an example on the PowerPC. By using an
rlwinm instruction, we can eliminate one instruction along the
left-hand path as shown in (b) as long as t1 is dead.

Note that we need to consider the order of instructions if two
dependent instructions are optimized. Here, we call “the instruction
that must proceed” FIRST, and we call “the instruction that must
follow” SECOND. In Figure 13, FIRST is “t1 = a >> 16” and
SECOND is “t2 = t1 & 0xff”. In order to avoid a situation in which
we apply an incorrect optimization in the reverse order (that is,

SECOND comes before FIRST), we assume that there is a barrier
for FIRST immediately before FIRST.

2.3.2 Combination with Loop Transformations
We can also optimize array accesses between loop iterations in
combination with loop transformations. Davidson et al. [6] de-
scribed two loop transformations to that end. These transformations
first perform loop versioning to create two versions of the loop
using both alignment and alias checks as shown in Figure 14. Next,
loop unrolling expands the loop body of the safe version. If we
perform these two loop transformations, we can combine array
accesses between loop iterations by applying the GSCM algorithm
to the unrolled loop body.

Applying both our approach and loop transformations together can
generate even more highly optimized code than previous ap-

t1 = a >> 16

t2 = t1 & 0xff

a) Before optimization

t1 = a >> 16
t2 = rlwinm(a, 16, 24, 31)

b) After optimization

t2 = t1 & 0xff

If t1 is dead, it can be
eliminated

rlwinm: Rotate Left Word Immediate Then AND with Mask instruction
 (rlwinm(a, 16, 24, 31) rotates left 'a' 16 bits and then masks
 between the 24th and 31st bits)

a: 0t2:

0 31

Figure 13. Example where dependent instructions are
optimized on PowerPC

Alignment and
Alias check

Unrolled loop
body

Original loop
body

Original loop
body

Iterate
n mod unroll

Iterate
n / unroll

OKNG

Apply our
algorithm to this

loop body

Figure 14. Combination with loop transformations

for (i = 0; i < n-1; i+=2) {
 T1,T2 = ldfps(a[i]);
 if (max < T1) max = T1;
 if (max < T2) max = T2;
}
if ((n & 1) == 1){
 T = a[n-1];
 if (max < T) max = T;
}

a) Original program
float a[];
for (i = 0; i < n; i++)
 if (max < a[i]) max = a[i];

b) After loop transformations
for (i = 0; i < n-1; i+=2) {
 if (max < a[i]) max = a[i];
 if (max < a[i+1]) max = a[i+1];
}
if ((n & 1) == 1){
 if (max < a[n-1]) max = a[n-1];
}

c) After our optimization

a[i]
a[i]

a[i+1]
a[i+1]

Memory loads in the loop body
a[i]

a[i]

a[i] (including a[i+1])

Our approach
simultaneously
performs both

scalar replacement
and instruction

combining

Figure 15. Combination of our approach and loop
transformations

 9

proaches [1, 6, 27, 31], which combine array accesses between loop
iterations by unrolling loops, because of the code motion of our
approach. Figure 15 shows an example. Previous approaches
cannot combine the two memory loads, a[i] and a[i+1] in the loop
body of Figure 15(b), because they do not exploit global code
motion. In contrast, our approach can combine them as shown in
Figure 15(c) by using the GSCM algorithm. Moreover, because our
approach can simultaneously perform both scalar replacement and
instruction combining in one phase, we can reduce four memory
loads to one in the loop body in Figure 15(b). Since our approach
globally optimizes the whole method, we can also reduce two
memory loads to one after loop (a[n-1]) in the same phase.

3. EXPERIMENTS
We chose the SPECjvm98 benchmark suite [32] for evaluating our
optimizations in the IBM Developers Kit for IA-64, Java Technol-
ogy Edition, Version 1.4. The basic GC algorithm is based on a
mark and sweep algorithm [3]. We ran each benchmark program
from the command line with the problem size of 100, and with the
initial and maximum heap sizes of 96 MB. Each benchmark
program was executed 10 times consecutively for each independent
run. We implemented two optimizations in Figure 3 using the
GSCM algorithm in the IBM Java JIT Compiler. As we explained
in Section 2, previous algorithms [1, 6, 27, 31] cannot handle these
optimizations. All of the experiments were conducted on an IBM
IntelliStation Z Pro model 6894-12X (two Intel Itanium 800 MHz
processors with 2 GB of RAM), running under Windows.

3.1 Performance Improvement
We measured the following two versions to evaluate our approach.
Both versions performed two optimizations in Figure 3, but we
have not implemented yet either combining for double-precision
floating-point loads or other optimizations described in Section 2.3.

• Baseline: Perform instruction combining with the original LCM
algorithm [25]. The other optimizations, including copy propaga-
tion [28], dead store elimination [28], traditional PRE [25], null
check optimization [20], scalar replacement [22], and sign-
extension elimination [21], are enabled.

• Our approach: Perform instruction combining with our GSCM
algorithm. The other optimizations described in the Baseline are
enabled.

Previous approaches [28, 29] for combining dependent instructions
cannot optimize the examples given in Figure 3 since they are
independent instructions. Without applying loop transformations,
previous approaches [1, 6, 27, 31] for combining independent
instructions are equivalent to our baseline, and thus it is fair to
examine the performance improvement by our algorithm over the
baseline. This is because the dynamic compiler has budget limita-
tions, particularly for compilation time and thus loop transforma-
tions such as loop unrolling are usually avoided to limit the code
expansion. It is interesting to see how the performance will be
improved by instruction combining when loop transformations such
as loop unrolling are performed before combing, but that is beyond
the scope of our paper.

Figure 16 shows the performance improvement in the best time
over the baseline for SPECjvm98. Because the SPECjvm98 metric
is calculated from the best runs, we took the best time from repeti-
tive runs for the comparison. Thus, these results do not include
compilation time. Our experimental results show that our algorithm

improves the geometric mean (maximum) performance by 1.8%
(5.5%) over the baseline. Our approach is particularly effective for
compress, mpegaudio, and jack. We find that combining integer
loads (Figure 3(a)) for instance variables is quite effective for
compress and jack, and that combining floating-point loads (Figure
3(b)) for array accesses whose indices are constant is similarly
effective for mpegaudio. Therefore, our approach is effective even
for those instructions that are not related to any loop induction
variable.

3.2 JIT Compilation Time
This section describes how our approach affects the JIT compilation
time. For Figure 17, we measured the breakdown of the JIT
compilation time during 10 repetitive runs by using a trace tool on
IA-64. In summary, our approach increased the total compilation
time by 0.55% (0.72%) for the geometric mean (maximum), while
achieving significant performance improvement as shown in Figure
16. In addition, our approach caused little increase (0.47% to
0.72%) of the compilation time regardless of the benchmark.

3.3 Discussions
There are three categories of memory loads we can potentially
combine for IA-64. They are integer loads, single-precision float-
ing-point loads, and double-precision floating-point loads. For
integer loads, the gain was 3.9% for compress and 2.0% for jack.
For single-precision floating-point loads, the gain was 5.5% for
mpegaudio.

Higher bars are better

0.6% 0.4%

3.9%

0.0%

5.5%

2.0%

0.2%

1.8%

0%
1%
2%
3%
4%
5%
6%

mtrt jes
s

co
mpre

ss db

mpeg
au

dio jac
k

jav
ac

Geo
. M

ean

Figure 16. Performance improvement in the best time for

SPECjvm98 over the baseline

Lower bars are better
0.72%

0.55% 0.51% 0.47%
0.59%

0.48% 0.52% 0.55%

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%

mtrt jes
s

co
mpre

ss db

mpeg
au

dio jac
k

jav
ac

Geo
. M

ean

Figure 17. Compilation time increases for SPECjvm98 over the

baseline

 10

For double-precision floating-point loads, we can expect a larger
gain since they are more often used than single-precision floating-
point loads, but we have not fully implemented combining them yet.
In order to support this, we would need to modify the JVM. This is
because any operand of a paired load instruction for double-
precision (the ldfpd instruction) on IA-64 must be aligned at a 128-
bit boundary, but the current JVM aligns objects at the 64-bit
boundaries. In order to estimate the effectiveness of combining
double-precision floating-point loads, we performed an experiment
replacing every declaration for double of an instance variable
with float in the MolDyn (Molecular Dynamics simulation)
benchmark in the JavaGrande benchmark suite. The result was that
our algorithm improved this benchmark by 7.3% over our baseline
(using the LCM algorithm).

Finally, for any of the three categories, we could further enhance
performance with combining, if we additionally supported the loop
transformations such as loop unrolling described in Section 2.3.2 in
our JIT compiler. Once we fully support all the features mentioned
above, we will be able to achieve greater performance improve-
ments with combining.

4. RELATED WORK
Previous approaches for instruction combining can be classified
into two families. The first family combines dependent instructions
[28, 29]. This family moves a single instruction backward to the
location immediately after another instruction that has a true
dependence on that instruction, and then it combines these two
instructions. This relies on data dependence for moving an instruc-
tion, and thus it cannot combine independent instructions. It
performs global code motion, but it cannot combine instructions
along the conditionally executed path as in the example in Figure
13.

The second family combines independent instructions. This family
combines array accesses between loop iterations by unrolling the
loop [1, 6, 27, 31]. This combines the independent instructions for
array accesses related to a loop induction variable, but it does not
perform global code motion. Because this approach is limited to a
loop whose body consists of a single basic block, it cannot optimize
memory accesses included in a complex loop as in the example in
Figure 15.

In contrast, our approach combines both dependent instructions and
independent instructions. It can also combine instructions along a
conditionally executed path by using global code motion (as shown
in Figure 3 and Figure 13). Moreover, it is not limited to memory
accesses, but it can also be applied to other instructions. We already
discussed some variations of our approach in Section 2.3.

Recently, Nandivada et al. proposed an approach that reorders the
variables in the spill area for maximizing a chance of combining
consecutive spill codes into a load- or a store-multiple instruction
after a register allocation. We can use a similar approach for further
performance improvement. Let us note here about register con-
straints. Because load- and store-multiple instructions require
specific numbered registers, their approach needs to generate
register swapping code. In our optimization, a pair-load instruction
also requires specific numbered (odd and even) registers as men-
tioned in Section 2. We solve this register constraint problem by
using preference-directed graph coloring [24] after instruction

combining is performed, and thereby we systematically reduce the
need to generate the register swapping code.

Strength reduction is similar to instruction combining, but it
converts a rather expensive instruction, such as a multiplication or a
division, into a less expensive one, such as an addition or a subtrac-
tion. There are some strength reduction algorithms using a partial
redundancy elimination (PRE) technique [11, 23, 26]. Basically,
they move a single instruction backward to the location immedi-
ately after another instruction that has a true dependence on that
instruction in order to determine whether its complexity can be
reduced. In other words, these approaches only optimize the
dependent instructions but not independent ones.

5. CONCLUSION
In this paper, we propose a new algorithm for instruction combin-
ing by using global code motion in order to apply instruction
combining in a wider region. Our group-sensitive code motion
(GSCM) algorithm is based on the Lazy Code Motion (LCM)
algorithm [25]. We modified it to search for more potential candi-
dates and to put the target instructions together for combining in a
wider region. By using this code motion algorithm, we can optimize
both dependent instructions and independent ones. When we use
instruction combining to coalesce memory accesses, we can reduce
the memory traffic by combining narrow memory references with
contiguous addresses into a wider reference for taking advantage of
a wide-bus architecture. We implemented two optimizations for
coalescing memory access, one combining two 32-bit integer loads
and the other combining two single-precision floating-point loads,
using our algorithm in the IBM Java JIT compiler for IA-64, and
evaluated these optimizations by measuring the SPECjvm98
benchmark suite. In our experiment, we can improve the maximum
performance by 5.5% with little additional compilation time
overhead. Moreover, when we replace every declaration for dou-
ble of instance variables with float, we can improve the per-
formance gain by 7.3% for the MolDyn benchmark in the Java-
Grande benchmark suite. Our approach can be applied to a variety
of architectures and to programming languages besides Java.

6. ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their helpful
comments.

7. REFERENCES
[1] M.J. Alexander, M.W. Bailey, B.R. Childers, J.W. Davidson,

and S. Jinturkar. Memory Bandwidth Optimizations, In Pro-
ceedings of the 26th Annual Hawaii International Conference
on System Sciences, pp. 466-475, 1993.

[2] ARM, "ARM Instruction Set Quick Reference Card",
http://www.arm.com/pdfs/QRC_ARM.pdf

[3] K. Barabash, Y. Ossia, and E. Petrank. Mostly Concurrent
Garbage Collection Revisited, Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 255-
268, 2003

[4] R. Bernstein. Multiplication by integer constants, Software -
Practice and Experience, Vol. 16, No. 7, pp. 641-652, 1986.

[5] P. Briggs and T. Harvey. Multiplication by integer constants,
http://citeseer.nj.nec.com/briggs94multiplication.html

[6] J.W. Davidson and S. Jinturkar. Memory Access Coalescing: A
technique for Eliminating Redundant memory Accesses, Con-

 11

ference on Programming Language Design and Implementa-
tion, pp. 186-195, 1994.

[7] S.J. Fink, K. Knobe, and V. Sarkar, “Unified Analysis of Array
and Object References in Strongly Typed Languages” Static
Analysis Symposium, pp.155-174, 2000.

[8] J. Gosling, B. Joy, and G. Steele. The Java Language Specifi-
cation, Addison-Wesley Publishing Co., Reading, 1996.

[9] T. Granlund and P.L. Montgomery. Division by invariant
integers using multiplication, Conference on Programming
Language Design and Implementation, pp. 61-72, 1994.

[10] R. Gupta, D.A. Berson, J.Z. Fang. Path Profile Guided Partial
Redundancy Elimination Using Speculation, In IEEE Confer-
ence on Computer Languages, 1998.

[11] M. Hailperin. Cost-optimal code motion, Transactions on
Programming Languages and Systems, Vol. 20, No. 6, pp.
1297-1322, 1998.

[12] R.N. Horspool and H.C. Ho. Partial redundancy elimination
driven by a cost-benefit analysis, 8th Israeli Conference on
Computer Systems and Software Engineering, pp. 111-118,
1997.

[13] A.L. Hosking, N. Nystrom, D. Whitlock, Q. Cutts, and A.
Diwan. Partial redundancy elimination for access path expres-
sions, Software-Practice and Experience, Vol. 31, No. 6, pp.
577-600, 2001.

[14] IBM Corp.: PowerNP network processors. http://www-
3.ibm.com/chips/products/wired/products/network_processors.h
tml

[15] IBM Corp.: PowerPC Homepage, http://www-
3.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC

[16] IBM Corp.: z/Architecture Principles of Operation PDF files,
http://www-1.ibm.com/servers/s390/os390/bkserv/vmpdf/
zarchpops.html

[17] Intel Corp.: Itanium Architecture - Manuals.
http://www.intel.com/design/itanium/manuals.htm

[18] Intel Corp.: Intel Itanium Processor Reference Manual for
Software Optimization. http://www.intel.com/design/itanium/
downloads/245474.htm

[19] Intel Corp.: IA-32 Intel Architecture Optimization Reference
Manual. http://www.intel.com/design/Pentium4/manuals/
248966.htm

[20] M. Kawahito, H. Komatsu, and T. Nakatani. Effective Null
Pointer Check Elimination Utilizing Hardware Trap, Confer-
ence on Architectural Support for Programming Language and
Operating Systems, pp. 139-149, 2000.

[21] M. Kawahito, H. Komatsu, and T. Nakatani. Effective Sign
Extension Elimination, Conference on Programming Language
Design and Implementation, pp. 187-198, 2002.

[22] M. Kawahito, H. Komatsu, and T. Nakatani. Partial redun-
dancy elimination for access expressions by speculative code
motion, To appear, Software: Practice and Experience, 2004

[23] R. Kennedy, F.C. Chow, P. Dahl, S. Liu, R. Lo, and M.
Streich. Strength Reduction via SSAPRE, Computational Com-
plexity, pp. 144-158, 1998

[24] A. Koseki, H. Komatsu, and T. Nakatani. Preference-directed
graph coloring, Conference on Programming Language Design
and Implementation, pp. 33-44, 2002.

[25] J. Knoop, O. Rüthing, and B. Steffen. Optimal code motion:
Theory and practice. ACM Transactions on Programming Lan-
guages and Systems, Vol. 17, No. 5, pp. 777-802, 1995.

[26] J. Knoop, O. Rüthing, and B. Steffen. Lazy Strength Reduction.
Journal of Programming Languages, Vol. 1, No. 1, pp. 71-91,
1993.

[27] S. Larsen and S. Amarasinghe. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets, Conference on
Programming Language Design and Implementation, pp. 145-
156, 2000.

[28] S.S. Muchnick. Advanced compiler design and implementa-
tion, Morgan Kaufmann Publishers, Inc., 1997.

[29] T. Nakatani and K. Ebcioğlu. “Combining” as a Compilation
Technique for VLIW Architectures, International Workshop on
Microprogramming and Microarchitecture, pp. 43-55, 1989

[30] V.K. Nandivada and J. Palsberg. Efficient spill code for
SDRAM, International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, San Jose, California, Oc-
tober 2003.

[31] J. Shin, J. Chame, and M.W. Hall. Compiler-Controlled
Caching in Superword Register Files for Multimedia Extension
Architectures, Conference on Parallel Architectures and Com-
pilation Techniques, pp. 45-55, 2002.

[32] Standard Performance Evaluation Corp. "SPEC JVM98
Benchmarks," http://www.spec.org/osg/jvm98/

[33] Texas Instruments, "TMS320C6000 CPU and instruction set
reference guide", Lit. Num. SPRU189F, http://www.tij.co.jp/
jsc/docs/dsps/support/download/c6000/c6000pdf/spru189f.pdf

8. APPENDIX

Although we took the best times in Figure 16 to conform to the
SPECjvm98 metric, it is interesting to compare the overall times,
which include the compilation times and GC times for 10 repetitive
runs. Figure 18 shows the performance improvements for the
overall times over the baseline. Results are slightly worse than in
Figure 16 because of the additional compilation time overhead.

Higher bars are better

0.2% 0.0%

3.9%

0.0%

5.0%

1.8%

-0.1%

1.5%

-1%
0%
1%
2%
3%
4%
5%
6%

mtrt jes
s

co
mpre

ss db

mpeg
au

dio jac
k

jav
ac

Geo
. M

ean

Figure 18. Performance improvement for the overall time for

SPECjvm98 over the baseline

