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ABSTRACT 
 
Previous studies have shown that array regrouping and structure 
splitting significantly improve data locality.  The most effective 
technique relies on profiling every access to every data element.  
The high overhead impedes its adoption in a general compiler.  
In this paper, we show that for array regrouping in scientific 
programs, the overhead is not needed since the same benefit can 
be obtained by pure program analysis.   

We present an interprocedural analysis technique for array 
regrouping.  For each global array, the analysis summarizes the 
access pattern by access-frequency vectors and then groups 
arrays with similar vectors.  The analysis is context sensitive, so 
it tracks the exact array access.  For each loop or function call, it 
uses two methods to estimate the frequency of the execution.  
The first is symbolic analysis in the compiler.  The second is 
lightweight profiling of the code.  The same interprocedural 
analysis is used to cumulate the overall execution frequency by 
considering the calling context.  We implemented a prototype of 
both the compiler and the profiling analysis in the IBM® 
compiler, evaluated array regrouping on the entire set of SPEC 
CPU2000 FORTRAN benchmarks, and compared different 
analysis methods.  The pure compiler-based array regrouping 
improves the performance for the majority of programs, leaving 
little room for improvement by code or data profiling. 

 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors � compilers and 
optimization. 
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1. INTRODUCTION 
 
Over the past 30 years, memory performance increasingly 
determines the program performance on high-end machines.  
Although programs employ a large amount of data, they do not 
use all data at all times. We can improve cache spatial locality 
by storing in cache precisely the data that is required at a given 
point of computation.  In scientific programs, most data is stored 
in arrays.  In this paper, we study the organization of data in 
multiple arrays. 
 
Figure 1 shows an example of array regrouping.  Part (a) shows 
a program that uses four attributes of N molecules in two loops.  
One attribute, �position�, is used in both the compute loop and 
the visualization loop, but the other three are used only in the 
compute loop.  Part (b) shows the initial data layout, where each 
attribute is stored in a separate array.  In the compute loop, the 
four attributes of a molecule are used together, but they are 
stored far apart in memory.  On today's high-end machines from 
IBM, Microsystems,  and companies using Intel® Itanium® and 
AMD processors, the largest cache in the hierarchy is composed 
of blocks of no smaller than 64 bytes.  In the worst case, only 
one 4-byte attribute is useful in each cache block, 94% of cache 
space would be occupied by useless data, and only 6% of cache 
is available for data reuse.  A similar issue exists for memory 
pages, except that the utilization problem can be much worse. 
 
Array regrouping improves spatial locality by grouping three of 
the four attributes together in memory, as shown in part (c) of 
Figure 1.  After regrouping, a cache block should have at least 
three useful attributes.  One may suggest grouping all four 
attributes.  However, three of the attributes are not used in the 
visualization loop, and therefore grouping them with �position� 
hurts cache-block utilization.  However, if the loop is 
infrequently executed or it touches only a few molecules, then 
we may still benefit from grouping all four attributes. 
 
Array regrouping has many other benefits.  First, it reduces the 
interference among cache blocks because fewer cache blocks are 
accessed.  By combining multiple arrays, array regrouping 
reduces the page-table working set and consequently the number 
of Translation Lookaside Buffer (TLB) misses in a large 
program.  It also reduces the register pressure because fewer 
registers are needed to store array base addresses.  It may 
improve energy efficiency by allowing more memory pages to 
enter a sleeping model.  For the above reasons, array regrouping 
is beneficial even for arrays that are contiguously accessed. 
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Figure 1. Array regrouping example.  Data with reference affinity is placed together to improve cache utilization 
 

These benefits have been verified in our previous study [6]. 
Finally, on shared-memory parallel machines, better cache-block 
utilization means slower amortized communication latency and 
better bandwidth utilization. 
 
Array regrouping is mostly orthogonal to traditional loop-nest 
transformations and single-array transformations.  The latter two 
try to effect contiguous access within a single array.  Array 
regrouping complements them by exploiting cross-array spatial 
locality, even when per-array data access is contiguous.  As a 
data transformation, it is applicable to irregular programs where 
the dependence information is lacking.  In the example in Figure 
1, the correctness of the transformation does not depend on 
knowing the value of index variables m and k.  While array 
regrouping has a good potential for complex programs, it has not 
been implemented in any production compiler because the 
current techniques are not up to the task. 
 
Ding and Kennedy gave the first compiler technique for array 
regrouping [6].  They defined the concept reference affinity.  A 
group of arrays have reference affinity if they are always 
accessed together in a program.  Their technique is conservative 
and groups arrays only when they are always accessed together.  
We call this scheme conservative affinity analysis. Conservative 
analysis is too restrictive in real-size applications, where many 
arrays are only sporadically accessed.  
 
Zhong et al. redefined reference affinity at the trace level using a 
concept called reuse distance, which is the volume of data 
between two accesses of the same unit of data.  They grouped 
arrays that have similar distributions of reuse distances (reuse 
signatures) [15].  We call it distance-based affinity analysis.  
The new scheme groups arrays if they are mostly used together 
and outperforms the conservative scheme for a set of three 

FORTRAN programs.  Reuse-distance profiling, however, 
carries a high overhead.  The slowdown is at least 10 to 100 
times.  No production compiler is shipped with such a costly 
technique.  No one would do so before carefully examining 
whether such a high cost is justified.  
 
The two previous techniques were evaluated on a small set of 
programs, partly because the techniques did not handle 
parameter arrays as well as global arrays that are passed as 
parameters.  Since multiple arrays may map to the same 
parameter array at different times, the affinity information is 
ambiguous.  Another problem is aliasing, which has not been 
considered in array regrouping.  
 
We present frequency-based affinity analysis.  It uses a 
frequency-based model to group arrays even if they are not 
always accessed together.  It uses interprocedural program 
analysis to measure the access frequency in the presence of array 
parameters and aliases.  To collect the frequency within a loop 
or a function, we study two methods.  The first is symbolic 
analysis by a compiler.  The second is lightweight profiling.  
The techniques apply to FORTRAN programs.  In the rest of the 
paper, we will present the frequency model, the estimation 
methods, and the interprocedural analysis.  We will describe 
their implementation in the IBM® FORTRAN compiler, an 
evaluation on SPEC CPU2000 floating-point benchmark 
programs, and comparisons between frequency-based and 
distance-based methods, and between pure compiler analysis 
and lightweight profiling.  
 
 
 
 



2. FREQUENCY-BASED AFFINITY 
ANALYSIS 
 
Below is the general framework of the analysis.    
 

• Building the control flow graph and the invocation 
graph with data flow analysis  

• Estimating the execution frequency through either 
static analysis or profiling 

• Building array access-frequency vectors using 
interprocedural analysis, as shown in Figure 2.  

• Calculating the affinity between each array pair and 
constructing the affinity graph 

• Partitioning the graph to find affinity groups in linear 
time 

 
In this section, we first present the affinity model, where arrays 
are nodes and affinities are edge weights in the affinity graph, 
and the affinity groups are obtained through linear-time graph 
partitioning. We then describe the two methods, static and 
lightweight profiling, for collecting the frequency information.  
Finally, we describe the context-sensitive interprocedural 
reference affinity analysis and the use of the frequency 
information by the analysis.  
 

2.1 Frequency-based Affinity Model 
  
A program is modeled as a set of code units, in particular, loops.   
Suppose there are K code units.  Let fi represent the total 
occurrences of the ith unit in the program execution. We use ri(A) 
to represent the number of references to array A in an execution 
of the ith unit. The frequency vector of array A is defined as 
follows:  
 

V (A) = (v1, v2, . . . , vK) 
 

where  
vi = 0        if    ri (A) = 0; 
vi = fi       if    ri (A) > 0. 

 
A code unit i may have branches inside and may call other 
functions.  We conservatively assume that a branch goes both 
directions when collecting the data access.  We use 
interprocedural analysis to find the side effects of function calls.  
 
To save space, we can use a bit vector to replace the access 
vector of each array and use a separate vector to record the 
frequency of code units.  
 
The affinity between two arrays is the Manhattan distance 
between their access-frequency vectors, as shown below. It is a 
number between zero and one.  Zero means that two arrays are 
never used together, while one means that both are accessed 
whenever one is.   
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We construct an affinity graph.  Each node represents an array, 
and the weight of an edge between two nodes is the calculated 
affinity between them.  There are additional constraints.  To be 
regrouped, two arrays must be compatible in that they should 
have the same number of elements and they should be accessed 
in the same order [6].  The data access order is not always 
possible to analyze at compile time.  However, when the 
information is available to show that two arrays are not accessed 
in the same order in a code unit, the weight of their affinity edge 
will be reset to zero.  The same is true if two arrays differ in size.  
 
Graph partitioning is done through a graph traversal.  It merges 
two nodes into a group if the affinity weight is over a threshold.  
After partitioning, each remaining node is a set of arrays to be 
grouped together.  The threshold determines the minimal amount 
of affinity for array regrouping.  We will examine the effect of 
different thresholds in Section 4.  The entire algorithm, 
including graph partitioning, is given in Figure 2. 
  

2.2 Unit of Program Analysis 
                    
For scientific programs, most data accesses happen in loops.  
We use a loop as a hot code unit for frequency counting for three 
reasons: coverage, independence, and efficiency. 
 

• Coverage: A loop often accesses an entire array or 
most of an array.  In that case, branches and function 
calls outside the loop have no effect on whether two 
arrays are accessed together or not.   

• Independence: McKinley and Temam reported that 
most cache misses in SPEC95 FP programs were due 
to cross-loop reuses [16].  We expect the same for our 
test programs and ignore the cache reuse across two 
loops.  Therefore, the temporal order in which loops 
are executed has no effect on the affinity relation.  
Without the independence, when two arrays appear in 
different code units, their affinity may depend on the 
temporal relations across units.  The independence 
property simplifies the affinity analysis by allowing it 
to compose the final result from analyzing individual 
code units.                                                                          

• Efficiency: The total number of loops determines the 
size of the access-frequency vector.  In a context-
sensitive analysis, a unit becomes multiple elements in 
the access-frequency vector, one for each distinct 
calling context.  The number of loops is small enough 
to enable full context-sensitive analysis, as described 
in   Section 2.5.  In our experiment, the maximum is 
351 for benchmark Galgel. 

 
In comparison, other types of code units are not as good for 
array regrouping.  For example, a basic block has too little data 
access to be independent from other basic blocks.  Basic blocks 
may be too numerous for compiler analysis or lightweight 
profiling to be affordable.  A small procedure lacks 
independence in data access.  A large procedure has less 
coverage because it often has a more complex control flow than 
a loop does.  Other possible code units are super-blocks and 
regions, but none satisfies the three requirements as well as 



loops do.  Loops have good independence, so the temporal order 
of loops has little impact on the affinity result.  The number of 
loops is not overly large in most programs.  Branches inside 
loops hurt the coverage. However, very few branches exist in 
loops in scientific programs, especially in the innermost loop.  
 

2.3 Static Estimate of the Execution 
Frequency  
 
Many past studies have developed compiler-based estimate of 
the execution frequency (e.g., [11,13]).  The main difficulties are 
to estimate the value of a variable, to predict the outcome of a 
branch, and to cumulate the result for every statement in a 
program. We use standard constant propagation and symbolic 
analysis to find constants and relations between symbolic 
variables.  
 
We classify loops into three categories. The bounds of the first 
group are known constants.  The second group of loops have 
symbolic bounds that depend on the input, e.g. the size of the 
grid in a program simulating a three-dimensional space.  The 
number of iterations can be represented by an expression of a 
mix of constants and symbolic values.  We need to convert a 
symbolic expression into a number because the later affinity 
analysis is based on numerical values.  The exact iteration count 
is impossible to obtain. To distinguish between high-trip count 
loops from low-trip count loops, we assume that a symbolic 
value is reasonably large (100) since most low-trip count loops 
have a constant bound. This strategy works well in our 
experiments.  
 
The third category includes many while-loops, where the exit 
condition is calculated in each iteration.  Many while-loops are 
small and do not access arrays, so they are ignored in our 
analysis.  In other small while-loops, we take the size of the 
largest array referenced in the loop as the number of iterations. 
If the size of all arrays is unknown, we simply assign a constant 
100 as the iteration count.  
 
The array regrouping is not very sensitive to the accuracy of 
loop iteration estimations. If two arrays are always accessed 
together, they would be regarded as arrays with perfect affinity 
regardless how inaccurate the iteration estimations are. Even for 
arrays without perfect affinity, the high regrouping threshold 
provides good tolerance of estimation errors as discussed in 
Section 4.1. 
 
The frequency of the innermost loop is the product of its 
iteration count, the number of iterations in all enclosing loops in 
the same procedure, and the estimated frequency of the 
procedure invocation. The execution frequency of loops and 
subroutines is estimated using the same interprocedural analysis 
method described in Section 2.5. It roughly corresponds to in-
lining all procedural calls.  
 
For branches, we assume that both paths are taken except when 
one branch leads to the termination of a program, i.e.,  the stop 
statement.  In that case, we assume that the program does not 
follow the exit branch.  This scheme may overestimate the 
affinity relation.  Consider a loop whose body is a statement 

with two branches α and β .  Suppose array A is accessed in the 
branch α  and B in the β  branch.  In an execution, if the two 
branches are taken in alternative loop iterations, then the affinity 
relation is accurate, that is, the two arrays are used together. 
However, if α is taken in the first half iterations and β  in the 
second half (or vice versa), then the two arrays are not used 
together.  The static result is an overestimate.  
 
2.4 Profiling-based Frequency Analysis 
  
By instrumenting a program, the exact number of iterations 
becomes known for the particular input.  To consider the effect 
of the entire control flow, we count the frequency of execution 
of all basic blocks. Simple counting would insert a counter and 
an increment instruction for each basic block.  In this work, we 
use the existing implementation in the IBM compiler [12], 
which implements more efficient counting by calculating from 
the frequency of neighboring blocks, considering a flow path, 
and lifting the counter outside a loop.  Its overhead is less than 
100% for all programs we tested. The execution frequency for 
an innermost loop is the frequency of the loop header block.  
When a loop contains branches, the analysis is an overestimate 
for reasons described in Section 2.3.  
 
2.5 Context-sensitive Interprocedural 
Reference Affinity Analysis 
 
Aliases in FORTRAN programs are caused by parameter 
passing and storage association.  We consider only the first 
cause.  We use an interprocedural analysis based on the 
invocation graph, as described by Emami et al [7].  Given a 
program, the invocation graph is built by a depth-first traversal 
of the call structure starting from the program entry.  Recursive 
call sequences are truncated when the same procedure is called 
again.  In the absence of recursion, the invocation graph 
enumerates all calling contexts for an invocation of a procedure.  
A special back edge is added in the case of a recursive call, and 
the calling context can be approximated.  
 
The affinity analysis proceeds in two steps.  The first step takes 
one procedure at a time, treats the parameter arrays as 
independent arrays, identifies loops inside the procedure, and the 
access vector for each array.  The procedure is given by 
BuildStaticAFVList in Figure 2. 
  
The second step traverses the invocation graph from the bottom 
up.  At each call site, the affinity results of the callee are mapped 
up to the caller based on the parameter bindings, as given by 
procedures BuildDynamicAFVList, UpdateAFVList, and 
UpdateDyn in Figure 2.  As an implementation, the lists from all 
procedures are merged in one vector, and individual lists are 
extracted when needed, as in UpdateDyn.  The parameter 
binding for a recursive call is not always precise.  But a fixed 
point can be obtained in linear time using an algorithm proposed 
by Cooper and Kennedy (Section 11.2.3 of [1]).   
 
Because of the context sensitivity, a loop contributes multiple 
elements to the access-frequency vector, one for every calling 
context.  However, the number of calling contexts is small.  
Emami et al. reported on average 1.45 invocation nodes per call 



site for a set of C programs. [7]. We saw a similar small ratio in 
FORTRAN programs.  
 
The calculation of the access-frequency vector uses the 
execution frequency of each loop, as in procedure UpdateDyn.  
In the case of static analysis, the frequency of each invocation 
node is determined by all the loops in its calling context, not 
including the back edges added for recursive calls.  The 
frequency information is calculated from the top down.  Indeed, 
in our implementation, the static frequency is calculated at the 
same time as the invocation graph is constructed.  
 
The frequency from the lightweight profiling can be directly 
used if the profiling is context sensitive.  Otherwise, the average 
is calculated for the number of loop executions within each 
function invocation.  The average frequency is an approximation.  
 
The last major problem in interprocedural array regrouping is 
the consistency of data layout for parameter arrays.  Take, for 
example, a procedure that has two formal parameter arrays.  It is 
called from two call sites; each passes a different pair of actual 
parameter arrays. Suppose that one pair has reference affinity 
but the other does not. To allow array regrouping, we will need 
two different layouts for the formal parameter arrays.  One 
possible solution is procedural cloning, but this leads to code 
expansion, which can be impractical in the worst case.  In this 
work, we use a conservative solution.  The analysis detects 
conflicts in parameter layouts and disables array regrouping to 
resolve a conflict.  In the example just mentioned, any pair of 
arrays that can be passed into the procedure are not regrouped.  
In other words, array regrouping guarantees no need of code 
replication in the program.  
 
The invocation graph excludes pointer-based control flow and 
some use of dynamically loaded libraries. The former does not 
exist in FORTRAN programs and the latter is a limitation of 
static analysis. 
 
3. IMPLEMENTATION  
 
This work is implemented in IBM® TPO (Toronto Portable 
Optimizer), which is the core optimization component in IBM® 
C/C++ and FORTRAN compilers. It implements both compile-
time and link-time methods for intra- and interprocedural 
optimizations.  It also implements profiling feedback 
optimizations.  We now describe the structure of TPO and the 
implementation of the reference affinity analysis.  
 
TPO uses a common graph structure based on Single Static 
Assignment form (SSA) [1] to represent the control and data 
flow within a procedure.  Global value numbering and 
aggressive copy propagation are used to perform symbolic 
analysis and expression simplifications.  It performs pointer 
analysis and constant propagation using the same basic 
algorithm from Wegman and Zadeck [14], which is well suited 
for using SSA form of data flow.  For loop nests, TPO performs 
data dependence analysis and loop transformations after data 
flow optimizations.  We use symbolic analysis to identify the 
bounds of arrays and estimate the execution frequency of loops.  
We use dependence analysis to identify regular access patterns 
to arrays.  
 

During the link step, TPO is invoked to re-optimize the program. 
Having access to the intermediate code for all the procedures in 
the program, TPO can significantly improve the precision of the 
data aliasing and function aliasing information. Interprocedural 
mod-use information is computed at various stages during the 
link step.  
 
The reference affinity analysis is implemented at the link step.  
A software engineering problem is whether to insert it before or 
after loop transformations.  Currently the analysis happens first, 
so arrays can be transformed at the same compilation pass as 
loops are.  As shown later, early analysis does not lead to slower 
performance in any of the test programs.  We are looking at 
implementation options that may allow a later analysis when the 
loop access order is fully determined.  
 
We have implemented the analysis that collects the static access-
frequency vector and the analysis that measures per-basic-block 
execution frequency through profiling.  We have implemented a 
compiler flag that triggers either static or profiling-based affinity 
analysis. The invocation graph is part of the TPO data structure.  
We are in the process of completing the analysis that includes 
the complete context sensitivity.  The current access-frequency 
vector takes the union of all contexts.  We have implemented the 
reference affinity graph and the linear-time partitioning.  The 
array transformations are semi-automated as the implementation 
needs time to fully bond inside the compiler.   
 
The link step of TPO performs two passes.  The first is a 
forward pass to accumulate and propagate constant and pointer 
information within the entire program.  Reference affinity 
analysis is part of the global reference analysis used for 
remapping global data structures.  It can clone a procedure [1] 
when needed, although we do not use cloning for array 
regrouping.  The second pass traverses the invocation graph 
backward to perform various loop transformations.  
Interprocedural code motion is also performed during the 
backward pass. This transformation will move upward from a 
procedure to all of its call points.  Data remapping 
transformations, including array regrouping when fully 
implemented, are performed just before the backward pass to 
finalize the data layout.  Loop transformations are performed 
during the backward pass to take full advantage of the 
interprocedural information.  Interprocedural mod-use 
information is recomputed again in order to provide more 
accurate information to the back-end code generator.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data Structure 
staticAFV List : the list of local access-frequency vectors, one for each array and each subroutine 
dynAFV List : the list of global access-frequency vectors, one for each array 
loopFreq : the local estimate of the execution frequency of a loop 
IGNode : the data structure of a node in the invocation graph, with the following attributes 
freq : the estimated frequency of the node 
staticStartId : the position of the subroutine�s first loop in staticAFVList vectors 
dynStartId : the position of the subroutine�s first loop in dynAFVList vectors 
groupList : the list of affinity groups 
Algorithm 
1) building control flow graph and invocation graph with data flow analysis 
2) estimating the execution frequency through either static analysis or profiling (Section 2.3 and 2.4) 
3) building array access-frequency vectors using interprocedural analysis (this algorithm, explained in Section 2.5) 
4) calculating the affinity between each array pair and constructing the affinity graph (Section 2.1) 
5) linear-time graph partitioning to find affinity groups (Section 2.1) 
 
Procedure BuildAFVList() 
// build access frequency vectors 
   BuildStaticAFVList (); 
   BuildDynamicAFVList (); 
End 
Procedure BuildStaticAFVList() 
// local access frequncy vectors 
   id = 0; 
   For each procedure proc 
     For each inner-most loop l in proc 
        refSet = GetArrayRefSet(l); 
        If (refSet == NULL)   

Continue; 
       End 
       id ++; 
       For each member a in refSet 
          staticAFVList[a][id]=loopFreq(l); 
       End 
     End 
  End 
End 
Procedure BuildDynamicAFVList() 
// global access frequency vectors 
   For each leaf node n in the invocation graph 
     UpdateAFVList(n); 
   End 
End 
 

Procedure UpdateAFVList(IGNode n) 
   For each array a in n.refSet 
      UpdateDyn(a,n); 
   End 
   par = n.Parent(); 
   If (par == NULL)  
      return; 
   End 
   For each array virtual parameter p 
      q = GetRealParameter(p); 
      UpdateDyn(q,n); 
   End 
   n.visited = true; 
   If (IsAllChildrenUpdated(par)) 
      UpdateAFVList(par); 
   End 
End 
Procedure UpdateDyn(array a, IGNode n) 
   s1=n.staticStartId; 
   s2=n.dynStartId; 
   i=0; 
   While(i<n.loopNum) 
      dynAFVList[a][s2+i] +=staticAFVList[a][s1+i]*n.freq; 
      i++; 
   End 
End 
Procedure GraphPartition() 
// partition into affinity groups 
   For each edge e in the affinity graph g 
      If (edge.affinity > Threshold) 
         g.merge(edge); 
      End 
   End 
   groupList = g.GetNodeSets(); 
End 

Figure 2: Interprocedural reference affinity analysis 



4. EVALUATION  
 
We test on two machine architectures shown in Table 1. We use 
11 benchmarks for testing.  Eight are from SPEC CPU2000. The 
other three are programs used in distance-based affinity analysis 
by Zhong et al. [15].  Table 2 gives the source and a description 
of the test programs.  Most of them are scientific simulations for 
quantum physics, meteorology, fluid and molecular dynamics.  
Two are image processing and number theory.  The table shows 
that they use from 4 to 92 arrays. 
  

Table 1: Machine architectures 
Machine Type IBM® p690 Turbo+ Intel® PC 
Processor IBM® POWER4�+ 

1.7GHz 
Pentium®  4 
2.8GHz 

L1 data cache 32 KB, 2-way, 128 B 
cache line 

8 KB, 64 B cache 
line 

L2 data cache 1.5 MB, 4-way 512 KB, 8-way 
 

Table 2: Test programs 
Benchmark Source Description Arrays 

Applu Spec2K Physics/Quantum 
Chromodynamics 38 

Apsi Spec2K Meteorology:Pollutant 
Distribution 92 

Facerec Spec2K Image Processing: Face 
Recognition 44 

Galgel Spec2K Computational  
Fluid Dynamics 75 

Lucas Spec2K Number 
Theory/Primality Testing 14 

Mgrid Spec2K Multi-grid Solver:3D 
Potential Field 12 

Swim2K Spec2K Shallow Water Modeling 14 

Wupwise Spec2K Physics/Quantum 
Chromodynamics 20 

Swim95 Zhong+ Shallow Water  
Modeling 14 

Tomcatv Zhong+ Vectorized Mesh 
Generation 9 

MolDyn Zhong+ Molecular Dynamics 
Simulation 4 

 
                        
Affinity groups  
Table 3 shows the affinity groups identified by interprocedural 
reference affinity analysis using static estimates. The program 
that has most non-trivial affinity groups is Galgel.  It has eight 
affinity groups, including 24 out of 75 arrays in the program.  
Four programs---Apsi, Lucas, Wupwise, and MolDyn---do not 
have affinity groups with more than one array. Apsi uses only 
one major array, although parts of it are taken as many arrays in 
over 90 subroutines.  It is possible to split the main array into 
many smaller pieces.  It remains our future work. Lucas, 
Wupwise, and MolDyn have multiple arrays but no two have 
strong reference affinity.  The affinity groups in Facerec and 
Mgrid contain only small arrays.  The other three SPEC 
CPU2000 programs, Applu, Galgel, and Swim2K, have reference 
affinity among large arrays.  
 
 

Table 3: Affinity groups 
Benchmark Affinity groups   
Applu (imax,jmax,kmax) (idmax,jdmax,kdmax) 

(phi1,phi2) (a,b,c) (ldx,ldy,ldz) (udx,udy,udz)
  

Apsi <none>     
Facerec (coordx,coordy)    
Galgel (g1,g2,g3,g4) (f1,f2,f3,f4) (vyy,vyy2,vxy,vxy2) 

(vxxx,vyxx) (vyyy,vxxy,vxyy,vyxy) (v1,v2) 
(wxtx,wytx) (wypy,wxpy) 

Lucas <none>    
Mgrid (j1,j2,j3)     
Swim2K (unew,vnew,pnew) (u,v) (uold,vold,pold) 

(cu,cv,z,h)    
Wupwise <none>     
Swim95                              (unew,vnew,pnew) (u,v) 

(uold,vold,pold) (cu,cv,z,h) 
 compared to [15]: (unew,vnew,pnew) (u,v) 

(uold,pold) (vold) (cu,cv,z,h) 
Tomcatv                              (x,y) (rxm,rym) (rx,ry) 
 compared to [15]: (x,y) (rxm,rym) (rx,ry) 
MolDyn                              <none> 
  compared to [15]: <none> 
 
Comparison with distance-based affinity analysis  
Swim95, Tomcatv, and MolDyn are all FORTRAN programs 
tested by Zhong et al. [15]. Their distance-based analysis 
measures the reuse distance of every access in a trace.  The 
profiling time is in hours for a program.  Zhong et al. also used 
the profiling method for structure splitting in C programs.  We 
consider only FORTRAN programs in this study.  
 
The bottom six rows of Table 3 compare the affinity groups 
from reuse-distance profiling.  Our program analysis gives the 
same results for Tomcatv and MolDyn without any profiling.  
The results for Swim95 differ in one of the four non-trivial 
groups.  
 
Table 4 shows the performance difference between the two 
layouts on IBM and Intel machines.  At �-O3�, the compiler 
analysis gives better improvement than distance-based profiling.  
The two layouts have the same performance at �-O5�, the 
highest optimization level.  Without any profiling, the 
frequency-based affinity analysis is as effective as distance-
based affinity analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4: Comparison of frequency and K-distance analysis 
on Swim95 

 Frequency K-distance 
Groups unew, vnew, 

pnew 
u,v 
uold,vold,pold 
cu,cv,z,h 

unew, vnew, 
pnew 
u,v 
uold,pold 
cu,cv,z,h 

time 17.1s 17.6s -03 
speedup 96% 90% 
time 15.2s 15.3s 

IBM 

-05 
speedup 91% 91% 
time 41.2s 42.3s -03 
speedup 48% 44% 
time 34.9s 34.9s 

Intel 

-05 
speedup 42% 42% 

 
Comparison with lightweight profiling  
The lightweight profiling gives the execution frequency of loop 
bodies and call sites.  These numbers are used to calculate data-
access vectors.  The resulting affinity groups are the same 
compared to the pure compiler analysis.  Therefore, code 
profiling does not improve the regrouping results of the analysis.  
One exception, however, is when a program is transformed 
significantly by the compiler.  The profiling results reflect the 
behavior of the optimized program, while our compiler analysis 
measures the behavior of the source program.  Among all test 
programs, Swim2K and Swim95 are the only ones in which 
binary-level profiling of the optimized program yields different 
affinity groups than compiler analysis.  
 
The performance improvement from array regrouping  
Table 5 and Table 6 show the speedup on IBM and Intel 
machines, respectively.  We include only programs where array 
regrouping is applied.  Each program is compiled with both      
�-O3� and �-O5� optimization flags.  At �-O5� on IBM 
machines, array regrouping obtained more than 10% 
improvement on Swim2K, Swim95, and Tomcatv, 2-3% on Applu 
and Facerec, and marginal improvement on Galgel and Mgrid.  
The improvement is significantly higher at �-O3�, at least 5% 
for all but Mgrid.  The difference comes from the loop 
transformations, which makes array access more contiguous at 
�-O5� and reduces the benefit of array regrouping. The small 
improvements for Facerec and Mgrid are expected because only 
small arrays show reference affinity.  
 
Our Intel machines did not have a good FORTRAN 90 compiler, 
so Table 6 shows results for only FORTRAN 77 programs.  At 
�-O5�, array regrouping gives similar improvement for Swim2K 
and Swim95.  It is a contrast to the different improvement on 
IBM, suggesting that the GNU compiler is not as highly tuned 
for SPEC CPU2000 programs as the IBM compiler is.  Applu 
runs slower after array regrouping on the Intel machine.  The 
regrouped version also runs 16% slower at �-O5� than �-O3�.  
We are investigating the reason for this anomaly.    
 
 
 
 
 
 
 

Table 5: Execution time (sec.) on IBM® POWER4� 
Benchmark -03 Optimization -05 Optimization 

 
Original Regrouped 

(speedup) 
Original Regrouped 

(speedup) 

Applu 176.4 136.3 
(29.4%) 161.2 157.9 

(2.1%) 

Facerec 148.6 141.3 
(5.2%)  94.2 92.2 

(2.2%) 

Galgel 123.3 111.4 
(10.7%) 83.2 82.6 

(0.7%) 

Mgrid 231.4 230.1 
(0.6%) 103.9 103.0 

(0.9%) 

Swim2K 236.8 153.7 
(54.1%) 125.2 110.1 

(13.7%) 

Swim95 33.6 17.1 
(96.5%) 29.0 15.2 

(90.8%) 

Tomcatv 17.3 15.4 
(12.3%) 16.8 15.1 

(11.3%) 
 
 

Table 6: Execution time (sec.) on Intel® Pentium® 4 
Benchmark -03 Optimization -05 Optimization 

 
Original Regrouped 

(speedup) 
Original Regrouped 

(speedup) 

Applu 427.4 444 
 (-3.7%) 429.4 444.6 

 (-3.4%) 
Facerec - -  - - 
Galgel - - - - 

Mgrid 461.7 460.6 
(0.20%) 368.9 368.1 

(0.2%) 

Swim2K 545.1 315.7 
(72.70%) 408.8 259.4 

(57.6%) 

Swim95 61.1 41.2 
(48.30%) 49.7 34.9 

(42.4%) 

Tomcatv 48.8 44.5 
(9.70%) 40.9 37.8 

(8.2%) 
 
The choice of the affinity threshold  
In the experiment, the affinity threshold is set at 0.95, meaning 
that for two arrays to be grouped, the normalized Manhattan 
distance between the access-frequency vectors is at most 0.05.  
To evaluate how sensitive the analysis is to this threshold, we 
apply X-means clustering to divide the affinity values into 
groups. Table 7 shows the lower boundary of the largest cluster 
and the upper boundary of the second largest cluster.  All 
programs show a sizeable gap between the two clusters, 0.13 for 
Apsi and more than 0.2 for all other programs.  Any threshold 
between 0.87 and 0.99 would yield the same affinity groups.  
Therefore, the analysis is quite insensitive to the choice of the 
threshold.  

 
 
 
 
 
 
 
 
 
 
 



 
Table 7: The affinities of the top two clusters 

Benchmark Cluster-I 
lower boundary 

Cluster-II 
upper boundary 

Applu 0.998 0.667 
Apsi 1 0.868 
Facerec 0.997 0.8 
Galgel 1 0.8 
Lucas 1 0.667 
Mgrid 1 0.667 
Swim 0.995 0.799 
Swim95 0.995 0.799 
Tomcatv 1 0.798 
Wupwise 1 0.8 
 
 
5. RELATED WORK 
 
In the context of parallelization, Kennedy and Kremer [9], 
Anderson et al. [2], and Jeremiassen and Eggers [8] used data 
transformation to improve locality for parallel programs.   
Cierniak and Li [4] combined loop and data transformations to 
improve locality, an approach that was later used by other 
researchers.  The goal of most of these techniques is to improve 
data reuse within a single array.  An exception is group and 
transpose, which groups single-dimension vectors used by a 
thread to reduce false sharing [8].  Grouping all local data may 
reduce cache spatial locality if they are not used at the same time.  
 
Ding and Kennedy used array regrouping to improve program 
locality [5].  Their technique interleaves the elements of two 
arrays if they are always accessed together.  They later 
developed partial regrouping for high-dimensional arrays [6].  
These methods are conservative and do not consider the 
frequency of the data access and the control flow inside a loop 
nest.  Their compiler could not handle most SPEC floating-point 
benchmarks.  Recently, Zhong et al.  defined the concept of 
reference affinity at the trace level and gave a profiling-based 
method for array regrouping and structure splitting [15].  The 
profiling requires measuring the reuse distance of each data 
access on a trace and attributes the result to the source-level data 
structures. For three FORTRAN programs, they showed that the 
profiling-based regrouping outperformed the compiler-based 
regrouping by an average of 5% on IBM® POWER4� and 8% 
on Intel® Pentium® 4.  However, the profiling analysis is 
several orders of magnitude slower than a normal program 
execution. In this paper, we have developed a new method that 
is more aggressive than the previous compiler technique and far 
less costly than the previous profiling method.  In addition, we 
test the technique on most SPEC floating-point benchmarks.  
 
Locality between multiple arrays can be improved by array 
padding [3,10], which changes the space between arrays or 
columns of arrays to reduce cache conflicts.  In comparison, data 
regrouping is preferable because it works for all sizes of arrays 
on all configurations of cache, but padding is still needed if not 
all arrays can be grouped together.  
 
 
 

6. CONCLUSIONS 
 
Affinity analysis is an effective tool for data layout 
transformations.  This work has developed a frequency-based 
affinity model, a context-sensitive interprocedural analysis, 
static estimate and lightweight profiling of the execution 
frequency.  The analysis methods are implemented in a 
production compiler infrastructure and tested on SPEC 
CPU2000 benchmark programs.  Array regrouping improves the 
performance for the majority of programs tested.  The pure 
compiler analysis performs as well as data or code profiling does.  
These results show that array regrouping is an excellent 
candidate for inclusion in future optimizing compilers.  
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