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ABSTRACT
As computer memory hierarchy becomes adaptive, its performance
increasingly depends on forecasting the dynamic program locality.
This paper presents a method that predicts the locality phases of a
program by a combination of locality profiling and run-time pre-
diction. By profiling a training input, it identifies locality phases
by sifting through all accesses to all data elements using variable-
distance sampling, wavelet filtering, and optimal phase partition-
ing. It then constructs a phase hierarchy through grammar com-
pression. Finally, it inserts phase markers into the program using
binary rewriting. When the instrumented program runs, it uses the
first few executions of a phase to predict all its later executions.

Compared with existing methods based on program code and ex-
ecution intervals, locality phase prediction is unique because it uses
locality profiles, and it marks phase boundaries in program code.
The second half of the paper presents a comprehensive evaluation.
It measures the accuracy and the coverage of the new technique and
compares it with best known run-time methods. It measures its ben-
efit in adaptive cache resizing and memory remapping. Finally, it
compares the automatic analysis with manual phase marking.The
results show that locality phase prediction is well suited for identi-
fying large, recurring phases in complex programs.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—optimization,
compilers

General Terms
Measurement, Performance, Algorithms

Keywords
program phase analysis and prediction, phase hierarchy, locality
analysis and optimization, reconfigurable architecture, dynamic op-
timization
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1. INTRODUCTION
Memory adaptation is increasingly important as the memory hi-

erarchy becomes deeper and more adaptive, and programs exhibit
dynamic locality. To adapt, a program may reorganize its data lay-
out multiple times during an execution. Several studies have exam-
ined dynamic data reorganization at the program level [11, 15, 25,
27, 32] and at the hardware level [20, 35]. They showed impressive
improvements in cache locality and prefetching efficiency.Unfor-
tunately, these techniques are not yet widely used partly because
they need manual analysis to find program phases that benefit from
memory adaptation. In this paper, we show that this problem can
be addressed by locality-based phase prediction.

Following early studies in virtual memory management by Bat-
son and Madison [4] and by Denning [8], we define a locality phase
as a period of a program execution that has stable or slow chang-
ing data locality inside the phase but disruptive transition periods
between phases. For optimization purpose, we are interested in
phases that are repeatedly executed with similar locality.While
data locality is not easy to define, we use a precise measure inthis
paper. For an execution of a phase, we measure the locality byits
miss rate across all cache sizes and its number of dynamic instruc-
tions. At run time, phase prediction means knowing a phase and
its locality whenever the execution enters the phase. Accurate pre-
diction is necessary to enable large-scale memory changes while
avoiding any adverse effects.

Many programs have recurring locality phases. For example,a
simulation program may test the aging of an airplane model. The
computation sweeps through the mesh structure of the airplane re-
peatedly in many time steps. The cache behavior of each time step
should be similar because the majority of the data access is the same
despite local variations in control flow. Given a different input, for
example another airplane model or some subparts, the locality of
the new simulation may change radically but it will be consistent
within the same execution. Similar phase behavior are common in
structural, mechanical, molecular, and other scientific and commer-
cial simulations. These programs have great demand for comput-
ing resources. Because of their dynamic but stable phases, they are
good candidates for adaptation, if we can predict locality phases.

We describe a new prediction method that operates in three steps.
The first analyzes the data locality in profiling runs. By examin-
ing the distance of data reuses in varying lengths, the analysis can
“zoom in” and “zoom out” over long execution traces and detects
locality phases usingvariable-distance sampling, wavelet filtering,
andoptimal phase partitioning. The second step then analyzes the
instruction trace and identifies the phase boundaries in thecode.
The third step uses grammar compression to identify phase hier-
archies and then inserts program markers through binary rewrit-
ing. During execution, the program uses the first few instances of a



phase to predict all its later executions. The new analysis considers
both program code and data access. It inserts static markersinto
the program binary without accessing the source code.

Phase prediction has become a focus of much recent research.
Most techniques can be divided into two categories. The firstis
interval based. It divides a program execution into fixed-length in-
tervals and predicts the behavior of future intervals from past ob-
servations. Interval-based prediction can be implementedentirely
and efficiently at run time [2, 3, 9, 10, 13, 30]. It handles arbi-
trarily complex programs and detects dynamically changingpat-
terns. However, run-time systems cannot afford detailed data anal-
ysis much beyond counting the cache misses. In addition, it is un-
clear how to pick the interval length for different programsand for
different inputs of the same program. The second category iscode
based. It marks a subset of loops and functions as phases and es-
timates their behavior through profiling [17, 21, 22]. Pro-active
rather than reactive, it uses phase markers to control the hardware
and reduce the need for run-time monitoring. However, the pro-
gram structure may not reveal its locality pattern. A phase may
have many procedures and loops. The same procedure or loop may
belong to different locality phases when accessing different data at
different invocations. For example, a simulation step in a program
may span thousands of lines of code with intertwined function calls
and indirect data access.

In comparison, the new technique combines locality analysis and
phase marking. The former avoids the use of fixed-size windows
in analysis or prediction. The latter enables pro-active phase adap-
tation. In addition, the phase marking considers all instructions in
the program binary in case the loop and procedure structuresare
obfuscated by an optimizing compiler.

In evaluation, we show that the new analysis finds recurring phases
of widely varying sizes and nearly identical locality. The phase
length changes in tune with program inputs and ranges from two
hundred thousand to three billion instructions—thislength is pre-
dicted with 99.5% accuracy. We compare it with other phase pre-
diction methods, and we show its use in adaptive cache resizing and
phase-based memory remapping.

Locality phase prediction is not effective on all programs.Some
programs may not have predictable phases. Some phases may not
be predictable from its data locality. We limit our analysisto pro-
grams that have large predictable phases, which nevertheless in-
clude important classes of dynamic programs. For some programs
such as a compiler or a database, the analysis can still identify
phases but cannot predict the exact locality.

2. HIERARCHICAL PHASE ANALYSIS
This section first motivates the use of locality analysis andthen

describes the steps of locality-based phase prediction.

2.1 Locality Analysis Using Reuse Distance
In 1970, Mattson et al. defined theLRU-stack distanceas the

number of distinct data elements accessed between two consecu-
tive references to the same element [24]. They summarized the
locality of an execution by the distance histogram, which deter-
mines the miss rate of fully-associative LRU cache of all sizes.
Building on decades of development by others, our earlier work
reduced the analysis cost to near linear time. A number of recent
studies found that reuse-distance histograms change in predictable
patterns in many programs [12, 14, 23, 28]. In this work we go one
step further to see whether predictable patterns exist for subparts of
a program. For brevity we call the LRU stack distance betweentwo
accesses of the same data thereuse distanceof the second access.

Reuse distance reveals patterns in program locality. We usethe
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Figure 1: The reuse-distance trace of Tomcatv

example ofTomcatv, a vectorized mesh generation program from
SPEC95 known for its highly memory-sensitive performance.Fig-
ure 1 shows the reuse distance trace. Each data access is a point
in the graph—thex-axis gives the logical time (i.e. the number of
data accesses), and they-axis gives the reuse distance1. The points
are so numerous that they emerge as solid blocks and lines.

The reuse distance of data access changes continuously through-
out the trace. We define a phase change as an abrupt change in
data reuse pattern. In this example, the abrupt changes divide the
trace into clearly separated phases. The same phases repeatin a
fixed sequence. Reading the code documentation, we see indeed
that the program has a sequence of time steps, each has five sub-
steps—preparation of data, residual values, solving two tridiagnoal
systems, and adding corrections. What is remarkable is thatwe
could see the same pattern from the reuse distance trace without
looking at the program.

The example confirms four commonly held assumptions about
program locality. First, the data locality may change constantly in
an execution; however, major shifts in program locality aremarked
by radical rather than gradual changes. Second, locality phases
have different lengths. The size of one phase has little relation with
the size of others. Third, the size changes greatly with program
inputs. For example, the phases ofTomcatvcontain a few hundred
million memory accesses in a training run but over twenty-five bil-
lion memory accesses in a test run. Finally, a phase often recurs
with similar locality.A phase is a unit of repeating behavior rather
than a unit of uniform behavior.To exploit these properties, local-
ity phase prediction uses reuse distance to track fine-grainchanges
and find precise phase boundaries. It uses small training runs to
predict larger executions.

Reuse distance measures locality better than pure program or
hardware measures. Compiler analysis cannot fully analyzelocal-
ity in programs that have dynamic data structures and indirect data
access. The common hardware measure, the miss rate, is defined
over a window. Even regular programs may have irregular cache
miss rate distributions when we cut them into windows, as shown
later in Figure 3. It is difficult to find a fixed window size that
matches the phases of unequal lengths. We may use the miss trace,
but a cache miss is a binary event—hit or miss for a given cache
configuration. In comparison, reuse distance is a precise scale. It
is purely a program property, independent of hardware configura-
tions.

1To reduce the size of the graph, we show the reuse distance trace
after variable-distance sampling described in Section 2.2.1.



To speculate is to see. Reuse distance shows an interesting pic-
ture of program locality. Next we present a system that automati-
cally uncovers the hierarchy of locality phases from this picture.

2.2 Off-line Phase Detection
Given the execution trace of training runs, phase detectionop-

erates in three steps: variable-distance sampling collects the reuse
distance trace, wavelet filtering finds abrupt changes, and finally,
optimal phase partitioning locates the phase boundary.

2.2.1 Variable-Distance Sampling
Instead of analyzing all accesses to all data, we sample a small

number of representative data. In addition, for each data, we record
only long-distance reuses because they reveal global patterns.
Variable-distance sampling is based on the distance-basedsampling
described by Ding and Zhong [12]. Their sampler uses ATOM to
generate the data access trace and monitors the reuse distance of
every access. When the reuse distance is above a threshold (the
qualification threshold), the accessed memory location is taken as
a data sample. A later access to a data sample is recorded as an
access sample if the reuse distance is over a second threshold (the
temporal threshold). To avoid picking too many data samples, it re-
quires that a new data sample to be at least a certain space distance
away (thespatial threshold) in memory from existing data samples.

The three thresholds in Ding and Zhong’s method are difficult
to control. Variable-distance sampling solves this problem by us-
ing dynamic feedback to find suitable thresholds. Given an arbi-
trary execution trace, its length, and the target number of samples,
it starts with an initial set of thresholds. It periodicallychecks
whether the rate of sample collection is too high or too low consid-
ering the target sample size. It changes the thresholds accordingly
to ensure that the actual sample size is not far greater than the target.
Since sampling happens off-line, it can use more time to find ap-
propriate thresholds. In practice, variable-distance sampling finds
15 thousand to 30 thousand samples in less than 20 adjustments
of thresholds. It takes several hours for the later steps of wavelet
filtering and optimal phase partitioning to analyze these samples,
although the long time is acceptable for our off-line analysis and
can be improved by a more efficient implementation (currently us-
ing Matlab and Java).

The variable-distance sampling may collect samples at an un-
even rate. Even at a steady rate, it may include partial results for
executions that have uneven reuse density. However, the target
sample size is large. The redundancy ensures that these samples
together contain elements in all phase executions. If a datasample
has too few access samples to be useful, the next analysis step will
remove them as noise.

2.2.2 Wavelet Filtering
Viewing the sample trace as a signal, we use theDiscrete Wavelet

Transform (DWT)as a filter to expose abrupt changes in the reuse
pattern. The DWT is a common technique in signal and image
processing [7]. It shows the change of frequency over time. As a
mutli-resolution analysis, the DWT applies two functions to data:
the scale function and the wavelet function. The first smooths the
signal by averaging its values in a window. The second calculates
the magnitude of a range of frequencies in the window. The win-
dow then shifts through the whole signal. After finishing thecal-
culations on the whole signal, it repeats the same process atthe
next level on the scaled results from the last level instead of on the
original signal. This process may continue for many levels as a
multi-resolution process. For each point on each level, a scaling
and a wavelet coefficient are calculated using the variations of the

following basic formulas:

cj(k) = < f(x), 2−j
φ(2−j

x− k) >

wj(k) = < f(x), 2−j
ψ(2−j

x− k) >

where,< a, b > is the scaler product ofa and b, f(x) is the
input signal,j is the analysis level,φ andψ are the scaling and
wavelet function respectively. Many different wavelet families ex-
ist in the literature, such asHaar, Daubechies, andMexican-hat.
We useDaubechies-6in our experiments. Other families we have
tested produce a similar result. On high-resolution levels, the points
with high wavelet coefficient values signal abrupt changes;there-
fore they are likely phase changing points.

The wavelet filtering takes the reuse-distance trace of eachdata
sample as a signal, then computes the level-1 coefficient foreach
access and removes from the trace the accesses with a low wavelet
coefficient value. An access is kept only if its coefficientω >

m+ 3δ, wherem is the mean andδ is the standard deviation. The
difference between this coefficient and others is statistically signifi-
cant. We have experimented with coefficients of the next fourlevels
and found the level-1 coefficient adequate.

Figure 2 shows the wavelet filtering for the access trace of a data
sample inMolDyn, a molecular dynamics simulation program. The
filtering removes accesses during the gradual changes because they
have low coefficients. Note that it correctly removes accesses that
correspond to local peaks. The remaining four accesses indicate
global phase changes.

Sherwood et al. used the Fourier transform to find periodic pat-
terns in execution trace [29]. The Fourier transform shows the fre-
quencies appeared during the whole signal. In comparison, wavelets
gives thetime-frequencyor the frequencies appeared over time.
Joseph et al. used wavelets to analyze the change of processor
voltage over time and to make on-line predictions using an effi-
cient Haar-wavelet implementation [18]. We use wavelets similar
to their off-line analysis but at much finer granularity (because of
the nature of our problem). Instead of filtering the access trace of
all data, we analyze the sub-trace for each data element. This is
critical because a gradual change in the subtrace may be seenas an
abrupt change in the whole trace and cause false positives inthe
wavelet analysis. We will show an example later in Figure 3 (b),
where most abrupt changes seen from the whole trace are not phase
changes.

After it filters the sub-trace of each data sample, the filtering
step recompiles the remaining accesses of all data samples in the
order of logical time. The new trace is called afiltered trace. Since
the remaining accesses of different data elements may signal the
same phase boundary, we use optimal phase partitioning to further
remove these redundant indicators.

Figure 2: A wavelet transform example, where gradual changes
are filtered out



2.2.3 Optimal Phase Partitioning
At a phase boundary, many data change their access patterns.

Since the wavelet filtering removes reuses of the same data within
a phase, the remaining is mainly accesses to different data samples
clustered at phase boundaries. These two properties suggest two
conditions for a good phase partition. First, a phase shouldinclude
accesses to as many data samples as possible. This ensures that
we do not artificially cut a phase into smaller pieces. Second, a
phase should not include multiple accesses of the same data sample,
since data reuses indicate phase changes in the filtered trace. The
complication, however, comes from the imperfect filtering by the
wavelet transform. Not all reuses represent a phase change.

We convert the filtered trace into a directed acyclic graph where
each node is an access in the trace. Each node has a directed edge to
all succeeding nodes. Each edge (from accessa to b) has a weight
defined asw = αr + 1, where1 ≥ α ≥ 0, andr is the num-
ber of node recurrences betweena andb. For example, the trace
aceefgefbd has two recurrences ofe and one recurrence off be-
tweenc andb, so the edge weight between the two nodes is3α+1.

Intuitively, the weight measures how fit the segment froma to b
is as a phase. The two factors in the weight penalize two tendencies.
The first is the inclusion of reuses, and the second is the creation of
new phases. The optimal case is a minimal number of phases with
least reuses in each phase. Since the trace is not perfect, the weight
and the factorα control the relative penalty for too large or too
small phases. Ifα is 1, we prohibit any reuses in a phase. We may
have as many phases as the length of the filtered trace. The result
whenα ≥ 1 is the same asα = 1. If α is 0, we get one phase. In
experiments, we found that the phase partitions were similar when
α is between 0.2 and 0.8, suggesting that the noise in the filtered
trace was acceptable. We usedα = 0.5 in the evaluation.

Onceα is determined, shortest-path analysis finds a phase parti-
tion that minimizes the total penalty. It adds two nodes: a source
node that has directed edges flowing to all original nodes, and a
sink node that has directed edges coming from all original nodes.
Any directed path from the source to the sink gives a phase parti-
tion. The weight of the path is its penalty. Therefore, the best phase
partition gives the least penalty, and it is given by the shortest path
between the source and the sink.

Summary of off-line phase detectionThe program locality is a
product of all accesses to all program data. The phase detection
first picks enough samples in time and space to capture the high-
level pattern. Then it uses wavelets to remove the temporal redun-
dancy and phase partitioning to remove the spatial redundancy. The
next challenge is marking the phases in program code. The wavelet
filtering loses accurate time information because samples are con-
sidered a pair at a time (to measure the difference). In addition, the
locality may change through a transition period instead of atran-
sition point. Hence the exact time of a phase change is difficult to
attain. We address this problem in the next step.

2.3 Phase Marker Selection
The instruction trace of an execution is recorded at the granular-

ity of basic blocks. The result is a block trace, where each element
is the label of a basic block. This step finds the basic blocks in
the code that uniquely mark detected phases. Previous program
analysis considered only a subset of code locations, for example
function and loop boundaries [17, 21, 22]. Our analysis examines
all instruction blocks, which is equivalent to examining all program
instructions. This is especially important at the binary level, where
the high level program structure may be lost due to aggressive com-
piler transformations such as procedure in-lining, software pipelin-
ing, loop fusion, and code compression.

As explained earlier, phase detection finds the number of phases
but cannot locate the precise time of phase transitions. Thepreci-
sion is in the order of hundreds of memory accesses while a typical
basic block has fewer than ten memory references. Moreover,the
transition may be gradual, and it is impossible to locate a single
point. We solve this problem by using the frequency of the phases
instead of the time of their transition.

We define the frequency of a phase by the number of its execu-
tions in the training run. Given the frequency found by the last step,
we want to identify a basic block that is always executed at the be-
ginning of a phase. We call it themarker blockfor this phase. If the
frequency of a phase isf , the marker block should appear no more
thanf times in the block trace. The first step of the marker selec-
tion filters the block trace and keeps only blocks whose frequency
is no more thanf . If a loop is a phase, the filtering will remove
the occurrences of the loop body block and keep only the header
and the exit blocks. If a set of mutual recursive functions forms a
phase, the filtering will remove the code of the functions andkeep
only the ones before and after the root invocation. After filtering,
the remaining blocks are candidate markers.

After frequency-based filtering, the removed blocks leave large
blank regions between the remaining blocks. If a blank region is
larger than a threshold, it is considered as a phase execution. The
threshold is determined by the length distribution of the blank re-
gions, the frequency of phases, and the execution length. Since the
training runs had at least 3.5 million memory accesses, we simply
used 10 thousand instructions as the threshold. In other words, a
phase execution must consume at least 0.3% of the total execution
to be considered significant. We can use a smaller threshold to find
sub-phases after we find large phases.

Once the phase executions are identified, the analysis considers
the block that comes after a region as markers marking the bound-
ary between the two phases. Two regions are executions of the
same phase if they follow the same code block. The analysis picks
markers that mark most if not all executions of the phases in the
training run. We have considered several improvements thatcon-
sider the length of the region, use multiple markers for the same
phase, and correlate marker selection across multiple runs. How-
ever, this basic scheme suffices for programs we tested.

Requiring the marker frequency to be no more than the phase
frequency is necessary but not sufficient for phase marking.A
phase may be fragmented by infrequently executed code blocks.
However, a false marker cannot divide a phase more thanf times.
In addition, the partial phases will be regrouped in the nextstep,
phase-hierarchy construction.

2.4 Marking The Phase Hierarchy
Hierarchical construction Given the detected phases, we con-

struct a phase hierarchy using grammar compression. The pur-
pose is to identify composite phases and increase the granularity
of phase prediction. For example, for theTomcatvprogram showed
in Figure 1, every five phase executions form a time step that re-
peats as a composite phase. By constructing the phase hierarchy,
we find phases of the largest granularity.

We use SEQUITUR, a linear-time and linear-space compression
method developed by Nevill-Manning and Witten [26]. It com-
presses a string of symbols into a Context Free Grammar. To build
the phase hierarchy, we have developed a novel algorithm that ex-
tracts phase repetitions from a compressed grammar and represents
them explicitly as a regular expression. The algorithm recursively
converts non-terminal symbols into regular expressions. It remem-
bers previous results so that it converts the same non-terminal sym-
bol only once. A merge step occurs for a non-terminal once its



right-hand side is fully converted. Two adjacent regular expressions
are merged if they are equivalent (using for example the equivalent
test described by Hopcroft and Ullman [16]).

SEQUITUR was used by Larus to find frequent code paths [19]
and by Chilimbi to find frequent data-access sequences [5]. Their
methods model the grammar as a DAG and finds frequent sub-
sequences of a given length. Our method traverses the non-terminal
symbols in the same order, but instead of finding sub-sequences, it
produces a regular expression.

Phase marker insertionThe last step uses binary rewriting to
insert markers into a program. The basic phases (the leaves of the
phase hierarchy) have unique markers in the program, so their pre-
diction is trivial. To predict the composite phases, we insert a pre-
dictor into the program. Based on the phase hierarchy, the predictor
monitors the program execution and makes predictions basedon
the on-line phase history. Since the hierarchy is a regular expres-
sion, the predictor uses a finite automaton to recognize the current
phase in the phase hierarchy. In the programs we tested so far, this
simple method suffices. The cost of the markers and the predictor
is negligible because they are invoked once per phase execution,
which consists of on average millions of instructions as shown in
the evaluation.

3. EVALUATION
We conduct four experiments. We first measure the granularity

and accuracy of phase prediction. We then use it in cache resizing
and memory remapping. Finally, we test it against manual phase
marking. We compare with other prediction techniques in thefirst
two experiments.

Our test suite is given in Table 1. We pick programs from differ-
ent sets of commonly used benchmarks to get an interesting mix.
They represent common computation tasks in signal processing,
combinatorial optimization, structured and unstructuredmesh and
N-body simulations, a compiler, and a database.FFT is a ba-
sic implementation from a textbook. The next six programs are
from SPEC: three are floating-point and three are integer programs.
Three are from SPEC95 suite, one from SPEC2K, and two (with
small variation) are from both. Originally from the CHAOS group
at University of Maryland,MolDynandMeshare two dynamic pro-
grams whose data access pattern depends on program inputs and
changes during execution [6]. They are commonly studied in dy-
namic program optimization [11, 15, 25, 32]. The floating-point
programs from SPEC are written in Fortran, and the integer pro-
grams are in C. Of the two dynamic programs,MolDyn is in For-
tran, andMeshis in C. We note that the choice of source-level lan-
guages does not matter because we analyze and transform programs
at the binary level.

For programs from SPEC, we use thetestor thetrain input for
phase detection and theref input for phase prediction. For the pre-
diction of Mesh, we used the same mesh as that in the training
run but with sorted edges. For all other programs, the prediction
is tested on executions hundreds times longer than those used in
phase detection.

We use ATOM to instrument programs to collect the data and
instruction trace on a Digital Alpha machine [31]. All programs
are compiled by the Alpha compiler using “-O5” flag. After phase
analysis, we again use ATOM to insert markers into programs.

3.1 Phase Prediction
We present results for all programs except forGcc andVortex,

which we discuss at the end of this section. We first measure the
phase length and then look at the phase locality in detail.

Table 2 shows two sets of results. The upper half shows the

Table 1: Benchmarks

Benchmark Description Source
FFT fast Fourier transformation textbook
Applu solving five coupled nonlinear PDE’sSpec2KFp
Compress common UNIX compression utility Spec95Int
Gcc GNU C compiler 2.5.3 Spec95Int
Tomcatv vectorized mesh generation Spec95Fp
Swim finite difference approximations for Spec95Fp

shallow water equation
Vortex an object-oriented database Spec95Int
Mesh dynamic mesh structure simulation CHAOS
MolDyn molecular dynamics simulation CHAOS

accuracy and coverage of strict phase prediction, where we require
that phase behavior repeats exactly including its length. Except for
MolDyn, the accuracy is perfect in all programs, that is,the number
of the executed instructions is predicted exactly at the beginning of
a phase execution. We measure the coverage by the fraction of the
execution time spent in the predicted phases. The high accuracy
requirement hurts coverage, which is over 90% for four programs
but only 46% forTomcatvand 13% forMolDyn. If we relax the
accuracy requirement, then the coverage increases to 99% for five
programs and 98% and 93% for the other two, as shown in the
lower half of the table. The accuracy drops to 90% inSwimand
13% in MolDyn. MolDyn has a large number of uneven phases
when it finds neighbors for each particle. In all programs, the phase
prediction can attain either perfect accuracy, full coverage, or both.

The granularity of the phase hierarchy is shown in Table 3 by the
average size of the smallest (leaf) phases and the largest composite
phases. The left half shows the result of the detection run, and the
right half shows the prediction run. The last row shows the average
across all programs. With the exception ofMesh, which has two
same-length inputs, the prediction run is larger than the detection
run by, on average, 100 times in execution length and 400 times in
the phase frequency. The average size of the leaf phase ranges from
two hundred thousand to five million instructions in the detection
run and from one million to eight hundred million in the prediction
run. The largest phase is, on average, 13 times the size of theleaf
phase in the detection run and 50 times in the prediction run.

The results show that the phase length is anything but uniform.
The prediction run is over 1000 times longer than the detection run
for AppluandCompressand nearly 5000 times longer forMolDyn.
The longer executions may have about 100 times more phase ex-
ecutions (Tomcatv, Swim, andApplu) and over 1000 times larger
phase size (inCompress). The phase size differs from phase to
phase, program to program, and input to input, suggesting that a
single interval or threshold would not work well for this setof pro-
grams.

3.1.1 Comparison of Prediction Accuracy
Figure 3 shows the locality of two representative programs—

TomcatvandCompress—in two columns of three graphs each. The
upper graphs show the phase detection in training runs. The other
graphs show phase prediction in reference runs. The upper graphs
show a fraction of the sampled trace with vertical lines marking the
phase boundaries found by variable-distance sampling, wavelet fil-
tering, and optimal phase partitioning. The lines fall exactly at the
points where abrupt changes of reuse behavior happen, showing
the effect of these techniques. The phases have different lengths.
Some are too short in relative length and the two boundaries be-



Table 2: The accuracy and coverage of phase prediction
Benchmarks FFT Applu Compress Tomcatv Swim Mesh MolDyn Average

Strict Accuracy(%) 100 100 100 100 100 100 96.47 99.50
accuracy Coverage(%) 96.41 98.89 92.39 45.63 72.75 93.68 13.49 73.32

Relaxed Accuracy(%) 99.72 99.96 100 99.9 90.16 100 13.27 86.14
accuracy Coverage(%) 97.76 99.70 93.28 99.76 99.78 99.58 99.49 98.48

Table 3: The number and the size of phases in detection and prediction runs
Detection Prediction

Tests leaf exe. len. avg. leaf size avg. largest phase leaf exe. len. avg. leaf size avg. largest phase
phases (M inst.) (M inst.) size (M inst.) phases (M inst.) (M inst.) size (M inst.)

FFT 14 23.8 2.5 11.6 122 5730.4 50.0 232.2
Applu 645 254.3 0.394 3.29 4437 335019.8 75.5 644.8
Compress 52 52.0 0.667 2.2 52 62418.4 800.2 2712.0
Tomcatv 35 175.0 4.9 34.9 5250 24923.2 4.7 33.23
Swim 91 376.7 4.1 37.6 8101 33334.9 4.1 37.03
Mesh 4691 5151.9 1.1 98.2 4691 5151.9 1.1 98.2
MolDyn 59 11.9 0.202 3.97 569 50988.1 89.6 1699.6
Average 798 863.66 1.98 27.39 3317 73938.1 146.5 779.58

come a single line in the graph. The numbers next to the lines are
the basic block IDs where markers are inserted. The same code
block precedes and only precedes the same locality phase, showing
the effect of marker selection.

The middle two graphs show the locality of predicted phases.
To visualize the locality, we arbitrarily pick two different cache
sizes—32KB and 256KB cache—and use the two miss rates as co-
ordinates. Each execution of a phase is a cross (X) on the graph.
Tomcatvhas 5251 executions of 7 locality phases: all five thousand
crosses are mapped to seven in the graph. Most crosses overlap per-
fectly. The phase prediction is correct in all cases becausethe exe-
cutions of the same phase maps to a single cross except for a small
difference in the second and third phase, where the first couple of
executions have slightly different locality. We label eachphase by
the phase ID, the relative frequency, and the range of phase length.
The relative frequency is the number of the executions of a phase
divided by the total number of phase executions (5251 forTom-
catv). The last two numbers give the number of instructions in the
shortest and the longest execution of the phase, in the unit of mil-
lions of instructions.Compressis shown by the same format. It
has 52 executions of 4 locality phases: all 52 crosses map to four,
showing perfect prediction accuracy. The phase length ranges from
2.9 thousand to 1.9 million instructions in two programs. For each
phase, the length prediction is accurate to at least three significant
digits.

The power of phase prediction is remarkable. For example, in
Compress, when the first marker is executed for the second time,
the program knows that it will execute 1.410 million instructions
before reaching the next marker, and that the locality is thesame
for every execution. This accuracy confirms our assumption that
locality phases are marked by abrupt changes in data reuse.

Phase vs. intervalAn interval method divides the execution
into fixed-size intervals. The dots in the bottom graphs of Figure 3
show the locality of ten million instruction intervals. The2493 dots
in Tomcatvand 6242 dots inCompressdo not suggest a regular
pattern.

Both the phases and intervals are partitions of the same execu-
tion sequence—the 25 billion instructions inTomcatvand 62 bil-
lion in Compress. Yet the graphs are a striking contrast between

the sharp focus of phase crosses and the irregular spread of interval
dots—it indeed matters where and how to partition an execution
into phases. Locality phases are selected at the right placewith
the right length, while intervals are a uniform cut. Compared to
the phases, the intervals are too large to capture the two to four
million-instruction phases inTomcatvand too small to find the over
one billion-instruction phases inCompress. While the program be-
havior is highly regular and fully predictable for phases, it becomes
mysteriously irregular once the execution is cut into intervals.

Phase vs. BBVA recent paper [10] examined three phase anal-
ysis techniques—procedure-based [21, 22], code working set [9],
and basic-block vector (BBV) [30]. By testing the variationin
IPC (instruction per cycle), it concluded that BBV is the most ac-
curate. We implemented BBV prediction according to the algo-
rithm of Sherwood et al [30]. Our implementation uses the same
ten million-instruction windows and the same threshold forcluster-
ing. We implemented their Markov predictor but in this section we
use only the clustering (perfect prediction). It randomly projected
the frequency of all code blocks into a 32-element vector before
clustering. Instead of using IPC, we use locality as the metric for
evaluation.

BBV clusters the intervals based on their code signature and
execution frequency. We show each BBV cluster by a bounding
box labeled with the relative frequency. BBV analysis produces
more clusters than those shown. We do not show boxes for clus-
ters whose frequency is less than 2.1%, partly to make the graph
readable. We note that the aggregated size of the small clusters is
quite large (51%) forTomcatv. In addition, we exclude the out-
liers, which are points that are farthest from the cluster center (3δ,
statistically speaking); otherwise the bounding boxes arelarger.

As shown by previous studies [10, 30], BBV groups intervals
that have similar behavior. InTomcatv, the largest cluster accounts
for 26% of the execution. The miss rate varies by less than 0.3% for
the 256KB cache and 0.5% for the 32KB cache. However, the sim-
ilarity is not guaranteed. In the worst case inCompress, a cluster
of over 23% execution has a miss rate ranging from 2.5% to 5.5%
for the 256KB cache and from 7% to 11% for the 32KB cache. In
addition, different BBV clusters may partially intersect.Note that
with fine-tuned parameters we will see smaller clusters withlower
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Figure 4: The miss rates ofCompress phases on IBM Power 4

variation. In fact, in the majority of cases in these programs, BBV
produces tight clusters. However, even in best cases, BBV clusters
do no have perfectly stacked points as locality phases do.

Table 4 shows the initial and normalized standard deviation. The
locality is an 8-element vector that contains the miss rate for cache
sizes from 32KB to 256KB in 32KB increments. The standard de-
viation is calculated for all executions of the same phase and the
intervals of each BBV cluster. Then the standard deviation of all
phases or clusters are averaged (weighted by the phase or cluster
size) to produce the number for the program. The numbers of BBV
clustering and prediction, shown by the last two columns, are sim-
ilarly small as reported by Sherwood et al. for IPC [30]. Still, the
numbers for locality phases are much smaller—one to five orders
of magnitude smaller than that of BBV-based prediction.

Table 4: Standard deviation of locality phases and BBV phases
standard deviations

locality phase BBV BBV RLE Markov
prediction clustering prediction

FFT 6.87E-8 0.00040 0.0061
Applu 5.06E-7 2.30E-5 0.00013
Compress 3.14E-6 0.00021 0.00061
Tomcatv 4.53E-7 0.00028 0.0016
Swim 2.66E-8 5.59E-5 0.00018
Mesh 6.00E-6 0.00012 0.00063
MolDyn 7.60E-5 0.00040 0.00067

So far we measure the cache miss rate through simulation, which
does not include all factors on real machines such as that of the
operating system. We now examine the L1 miss rate on an IBM
Power 4 processor for the first two phases ofCompress(the other
two phases are too infrequent to be interesting). Figure 4 shows the
measured miss rate for each execution of the two phases. All but
the first execution of Phase 1 have nearly identical miss rates on
the 32KB 2-way data cache. The executions of Phase 2 show more
variation. The effect from the environment is more visible in Phase
2 likely because its executions are shorter and the miss ratelower
than those of the first phase.

The comparison with interval-based methods is partial because
we use only programs that are amenable to locality-phase predic-
tion. Many dynamic programs do not have consistent locality. For
them interval-based methods can still exploit run-time patterns, while
our current phase prediction scheme would not work because it as-
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Figure 5: Sampled reuse distance trace ofGcc and Vortex. The
exact phase length is unpredictable in general.

sumes that each phase, once in execution, maintains identical lo-
cality. Next are two such examples.

3.1.2 GccandVortex
The programsGcc andVortexare different because their phase

length is not consistent even in the same execution. InGcc, the
phase length is determined by the function being compiled. Fig-
ure 5 shows the distance-based sample trace. Unlike previous trace
graphs, it uses horizontal steps to link sample points. The peaks
in the upper graph roughly correspond to the 100 functions inthe
6383-line input file. The size and location of the peaks are deter-
mined by the input and are not constant.

Vortexis an object-oriented database. The test run first constructs
a database and then performs a set of queries. The lower figureof
Figure 5 shows the sample trace. It shows the transition fromdata
insertion to query processing. However, in other inputs, the con-
struction and queries may come in any order. The exact behavior,
like Gcc, is input dependent and not constant.

Our recent results show that an extension of the phase analysis
can mark the phases inGcc, which are the compilation of input
functions. Still, the prediction results are input dependent. Ding
and Zhong showed that the overall reuse pattern of these two pro-
grams are stable across many inputs [12]. It suggests a prediction
strategy based on statistics. We do not consider this extension in
this paper and will not discuss these two programs further.

3.2 Adaptive Cache Resizing
During an execution, cache resizing reduces the physical cache

size without increasing the miss rate [2, 21]. Therefore, itcan re-
duce the access time and energy consumption of the cache without
losing performance. We use a simplified model where the cache
consists of 64-byte blocks and 512 sets. It can change from direct
mapped to 8-way set associative, so the cache size can changebe-



tween 32KB and 256KB in 32KB units. In the adaptation, we need
to predict the smallest cache size that yields the same miss rate as
the 256KB cache.

As seen in the example ofTomcatv, program data behavior
changes constantly. A locality phase is a unit of repeating behavior
rather than a unit of uniform behavior. To capture the changing be-
havior inside a large phase, we divide it into 10K intervals (called
phase intervals). The adaptation finds the best cache size for each
interval during the first few executions and reuses them for later
runs. The scheme needs hardware support but needs no more than
that of interval-based cache resizing.

Interval-based cache resizing divides an execution into fixed-
length windows. Based on the history, interval prediction classi-
fies past intervals into classes and predicts the behavior class of the
next interval using methods such as last-value and Markov mod-
els. For cache resizing, Balasubramonian et al. used the cache miss
rate and branch prediction rate to classify past intervals [2]. Recent
studies considered code information such as code working set [9]
and basic-block vector (BBV) [30]. We test interval-based pre-
diction using five different interval lengths: 10K, 1M, 10M,40M,
and 100M memory accesses. In addition, we test a BBV predictor
using 10M instruction windows, following the implementation of
Sherwood et al [30].

The interval methods do not have phase markers, so they con-
stantly monitor every past interval to decide whether a phase change
has occurred. In the experiment, we assume perfect detection: there
is a phase change if the best cache size of the next interval differs
from the current one. BBV method uses a run-length encoding
Markov predictor to give the BBV cluster of the next interval(the
best predictor reported in [30]). However, as the last section shows,
the intervals of a BBV cluster do not always have identical local-
ity. We use perfect detection for BBV as we do for other interval
methods.

At a phase change, the phase method reuses the best cache size
stored for the same phase. The BBV method reuses the current
best cache size for each BBV cluster. For run-time exploration, we
count the minimal cost—each exploration takes exactly two trial
runs, one at the full cache size and one at the half cache size.Then
we use the best cache size from the third interval. In the exper-
iment, we know the best cache size of each phase or interval by
running it throughCheetah, a cache simulator that measures the
miss rate of all eight cache sizes at the same time [33]. The re-
sults for interval and BBV methods are idealistic because they use
perfect phase-change detection. The result of the phase-interval
method is real. Because it knows the exact behavior repetition, the
phase-interval method can amortize the exploration cost over many
executions. With the right hardware support, it can gauge the exact
loss compared to the full size cache and guarantee a bound on the
absolute performance loss.

Figure 6 shows the average cache size from phase, interval, and
BBV methods. The first graph shows the results of adaptation with
no miss-rate increase. The results are normalized to the phase
method. The largest cache size, 256KB, is shown as the last bar
in each group. Different intervals find different cache sizes, but
all reductions are less than 10%. The average is 6%. BBV gives
consistently good reduction with a single interval size. The im-
provement is at most 15% and on average 10%. In contrast, the
phase adaptation reduces the cache size by 50% for most programs
and over 35% on average.

Figure 6(b) shows the results of adaptation with a 5% bound on
the miss-rate increase. The effect of interval methods varies greatly.
The 10M interval was 20% better than the locality phase forFFT
but a factor of three worse forTomcatvandSwim. The 100M in-
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Figure 6: Average cache-size reduction by locality phase, in-
terval, and BBV prediction methods, assuming perfect phase-
change detection and minimal-exploration cost for interval and
BBV methods. Upper graph: no increase in cache misses.
Lower graph: at most 5% increase.

terval has the best average reduction of nearly 50%. BBV again
shows consistently good reduction with a single interval size. On
average it is slightly better than the best interval method.The phase
method reduces the cache size more than other methods do for all
programs except forFFT. FFT has varied behavior, which causes
the low coverage and consequently not as large cache-size reduc-
tion by locality phase prediction.MolDyn does not have identical
locality, so phase-based resizing causes a 0.6% increase inthe num-
ber of cache misses. Across all programs, the average reduction
using locality phases is over 60%.

Earlier studies used more accurate models of cache and mea-
sured the effect on time and energy through cycle-accurate simula-
tion. Since simulating the full execution takes a long time,past
studies either used a partial trace or reduced the program input
size [2, 21]. We choose to measure the miss rate of full execu-
tions. While it does not give the time or energy, the miss rateis
accurate and reproducible by others without significant efforts in
calibration of simulation parameters.

3.3 Phase-Based Memory Remapping
We use locality phases in run-time memory remapping. To sup-

port data remapping at the phase boundary, we assume the support
of theImpulsememory controller, developed by Carter and his col-
leagues at University of Utah [34, 35].Impulsereorganizes data
without actually copying them to CPU or in memory. For exam-
ple, it may create a column-major version of a row-major array via
remapping. A key requirement for exploitingImpulseis to identify
the time when remapping is profitable.



We consider affinity-based array remapping, where arrays that
tend to be accessed concurrently are interleaved by remapping [36].
To demonstrate the value of locality phase prediction, we evaluate
the performance benefits of redoing the remapping for each phase
rather than once for the whole program during compilation. We
apply affinity analysis for each phase and insert remapping code at
the location of the phase marker. The following table shows the
execution time in seconds on 2GHz Intel Pentium IV machine with
thegcccompiler using-O3.

For the two programs, we obtain speedups of 35.5% and 2.8%
compared to the original program and 13% and 2.5% compared to
the best static data layout [36], as shown in Table 5. In the absence
of anImpulseimplementation, we program the remapping and cal-
culate the running time excluding the remapping cost. Table7.3 of
Zhang’s dissertation shows the overhead of setting up remappings
for a wide range of programs. The overhead includes setting up
shadow region, creating memory controller page table, dataflush-
ing, and possible data movement. The largest overhead shownis
1.6% of execution time for static index vector remapping [34].

For example for the 14 major arrays inSwim, whole-program
analysis shows close affinity between arrayu andv, uold andpold,
and unewand pnew. Phase-based analysis shows affinity group
{u,v,p} for the first phase,{u,v,p,unew,vnew,pnew} for the second
phase, and three other groups,{u,uold,unew}, {v,vold,vnew}, and
{p,pold,pnew}, for the third phase. Compared to whole-program
reorganization, the phase-based optimization reduces cache misses
by one third (due to arrayp) for the first phase, by two thirds for
the second phase, and by half for the third phase.

Using the two example programs, we have shown that phase pre-
diction finds opportunities of dynamic data remapping. The addi-
tional issues of affinity analysis and code transformation are dis-
cussed by Zhong et al [36]. The exact interaction withImpulselike
tools is a subject of future study.

3.4 Comparison with Manual Phase Marking
We hand-analyzed each program and inserted phase markers (man-

ual markers) based on our reading of the code and its documenta-
tion as well as results fromgprof (to find important functions). We
compare manual marking with automatic marking as follows. As
a program runs, all markers output the logical time (the number
of memory accesses from the beginning). Given the set of logi-
cal times from manual markers and the set from auto-markers,we
measure the overlap between the two sets. Two logical times are
considered the same if they differ by no more than 400, which is
0.02% of the average phase length. We use the recall and precision
to measure their closeness. They are defined by the formulas below.
The recall shows the percentage of the manually marked timesthat
are marked by auto-markers. The precision shows the percentage
of the automatically marked times that are marked manually.

Recall =
|M ∩A |

|M |
(1)

Precision =
|M ∩A |

| A |
(2)

Table 5: The effect of phase-based array regrouping, excluding
the cost of run-time data reorganization

Benchmark Original Phase (speedup) Global (speedup)

Mesh 4.29 4.17 (2.8%) 4.27 (0.4%)
Swim 52.84 34.08 (35.5%) 38.52(27.1%)

Table 6: The overlap with manual phase markers
Benchmark Detection Prediction

Recall Prec. Recall Prec.

FFT 1 1 1 1
Applu 0.993 0.941 0.999 0.948
Compress 0.987 0.962 0.987 0.962
Tomcatv 0.952 0.556 1 0.571
Swim 1 0.341 1 0.333
Mesh 1 0.834 1 0.834
MolDyn 0.889 0.271 0.987 0.267
Average 0.964 0.690 0.986 0.692

whereM is the set of times from the manual markers, andA is the
set of times from auto-markers.

Table 6 shows a comparison with manually inserted markers for
detection and prediction runs. The columns for each run givethe
recall and the precision. The recall is over 95% in all cases ex-
cept forMolDyn in the detection run. The average recall increases
from 96% in the detection run to 99% in the prediction run be-
cause the phases with a better recall occur more often in longer
runs. Hence, the auto-markers capture the programmer’s under-
standing of the program because they catch nearly all manually
marked phase changing points.

The precision is over 95% forAppluandCompress, showing that
automatic markers are effectively the same as the manual markers.
MolDyn has the lowest recall of 27%. We checked the code and
found the difference. When the program is constructing the neigh-
bor list, the analysis marks the neighbor search for each particle
as a phase while the programmer marks the searches for all parti-
cles as a phase. In this case, the analysis is correct. The neighbor
search repeats for each particle. This also explains whyMoldyn
cannot be predicted with both high accuracy and high coverage—
the neighbor search has varying behavior since a particle may have
a different number of neighbors. The low recall in other programs
has the same reason: the automatic analysis is more thoroughthan
the manual analysis.

Four of the test programs are the simulation of grid, mesh and
N-body systems in time steps. Ding and Kennedy showed that they
benefited from dynamic data packing, which monitored the run-
time access pattern and reorganized the data layout multiple times
during an execution [11]. Their technique was automatic except
for a programmer-inserted directive, which must be executed once
in each time step. This work was started in part to automatically
insert the directive. It has achieved this goal: the largestcomposite
phase in these four programs is the time step loop. Therefore, the
phase prediction should help to fully automate dynamic datapack-
ing, which is shown by several recent studies to improve perfor-
mance by integer factors for physical, engineering, and biological
simulation and sparse matrix solvers [11, 15, 25, 32].

SummaryFor programs with consistent phase behavior, the new
method gives accurate locality prediction and consequently yields
significant benefits for cache resizing and memory remapping. It is
more effective at finding long, recurring phases than previous meth-
ods based on program code, execution intervals, their combination,
and even manual analysis. For programs with varying phase behav-
ior, the profiling step can often reveal the inconsistency. Then the
method avoids behavior prediction of inconsistent phases through
a flag (as shown by the experiments reported in Table 2). Usinga
small input in a profiling run is enough for locality phase predic-
tion. Therefore, the technique can handle large programs and long
executions. For programs such asGCCandVortex, where little con-



sistency exists during the same execution, the locality analysis can
still recognize phase boundaries but cannot yet make predictions.
Predictions based on statistics may be helpful for these programs,
which remains to be our future work. In addition, the currentanaly-
sis considers only temporal locality. The future work will consider
spatial locality in conjunction with temporal locality.

4. RELATED WORK
This work is a unique combination of program code and data

analysis. It builds on past work in these two areas and complements
interval-based methods.

Locality phasesEarly phase analysis, owing to its root in virtual-
memory management, was intertwined with locality analysis. In
1976, Batson and Madison defined a phase as a period of execu-
tion accessing a subset of program data [4]. They showed experi-
mentally that a set of Algol-60 programs spent 90% time in major
phases. However, they did not predict locality phases. Later studies
used time or reuse distance as well as predictors such as Markov
models to improve virtual memory management. Recently, Ding
and Zhong found predictable patterns in the overall locality but did
not consider the phase behavior [12]. We are not aware of any trace-
based technique that identifies static phases using locality analysis.

Program phasesAllen and Cocke pioneered interval analysis to
convert program control flow into a hierarchy of regions [1].For
scientific programs, most computation and data access are inloop
nests. A number of studies showed that the inter-proceduralarray-
section analysis accurately summarizes the program data behavior.
Recent work by Hsu and Kremer used program regions to control
processor voltages to save energy. Their region may span loops and
functions and is guaranteed to be an atomic unit of executionunder
all program inputs [17]. For general purpose programs, Balasub-
ramonian et al. [2], Huang et al. [21], and Magklis et al. [22]se-
lected as phases procedures whose number of instructions exceeds
a threshold in a profiling run. The three studies found the best
voltage for program regions on a training input and then tested the
program on another input. They observed that different inputs did
not affect the voltage setting. The first two studies also measured
the energy saving of phase-based cache resizing [2, 21]. In compar-
ison, the new technique does not rely on static program structure.
It uses trace-based locality analysis to find the phase boundaries,
which may occur anywhere and not just at region, loop or proce-
dure boundaries.

Interval phasesInterval methods divide an execution into fixed-
size windows, classify past intervals using machine or code-based
metrics, and predict future intervals using last value, Markov, or
table-driven predictors [9, 10, 13, 30]. The past work used intervals
of length from 100 thousand [2] to 10 million instructions [30] and
executions from 10 milliseconds to 10 seconds [13]. Interval pre-
diction works well if the interval length does not matter, for exam-
ple, when an execution consists of long steady phases. Otherwise
it is difficult to find the best interval length for a given program on
a given input. The experimental data in this paper show the inher-
ent limitation of intervals for programs with constantly changing
data behavior. Balasubramonian et al. searches for the bestinterval
size at run time [3]. Their method doubles the interval length un-
til the behavior is stable. LetN be the execution length, this new
scheme searchesO(logN) choices in the space ofN candidates.
In this work, we locate phases and determine their exact lengths
through off-line locality analysis. We show that importantclasses
of programs have consistent phase behavior and the high accuracy
and large granularity of phase prediction allow adaptationwith a
tight worst-performance guarantee. However, not all programs are
amenable to the off-line analysis. Interval-based methodsdo not

have this limitation and can exploit the general class of run-time
patterns.

5. CONCLUSIONS
The paper presents a general method for predicting hierarchical

memory phases in programs with input-dependent but consistent
phase behavior. Based on profiling runs, it predicts programexe-
cutions hundreds of times larger and predicts the length andlocal-
ity with near perfect accuracy. When used for cache adaptation,
it reduces the cache size by 40% without increasing the number
of cache misses. When used for memory remapping, it improves
program performance by up to 35%. It is more effective at identi-
fying long, recurring phases than previous methods based onpro-
gram code, execution intervals, and manual analysis. It recognizes
programs with inconsistent phase behavior and avoids falsepredic-
tions. These results suggest that locality phase prediction should
benefit modern adaptation techniques for increasing performance,
reducing energy, and other improvements to the computer system
design.

Scientifically speaking, this work is another attempt to under-
stand the dichotomy between program code and data access andto
bridge the division between off-line analysis and on-line prediction.
The result embodies and extends the decades-old idea that locality
could be part of the missing link.
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