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ABSTRACT
 As superscalar processors become increasingly wide, it is
inevitable that the large set of instructions to be fetched every
cycle will span multiple noncontiguous basic blocks.  The
mechanism to fetch, align, and pass this set of instructions down
the pipeline must do so as efficiently as possible.  The concept of
trace cache has emerged as the most promising technique to meet
this high-bandwidth, low-latency fetch requirement.  A new fill
unit scheme, the Sliding Window Fill Mechanism, is proposed as
a method to efficiently populate the trace cache. This method
exploits trace continuity and identifies probable start regions to
improve trace cache hit rate.  Simulation yields a 7% average hit
rate increase over the Rotenberg fill mechanism.  When combined
with branch promotion, trace cache hit rates experienced a 19%
average increase along with a 17% average improvement in fetch
bandwidth.

Categories and Subject Description
B.3.2 [Memory Structures]: Design Styles – Cache Memory
C.0 [Computer System Organization]: General – System
Architectures

General Terms
Algorithms, Performance

Keywords
Superscalar processors, fetch mechanisms, trace cache, cache
performance, fill mechanisms, branch promotion.

1. INTRODUCTION
One of the most substantial microarchitectural improvements
since the early 1990s has been the introduction of multiple
instruction issue in pipelined processors.  As superscalar widths
increase beyond the four and eight-way implementations of today,
a proportional increase in execution bandwidth must be sustained
by the rate of instructions fetched per cycle.  This implies that the
instruction fetch bandwidth must be at least equal to the number
of instructions issued per cycle.  Traditional superscalar fetch

mechanisms can provide a set of instructions up to and including a
single branch instruction.  Furthermore, it has been stated that the
average basic block size is five instructions for general-purpose
code.  Considering these two assertions, it is evident that fetch
bandwidth has the potential to be a major bottleneck within the
pipeline.  Several mechanisms have been proposed to fetch past
basic block boundaries, including the branch address cache and
collapsing buffer.  The most promising though has been the trace
cache.

Storing instructions in dynamic execution order is the
fundamental concept behind the trace cache.  This contrasts with
the traditional instruction cache, which stores instructions in static
program order.  The traditional trace cache relies on a multiple
branch predictor to deliver up to m predictions per cycle.  Several
multiple branch prediction schemes have been proposed, often
extending an established single branch prediction method.  The
trace cache is accessed in parallel with the I-Cache during the
fetch stage, and uses the PC and the predictions to determined a
hit or miss.  If there is a hit, the corresponding trace is passed
down the pipeline in its entirety.  Otherwise, the core fetch unit
retrieves instruction via the I-Cache as usual

The fill unit of the trace cache is responsible for populating
the trace cache.  Instructions are buffered as they are retired from
the reorder buffer (or similar mechanism).  When certain trace
terminating conditions have been met, the contents of the buffer
are  used to form a new segment which is added to the trace
cache.  Two factors determine the effectiveness of the fill unit at
generating relevant traces:  How well trace continuity is
maintained, and how well probable entry points  are identified.
The Sliding Window Fill Mechanim (SWFM) is a proposed
method that exploits both these factors.  The result is an increase
in trace cache hit rates, which in turn improves fetch bandwidth.
When this approach is coupled with branch promotion the hit and
fetch rate improvement over the traditional trace cache is
substantial.

The next section of this paper presents background
information concerning the Rotenberg trace cache, branch
promotion, the alternate fill mechanism, and other previously
proposed fill unit enhancements.  Section III presents the notions
of trace continuity and probable entry points in further detail.  The
Sliding Window Fill Mechanism is described along with the Fill
Select Table – an integral part of the scheme.  A brief description
of the benchmarks used, and the simulation results are presented
in Section IV.
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2. BACKGROUND & PRIOR RELATED WORK

2.1 Rotenberg Trace Cache

Rotenberg et al [2] established the idea of trace cache in a
comparison against other proposed mechanisms that aimed to
solve the basic block fetch limitation.  This work became the basis
for a series of papers exploring various trace cache organizations
and alternate methods.  As presented in their paper, trace cache
supplements the usual instruction cache by storing individual
traces of dynamic instruction streams.  Each line of the trace
cache contains up to n instructions, and at most m basic blocks.
The maximum number of basic blocks within a trace cache line is
constrained by the throughput of the multiple branch predictor.
The reason behind this constraint is the number of conditional
branches in a trace cache line cannot exceed the number of
parallel results from the predictor to which comparisons are made.
Over the course of program execution, instructions that are retired
are added to the fill buffer of the trace cache. When the number of
instructions or basic blocks in the fill buffer meet n or m
respectively, the group of instructions is added as a new line to the
trace cache.  An example trace cache line is shown in Figure 1.  In
addition to the instruction stream, additional information is
recorded.  Branch Flags indicate the path followed by each
conditional branch within the trace.  Since a variable number of
branches could occur within a trace, a Branch Mask field must
also be provided, indicating the number of branches (with a
maximum of m - 1) and whether the trace ends in a branch.  Two
addresses are also stored, pointing to the next execution point
following the last instruction of the trace.  One is the Fall-through
Address (corresponding to a not-taken result for a trace-
terminating branch) and the other the Trace Target Address
(corresponding to a taken result.)  If the last instruction in the
trace is not a conditional branch, both address fields point to the
cache line starting with the next sequential instruction.  In
addition to the constraints n and m, an indirect jump or subroutine
return also terminates a trace.

Figure 1:  Example Trace Cache Segment
During instruction fetch, the trace cache is accessed in

parallel with the I-Cache.  When program execution presumably
returns to an instruction that starts a cache line, the branches
within the trace cache line are referenced with the results of the
multiple branch predictor.  If the predicted branch directions
match each of the entries in the Branch Flags field, then the entire
trace cache line can be fetched.  If the predictions do not match
the trace, then blocks are fetched from the instruction cache, and
the trace cache line will be updated with the new stream of
dynamic instructions.

2.2 Branch Promotion
The technique of branch promotion was proposed by Patel et al in
[3].  Branch promotion exploits the fact that over half of
conditional branches tend to be strongly biased during execution.
By identifying these branches in hardware, they may be treated as
statically predicted.  These “promoted” conditional branches are
marked via a single bit flag, and are associated with a taken or
not-taken path.  When the fill unit writes a cache line, the
promoted branches are not included in the normal branch mask

and flags fields.  Thus, the predictor is alleviated from the
overhead of storing the branch history for a promoted branch.
This decreases aliasing within the predictor.  If a static prediction
proves incorrect (such as the final iteration of a loop) the machine
is backed up to the end of the previous block and restarts along
the correct path.  The structure that decides to promote a branch to
static prediction is the bias table.  This table is a simple saturating
counter indexed by the branch address (with tag compare.)  The
counter is incremented when the result of the branch is the same
as the previous outcome.  The fill unit will check the bias table
against conditional branches in the retired instruction stream.  If
the count is greater than threshold value, the branch is promoted
in the fill buffer.  If the outcome of a promoted branch contradicts
the static prediction twice in a row, the branch is demoted, and the
branch bias table entry is cleared.  Demotion upon two
consecutive mispredictions was established to avoid the final
iteration of a loop from demoting an otherwise strongly biased
branch.  Likewise, if the branch bias count falls below the
threshold (the result of an alternating series of taken/non-taken
results) the branch is demoted.

2.3 An Alternate Fill Mechanism
Prior to the initial Rotenberg et al paper on trace cache, a US
patent was filed for a Dynamic Flow Instruction Cache Memory
Organized around Trace Segments Independent of Virtual
Address Line [4].  Described is a mechanism that closely
approximates the concept of the trace cache.  One interesting
aspect of this pioneering design is the fill unit policy.  The
Rotenberg scheme entails flushing the fill buffer to the trace cache
once the maximum number of instructions (n) or basic blocks (m)
has been reached.  The next instruction to retire will be added to
the empty fill buffer as the first instruction of a future trace.  The
fill method described in [4] differs by committing a trace line
when n or m has been reached, then discarding the frontmost
(oldest) basic block from the fill buffer and shifting the remaining
instructions to free room for newly retired instructions.  If effect,
every new basic block encountered in the dynamic instruction
stream causes a new trace to be added to the cache.

2.4 Other Proposed Fill Unit Enhancements
A few other schemes have been proposed that are related to the
Sliding Window Fill Mechanism.  Ramirez et al [5] propose a
scheme that targets redundancy between the I-Cahce and trace
cache.  Called selective trace storage, it takes advantage of a core
fetch unit that can fetch beyond not-taken conditional branches.
This allows segments that consist of only sequential instructions
or not-taken branches to be excluded from the trace cache without
hindering fetch bandwidth.  Consequently, trace cache utilization
is reduced which reduces destructive aliasing and improves hit
rates.

Trace preconstruction [6] is a rather elaborate method that is
analogous to instruction pre-fetching in the traditional memory
hierarchy.  The goal of the preconstruction algorithm is to build
probable traces prior to the point where they are utilized.
Determining these traces is achieved by identifying regions of
code that will be encountered later in the course of normal
execution.  The work by Jacobson and Smith relates to this
proposal in that the utilization of trace start points in the fill unit is
similar to the notion of region start points used during
precontruction.

Lastly, an entire set of techniques known as instruction pre-
processing optimizations can be applied to trace cache segments
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as part of the fill unit logic.  A few of these possible optimizations
are discussed in [7], and demonstrate another way the fill unit can
be used to improve performance.

3. THE SLIDING WINDOW FILL M ECHANISM

3.1 Trace Continuity and Probable Entry Points
This sub-section serves as a precursor to the next by explaining
two attributes of traces segments and trace cache:  Trace
Continuity and Probable Entry Points.  The issue of trace
continuity is best explained by way of example.  Consider a set of
basic blocks (A, B, C, D and E) that constitute a dynamic path
free of indirect jumps.  Each block is sized such that two blocks
can occupy the fill buffer without exceeding either the n or m-
constraint.  Three blocks will not fit in the buffer though, as the
number of instructions occupying the buffer will reach n before
the entire third block can be added.  This will result in a finalized
trace that ends with a sequential instruction (opposed to a control
instruction).  If such a trace begins with block A, it will be
followed by block B and the start of block C (identified as “C1”).
Similarly, if the remainder of block C appears independent of C1,
it will be identified as “C2”.  Figure 2 illustrates the fill process
for both the Rotenberg and Alternate fill schemes.

A B A B

A B A BC1 C1

B CC2 D1

C2 D

Trace
Cache

Trace
Cache

T i m e

F i l l  B u f f e r

a )   " R o t e n b e r g  e t  a l "  F i l l  P o l i c y b )   A l t e r n a t e  F i l l  P o l i c y

m = 3

C2 D E1

C D E1

D E

Figure 2:  Fill Unit Example

Table 1 lists the resulting traces generated for each scheme above.

Table 1:  Resulting Trace Segments
Rotenberg Fill
Policy

Alternate Fill Policy

A-B-C1 A-B-C1
C2-D-E1 B-C-D1

C-D-E1
D-E

The issue of trace continuity becomes evident when the PC
returns to the start of Block A.  In either scheme, the trace A-B-
C1 is fetched from the trace cache and passed down the pipeline.
The PC will then be set to the address of C2.  The Rotenberg
scheme will generate another hit (C2-D-E1).  The trace cache
implementing the alternate fill scheme will experience a miss, as
it does not store traces beginning with instructions that
dynamically follow sequential instructions. The Rotenberg
method therefore provides better trace continuity.  It should also
be clear that trace continuity is applicable only when dealing with

n-constrained traces.  If a trace is terminated by way of the m-
constraint or indirect jump, the Trace ID of the subsequent trace
will start a basic block, which does not pose a problem for either
fill approach.  Programs consisting of traces that are largely n-
constrained are subject to decreased performance using the
alternate fill scheme.  This is a result of poor trace continuity.

Despite its deficiency in maintaining trace continuity, the
alternate fill scheme does excel at generating traces at probably
entry points, or region start points.  As discussed in the context of
fetch preconstruction, these points begin regions of code that will
be encountered later in the course of normal execution.  Probable
entry points tend to start on basic block boundaries; also the
manner in which the alternate fill scheme generates traces.

3.2 The Sliding Window Fill Mechanism & Fill
Selection Table

The previous section identified two trace properties that the fill
unit should take advantage of.  The first is to maintain trace
continuity when faced with a series of one or more n-constrained
segments.  The second is to identify probable entry points and
generate traces based on these fetch addresses.   A solution that
satisfies this dual requirement involves a new scheme that
incorporates the Sliding Window Fill Mechanim (SWFM) and the
Fill Selection Table (FST).   This section proceeds with a
description of the FST followed by a description of the  SWFM.
A presentation and comparison of results is presented afterwards.

The concept of the fill selection table is fairly
straightforward.  Every cycle, the PC address that the core fetch
mechanism encounters (following a trace cache miss) is identified
as a probable entry point.  These addresses are stored in the FST.
An FST entry consists of an address tag, a valid bit and a counter.
Each time a fetch address is encountered, the count value of the
associated entry is incremented.  The fill unit will also allocate or
increment the count of a FST entry when an n-constrained trace is
constructed and added to the trace cache.  To provide multiple
accesses per cycle, the FST can be implemented as an interleaved
and/or multi-ported structure.

trace_head

trace_tail

next_instruction

Fill Direction

Figure 3:  The Sliding Window Fill Mechanism

The Sliding Window Fill Mechanism that is paired with the
FST is an extension of the alternate fill scheme examined in
Section 2.3.  The difference is that instead of “truncating-and-
shifting” an entire basic block, single instructions are trimmed one
at a time.  The SWFM is implemented as a circular buffer, as
shown in figure 3.  Pointers are used to mark the current start of a
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potential trace segment (trace_head) the final instruction of a
potential trace segment (trace_tail) and the point at which retired
instructions are added to the fill buffer (next_instruction).

When a retired instruction is added to the fill buffer the
next_instruction pointer is incremented.  At the same time, the
potential trace segment bounded by the trace_head and trace_tail
pointers is considered for addition to the trace cache (as described
shortly).  The trace_tail pointer is then adjusted according to the
following table.

Table 2:  Conditions for Adjusting the trace_tail Pointer

Fill Buffer Condition Resultant
trace_tail Value

IsControlInstruction( trace_tail ) ==
FALSE

Next-n-instr

( IsConditionalBranch( trace_tail ) ||
IsDirectJump( trace_tail ) ) &&
( IsConditionalBranch( trace_head ) ||
IsDirectJump( trace_head ) )

Next-m-instr

Trace-tail ==
trace_head

Next-m-instr

(otherwise) trace_tail
(no change)

Next-n-instr is expressed as the following conditional statement:

trace_tail = ( trace_tail – trace_head ) < n - 1 ) ?
             trace_tail + 1 : trace_tail

Next-m-instr can be described with the following algorithm:

while ( ( trace_tail – trace_head ) < n - 1 ) {
trace_tail++;

if ( trace_tail == next_instruction )
break;

if ( isControlInstruction( trace_tail ) )
break;

}

The last step in updating the state of the fill buffer is to increment
the trace_head pointer.

From an implementation standpoint, this  may seem to be a
difficult task; independently the SWFM would generate as many
traces as there are retired instructions!  The value of the SWFM is
realized when paired with the FST.  Before filling a segment to
the trace cache, a FST lookup using the trace ID is performed.  If
a corresponding entry exists, the count is compared with a defined
threshold value.  If this count meets the threshold, then the
segment is added to the trace cache, and the FST entry is cleared.
Otherwise, the state of the fill buffer is updated as described in the
previous paragraph, effectively discarding the lead instruction.
One final task of the fill buffer is to allocate or increment the
count of an FST entry for any address that follows a n-constrained
segment that gets added to the trace cache.  In summary, the
SWFM/FST combination identifies, constructs and fills traces
starting with fetch IDs that have been previously encountered or
those that immediately follow n-constrained traces.

4. SIMULATION AND RESULTS

4.1 Simulator Design
The SimpleScalar toolset was used as a starting point to verify the
SWFM.  The sim-outorder functional simulator, which modeled a
superscalar, out-of-order issue pipelined CPU, was extended to
accommodate trace cache schemes with a fair amount of

complexity in a modular fashion.  Using this approach, schemes
ranging from the Rotenberg trace cache to more complex varieties
could be implemented within the same uniform template.  The
primary goals associated with the design of the extension were
flexibility and extensibility.  Implementation in object-oriented
C++ provided the means to fulfill the above, in addition to
establishing a intuitive platform for further expansion.  The reader
is encouraged to reference [1] for further details on the simulator
design.

4.2 Simulator Configuration
The sim-outorder parameters that were used in the simulation are
given below in Table 3.  Parameters that are not listed (such as
latencies and penalties) were assigned default values by sim-
outorder.  Additional detail is provided in [1].

Simulation Parameter Value
Decode/Issue/Commit Widths 16
IFQ Entries 128
RUU/LSQ Entries 512/256
Integer ALUs/Multiplication
Units

16/4

FP ALUs/Multiplication Units 16/4
L1 I-Cache

Size (lines) 1024
Line size 32
Associativity Direct

Mapped
Multiple Branch Predictor
(MPAg)

PAT entries 1024
PAT width (bits) 10
PHT entries 1024

BTB
Entries 512
Associativity 4-way

RAS depth 8

Figure 3:  Simulation Configuration
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4.3 Benchmarks Used
The benchmarks chosen represent a variety of modern
computational problems while possessing the benefits of
relatively compact sizes and short run-times.  The latter aspect
was important to this study, as several trials were run to gain a
perspective on a variety of schemes and organizations.  Ten
programs constituted the benchmark set.  Table 4 presents a
description of the benchmarks, the respective type of computation
that each is characteristic of.  A comprehensive overview of the
benchmark programs and input sets is provided in [1].

Table 4:  Benchmark Set Utilized
Bnchmrk

Name
Description Computation

Type

roots
Finds root of a nonlinear equation via

Bisection, Secant and Newton's
methods.

Scientific Kernel

solve Computes the root approx. for a
polynomial using the bisection method. Scientific Kernel

integ
Finds the approx. value for the definite

integral of f(x) using Simpson's &
Trapezoidal rule.

Scientific Kernel

lag Lagrange interpolation of a set of data
points, returns the value of function at x.

Scientific Kernel

matrix Matrix multiplication Scientific Kernel

gzip File compression using Lempel-Ziv Integer

djpeg JPEG image decompression Multimedia

cjpeg JPEG image compression Multimedia

fft Performs Fast Fourier Transform on n
random sinusoids sampling m times. Embedded/DSP

inv_fft Performs the inverse FFT Embedded/DSP

4.3 Simulation Results
To observe how the Sliding Window Fill Mechanism affects

the trace cache hit rate, a set of simulations were performed in
which the fill selection threshold value was adjusted.  The
threshold value of the FST has a substantial effect on the number
of unique traces added.  Table 3 compares the number of traces
added for each of the six FST threshold values.  Figure 4 shows
that that the best trace cache hit rate is obtained using a value of
two or three.

Table 3:  Number of Unique Traces Added
Bnchmrk T=1 T=2 T=3 T=4 T=8 T=16
roots 25,725 4,828 2,121 1,828 837 327
solve 19,308 2,856 1,579 1,058 444 237
integ 11,480 1,968 1,013 708 303 144
lag 16,269 2,609 1,149 800 360 172

matrix 6,829 1,622 803 567 326 238
gzip 56,020 16,274 11,214 7,784 4,728 2,496
djpeg 327,289 25,265 15,770 11,488 5,297 2,344
cjpeg 303,101 39,720 24,436 18,703 8,666 4,500
fft 334,094 48,395 23,438 17,495 6,313 2,228

inv_fft 653,229 82,096 37590 26,158 10,167 3,068

Trace Cache Hit Rate Using the Sliding Window Fill Scheme and the FST
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Figure 4:  Hit Rate for SWFM using various FST Thresholds

Choosing a FST threshold of 2, the advantage of the Sliding
Window Fill Mechanism can be shown through comparison with
the Rotenberg scheme.  Baring a few exceptions (gzip yielded
consistently poor regardless of trace cache scheme), the hit rate
and fetch bandwidths notably increased as shown in Figure 5 and
6.  The average hit rate increase was 7% using the SWFM.

To conclude this study, two trace cache schemes that
provided favorable results were combined:  Branch Promotion and
the Sliding Window Fill Mechanism.  Intuitively, these schemes
seem to compliment each other, as the SWFM excels at
generating relevant traces, while branch promotion increases trace
segment utilization by reducing the number of traces that are
prematurely terminated by the m-constraint.  The expectation that
the merged scheme would increase trace cache hit rate along with
the fetch held true, as figures 7 and 8 illustrate. For both metrics,
the combined scheme outperformed branch promotion and the
SWFM when implemented separately.  The average hit rate
increase over the Rotenberg scheme for this combined scheme
was 19%.  The fetch bandwidth improved, on average, 17% over
the Rotenberg scheme.

5. CONCLUSION
This paper proposed a new fill unit scheme for trace cache

that exploits trace continuity and identifies probable start regions
to improve trace cache hit rate.  Through simulation, it has been
shown that this method increased hit rates by an average of 7%
independently, and by an average of 19% when combined with
branch promotion.  The combined scheme also yielded a 17%
increase in fetch bandwidth.  These results demonstrate that the
Sliding Window Fill Mechanism can contribute to the overall
performance of a processor that utilizes an aggressive trace cache
scheme.
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Hit Rate Comparison

 (Rotenberg vs. Sliding Window Fill Mechanism)

0%

10%

20%

30%

40%

50%

60%

70%

80%

roots solve integ lag matrix gzip djpeg cjpeg fft inv_fft

T
ra

ce
 C

a
ch

e
 H

it 
R

a
te

Rotenberg

SWFM/FST

Figure 5:  Trace Cache Hit Rate using the SWFM
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Figure 6:  Fetch Bandwidth using the SWFM
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Figure 7:  Fetch Bandwidth Increase for Combined Scheme
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