
Continuous Speculative Program Parallelization in Software

Chao Zhang‡, Chen Ding†, Xiaoming Gu†, Kirk Kelsey†,
Tongxin Bai†, Xiaobing Feng!

†Department of Computer Science, University of Rochester
!Key Laboratory of Computer System and Architecture,

Institute of Computing Technology, Chinese Academy of Sciences
‡Intel China Research Center

Abstract
This paper addresses the problem of extracting coarse-grained par-
allelism from large sequential code. It builds on BOP, a system for
software speculative parallelization. BOP lets a user to mark pos-
sibly parallel regions (PPR) in a program and at run-time specula-
tively executes PPR instances using Unix processes. This short pa-
per presents a new run-time support called continuous speculation,
which fully utilizes available parallelism to tolerate differences in
PPR task size and processor speed.

Categories and Subject Descriptors D.3.4 [Software]: PRO-
GRAMMING LANGUAGES—Processors

General Terms Languages, Performance

Keywords Software speculative parallelization

1. Introduction
The initial BOP system used batch speculation, which spawns k
tasks on k processors and stops new spawning until the current
batch of tasks finish. Batch speculation can cause hardware under-
utilization for at least four reasons.

• Uneven task size In the extreme case, one task takes much
longer than other tasks, and all k − 1 processors will be idle
waiting.

• Inter-spawn delay The delay is caused by the time spent in
executing the code between PPR blocks. With such delay, even
tasks of the same size do not finish at the same time, again
leaving some processors idle.

• Sequential commit Virtually all speculative systems check cor-
rectness in the sequential order, one task at a time. Later checks
always happen at a time when the early tasks are over and their
processors are idle. In fact, this makes full utilization impossi-
ble with a single-group activity window.

Copyright is held by the author/owner(s).
PPoPP’10, January 9–14, 2010, Bangalore, India.
ACM 978-1-60558-708-0/10/01.

• Asymmetrical hardwareNot all processors have the same speed.
A hyperthreaded core has a different speed when running one
or two tasks. As a result, identical tasks may take a different
amount of time to finish.

In this short paper, we describe continuous speculation, which
starts a speculation task whenever a processor becomes available.
For full details of the system, its evaluation, and a discussion of
related work, we refer the reader to a full technical report [2].

2. Continuous Speculation
2.1 Basic Concepts
Process-based speculation A process has several useful proper-
ties for speculative execution. A process can be used to start a
speculation task anywhere in the code. It is easier to monitor when
using the page protection mechanism. Processes are well isolated
from each other, allowing easy error recovery. Modern OS performs
copy-on-write, which enables on-demand data replication.

Group commit In a process-based implementation, a correct
speculation task must explicitly copy the changed data to later
tasks. For a group of k concurrent tasks on k processors, each task
can copy its data in two ways: either to the next task or to the last
task of the group. The latter choice has the minimal, linear cost,
where each changed datum is copied only once. We call this choice
group commit or group update.

Implicit synchronization A parallel task should finish before its
result is used. The use point is statically specified in languages such
as OpenMP, Java, and Cilk. For BOP the first use point of a PPR task
happens at the first parallel conflict, which is detected automatically
by the speculation substrate.

Understudy-based recovery Speculation may fail in two ways:
either a speculative task incurs a conflict, or it takes too long to
finish. BOP overcomes both types of failures with the use of an un-
derstudy task. The understudy task starts from the last correct state
and non-speculatively executes the program alongside the specu-
lative execution. It executes at the same speed as the unmodified
sequential code. Parallel execution succeeds if it incurs no conflict
and finishes faster than the understudy.

2.2 Dual-group Activity Window
A dual-group activity window divides the active tasks into two
groups based on their spawning order in such a way that every task



in the first group is earlier than any task in the second group. When
a task in either group finishes execution, the next task enters the
window into the second group. When all tasks in the first group
complete the group commit, the entire group exits, and the second
group stops expanding and becomes the first group in the window.
For a speculative system that requires group commits, the dual-

group activity window is both a necessary and sufficient solution
to maximize hardware utilization. Next we briefly describe four
components of the design.

Token passing For a system with p available processors, we need
to reserve one for competitive recovery (as discussed later in this
section). We use k = p − 1 processor tokens to maintain k active
tasks. The first k tasks in a program form the first group. They
start without waiting for a token but finish by passing a token. Each
later task waits for a process token before executing and releases
the token after finishing. To divide active tasks into two groups, we
use a group token, which is passed by the first group after a group
commit to the next new task entering the activity window. The new
task becomes the first task of the next group.

Variable vs. fixed window size The activity window can be of a
fixed size or a variable size. Token passing bounds the group size
from below to be at least k, the number of processor tokens. It does
not impose an upper bound because it allows the second group to
grow to an arbitrary size to make up for the lack of parallelism in
the activity window. Conceivably there is a danger of a runaway
window growth as a large group begets an even larger group. To
bound the window and group size, we augment the basic control
by storing the processor tokens when the second group exceeds
a specific size. The window expansion stops until the first group
finishes and releases the group token. In evaluation, we found that
token passing creates an “elastic” window that naturally contracts
and does not enter a run away expansion. However, the benefit of
variable over fixed window size is small in our tests.

Triple updates Upon successful completion, a speculative task
needs to commit its changes to shared data. In a process-based
design, this means copying modified pages from the task process
to other processes. In continuous speculation, a modified page is
copied three times in a scheme we call triple updates. Consider
group g. The first update happens at the group commit and copies
modified pages in all but the last task of g to the last task. The sec-
ond update happens before group g+2 and copies the data changes
in g to g+2. The third update of group g happens at the end of group
g+1 and copies the data changes in g to g+1. In process-based de-
sign, inter-task copying is implemented by communication pipes.
We need 3 pipes for each group. Since the activity window has two
groups, we need a total of 6 pipes, independent of the size of the
activity window.

Competitive recovery In continuous speculation, the understudy
task is started after the first task, as illustrated in Figure 1. As the
activity window advances, the understudy task is re-started after
each task group. An understudy task is always active (after the
first task) as long as speculation continues. As a result, it requires
a processor constantly, leaving one fewer processor for parallel
execution. We refer to this as the “missing processor” problem in
continuous speculation.
A question is where to draw the finish line for the parallel-

sequential race. Since the understudy is run with two speculation
groups, it has two possible finish lines: the completion of the first
group or the completion of both groups. We choose the second be-
cause favoring speculation means that it won’t give up the compe-
tition as long as there is a chance the parallel execution may finish
early. A victory by the understudy, on the other hand, means no
performance improvement and no benefit from parallel execution.

Figure 1. Example execution of 9 PPR tasks on 3 processors,
showing the use of token passing and triple updates. Processor
tokens are passed along solid lines with a double headed arrow.
The group token is passed along dotted lines. The hands point to
the triple updates by the first two groups. Continuous speculation
maintains 2 active speculation tasks and 1 understudy task (marked
“UNDY”) at all times.

An example Figure 1 shows an example of continuous specula-
tion. There are 9 PPR tasks, represented by vertical bars marked
with i = 1, . . . , 9. There are 3 processors p = 3, so there are
k = p − 1 = 2 processor tokens. The first 3 PPR tasks form the
first group, A. When a task finishes, it passes a processor token,
shown by a line with a double headed arrow, to a task in the next
group B. When group A finishes, it passes the group token, shown
by a dotted line, to start group C. The tasks enter the activity win-
dow one individual at a time and leave the window one group at
a time. In the steady state, it maintains two task groups with two
speculation tasks active at all times. This can be seen in the figure.
For example, the token passing mechanism delays task B1 until a
processor is available.
After finishing, group A copies its speculative changes three

times: at the end of A for the understudy of B, at the end of B for
the understudy of C, and at the start of C for speculation of C and
later PPRs. The understudy tasks are marked “UNDY”. An under-
study task is always running during the continuous speculation.

Acknowledgments
The research is supported by the National Science Foundation
(Contract No. CCR-0238176, CNS-0834566, CNS-0720796), IBM
CAS Faculty Fellowship, and a gift from Microsoft Research. The
initial system design was inspired by RingSTM [1]. We also wish
to thank Jingliang Zhang at ICT for help with the implementation
of BOP-malloc.

References
[1] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable

transactions with a single atomic instruction. In Proceedings of SPAA,
pages 275–284, June 2008.

[2] C. Zhang, C. Ding, K. Kelsey, T. Bai, X. Gu, and X. Feng. A language of
suggestions for program parallelization. Technical Report URCS #948,
Department of Computer Science, University of Rochester, 2009.


