
Lightweight Reference Affinity Analysis

Xipen Shen*, Yaoqing Gao+, Chen Ding*, and Roch Archambault+

* Computer Science Department

University of Rochester, Rochester, NY, USA

{xshen,cding}@cs.rochester.edu

+ IBM Toronto Software Lab

 Toronto, ON, L6G 1C7, Canada

{ygao,archie}@ca.ibm.com

ABSTRACT

Previous studies have shown that array regrouping and structure
splitting significantly improve data locality. The most effective
technique relies on profiling every access to every data element.
The high overhead impedes its adoption in a general compiler.
In this paper, we show that for array regrouping in scientific
programs, the overhead is not needed since the same benefit can
be obtained by pure program analysis.

We present an interprocedural analysis technique for array
regrouping. For each global array, the analysis summarizes the
access pattern by access-frequency vectors and then groups
arrays with similar vectors. The analysis is context sensitive, so
it tracks the exact array access. For each loop or function call, it
uses two methods to estimate the frequency of the execution.
The first is symbolic analysis in the compiler. The second is
lightweight profiling of the code. The same interprocedural
analysis is used to cumulate the overall execution frequency by
considering the calling context. We implemented a prototype of
both the compiler and the profiling analysis in the IBM®
compiler, evaluated array regrouping on the entire set of SPEC
CPU2000 FORTRAN benchmarks, and compared different
analysis methods. The pure compiler-based array regrouping
improves the performance for the majority of programs, leaving
little room for improvement by code or data profiling.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors � compilers and
optimization.

Keywords
Affinity, Frequency, Compiler, Data Regrouping, Data
Interleving, Memory Optimization

1. INTRODUCTION

Over the past 30 years, memory performance increasingly
determines the program performance on high-end machines.
Although programs employ a large amount of data, they do not
use all data at all times. We can improve cache spatial locality
by storing in cache precisely the data that is required at a given
point of computation. In scientific programs, most data is stored
in arrays. In this paper, we study the organization of data in
multiple arrays.

Figure 1 shows an example of array regrouping. Part (a) shows
a program that uses four attributes of N molecules in two loops.
One attribute, �position�, is used in both the compute loop and
the visualization loop, but the other three are used only in the
compute loop. Part (b) shows the initial data layout, where each
attribute is stored in a separate array. In the compute loop, the
four attributes of a molecule are used together, but they are
stored far apart in memory. On today's high-end machines from
IBM, Microsystems, and companies using Intel® Itanium® and
AMD processors, the largest cache in the hierarchy is composed
of blocks of no smaller than 64 bytes. In the worst case, only
one 4-byte attribute is useful in each cache block, 94% of cache
space would be occupied by useless data, and only 6% of cache
is available for data reuse. A similar issue exists for memory
pages, except that the utilization problem can be much worse.

Array regrouping improves spatial locality by grouping three of
the four attributes together in memory, as shown in part (c) of
Figure 1. After regrouping, a cache block should have at least
three useful attributes. One may suggest grouping all four
attributes. However, three of the attributes are not used in the
visualization loop, and therefore grouping them with �position�
hurts cache-block utilization. However, if the loop is
infrequently executed or it touches only a few molecules, then
we may still benefit from grouping all four attributes.

Array regrouping has many other benefits. First, it reduces the
interference among cache blocks because fewer cache blocks are
accessed. By combining multiple arrays, array regrouping
reduces the page-table working set and consequently the number
of Translation Lookaside Buffer (TLB) misses in a large
program. It also reduces the register pressure because fewer
registers are needed to store array base addresses. It may
improve energy efficiency by allowing more memory pages to
enter a sleeping model. For the above reasons, array regrouping
is beneficial even for arrays that are contiguously accessed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS'05, June 20-22, Boston, MA, USA.
Copyright 2005, ACM 1-59593-167-8/06/2005...$5.00

Figure 1. Array regrouping example. Data with reference affinity is placed together to improve cache utilization

These benefits have been verified in our previous study [6].
Finally, on shared-memory parallel machines, better cache-block
utilization means slower amortized communication latency and
better bandwidth utilization.

Array regrouping is mostly orthogonal to traditional loop-nest
transformations and single-array transformations. The latter two
try to effect contiguous access within a single array. Array
regrouping complements them by exploiting cross-array spatial
locality, even when per-array data access is contiguous. As a
data transformation, it is applicable to irregular programs where
the dependence information is lacking. In the example in Figure
1, the correctness of the transformation does not depend on
knowing the value of index variables m and k. While array
regrouping has a good potential for complex programs, it has not
been implemented in any production compiler because the
current techniques are not up to the task.

Ding and Kennedy gave the first compiler technique for array
regrouping [6]. They defined the concept reference affinity. A
group of arrays have reference affinity if they are always
accessed together in a program. Their technique is conservative
and groups arrays only when they are always accessed together.
We call this scheme conservative affinity analysis. Conservative
analysis is too restrictive in real-size applications, where many
arrays are only sporadically accessed.

Zhong et al. redefined reference affinity at the trace level using a
concept called reuse distance, which is the volume of data
between two accesses of the same unit of data. They grouped
arrays that have similar distributions of reuse distances (reuse
signatures) [15]. We call it distance-based affinity analysis.
The new scheme groups arrays if they are mostly used together
and outperforms the conservative scheme for a set of three

FORTRAN programs. Reuse-distance profiling, however,
carries a high overhead. The slowdown is at least 10 to 100
times. No production compiler is shipped with such a costly
technique. No one would do so before carefully examining
whether such a high cost is justified.

The two previous techniques were evaluated on a small set of
programs, partly because the techniques did not handle
parameter arrays as well as global arrays that are passed as
parameters. Since multiple arrays may map to the same
parameter array at different times, the affinity information is
ambiguous. Another problem is aliasing, which has not been
considered in array regrouping.

We present frequency-based affinity analysis. It uses a
frequency-based model to group arrays even if they are not
always accessed together. It uses interprocedural program
analysis to measure the access frequency in the presence of array
parameters and aliases. To collect the frequency within a loop
or a function, we study two methods. The first is symbolic
analysis by a compiler. The second is lightweight profiling.
The techniques apply to FORTRAN programs. In the rest of the
paper, we will present the frequency model, the estimation
methods, and the interprocedural analysis. We will describe
their implementation in the IBM® FORTRAN compiler, an
evaluation on SPEC CPU2000 floating-point benchmark
programs, and comparisons between frequency-based and
distance-based methods, and between pure compiler analysis
and lightweight profiling.

2. FREQUENCY-BASED AFFINITY
ANALYSIS

Below is the general framework of the analysis.

• Building the control flow graph and the invocation
graph with data flow analysis

• Estimating the execution frequency through either
static analysis or profiling

• Building array access-frequency vectors using
interprocedural analysis, as shown in Figure 2.

• Calculating the affinity between each array pair and
constructing the affinity graph

• Partitioning the graph to find affinity groups in linear
time

In this section, we first present the affinity model, where arrays
are nodes and affinities are edge weights in the affinity graph,
and the affinity groups are obtained through linear-time graph
partitioning. We then describe the two methods, static and
lightweight profiling, for collecting the frequency information.
Finally, we describe the context-sensitive interprocedural
reference affinity analysis and the use of the frequency
information by the analysis.

2.1 Frequency-based Affinity Model

A program is modeled as a set of code units, in particular, loops.
Suppose there are K code units. Let fi represent the total
occurrences of the ith unit in the program execution. We use ri(A)
to represent the number of references to array A in an execution
of the ith unit. The frequency vector of array A is defined as
follows:

V (A) = (v1, v2, . . . , vK)

where
vi = 0 if ri (A) = 0;
vi = fi if ri (A) > 0.

A code unit i may have branches inside and may call other
functions. We conservatively assume that a branch goes both
directions when collecting the data access. We use
interprocedural analysis to find the side effects of function calls.

To save space, we can use a bit vector to replace the access
vector of each array and use a separate vector to record the
frequency of code units.

The affinity between two arrays is the Manhattan distance
between their access-frequency vectors, as shown below. It is a
number between zero and one. Zero means that two arrays are
never used together, while one means that both are accessed
whenever one is.

∑

∑

=

=

+

−
−= K

i
ii

K

i
ii

BvAv

BvAv
BAaffinity

1

1

))()(((

|)()(|
1),(

We construct an affinity graph. Each node represents an array,
and the weight of an edge between two nodes is the calculated
affinity between them. There are additional constraints. To be
regrouped, two arrays must be compatible in that they should
have the same number of elements and they should be accessed
in the same order [6]. The data access order is not always
possible to analyze at compile time. However, when the
information is available to show that two arrays are not accessed
in the same order in a code unit, the weight of their affinity edge
will be reset to zero. The same is true if two arrays differ in size.

Graph partitioning is done through a graph traversal. It merges
two nodes into a group if the affinity weight is over a threshold.
After partitioning, each remaining node is a set of arrays to be
grouped together. The threshold determines the minimal amount
of affinity for array regrouping. We will examine the effect of
different thresholds in Section 4. The entire algorithm,
including graph partitioning, is given in Figure 2.

2.2 Unit of Program Analysis

For scientific programs, most data accesses happen in loops.
We use a loop as a hot code unit for frequency counting for three
reasons: coverage, independence, and efficiency.

• Coverage: A loop often accesses an entire array or
most of an array. In that case, branches and function
calls outside the loop have no effect on whether two
arrays are accessed together or not.

• Independence: McKinley and Temam reported that
most cache misses in SPEC95 FP programs were due
to cross-loop reuses [16]. We expect the same for our
test programs and ignore the cache reuse across two
loops. Therefore, the temporal order in which loops
are executed has no effect on the affinity relation.
Without the independence, when two arrays appear in
different code units, their affinity may depend on the
temporal relations across units. The independence
property simplifies the affinity analysis by allowing it
to compose the final result from analyzing individual
code units.

• Efficiency: The total number of loops determines the
size of the access-frequency vector. In a context-
sensitive analysis, a unit becomes multiple elements in
the access-frequency vector, one for each distinct
calling context. The number of loops is small enough
to enable full context-sensitive analysis, as described
in Section 2.5. In our experiment, the maximum is
351 for benchmark Galgel.

In comparison, other types of code units are not as good for
array regrouping. For example, a basic block has too little data
access to be independent from other basic blocks. Basic blocks
may be too numerous for compiler analysis or lightweight
profiling to be affordable. A small procedure lacks
independence in data access. A large procedure has less
coverage because it often has a more complex control flow than
a loop does. Other possible code units are super-blocks and
regions, but none satisfies the three requirements as well as

loops do. Loops have good independence, so the temporal order
of loops has little impact on the affinity result. The number of
loops is not overly large in most programs. Branches inside
loops hurt the coverage. However, very few branches exist in
loops in scientific programs, especially in the innermost loop.

2.3 Static Estimate of the Execution
Frequency

Many past studies have developed compiler-based estimate of
the execution frequency (e.g., [11,13]). The main difficulties are
to estimate the value of a variable, to predict the outcome of a
branch, and to cumulate the result for every statement in a
program. We use standard constant propagation and symbolic
analysis to find constants and relations between symbolic
variables.

We classify loops into three categories. The bounds of the first
group are known constants. The second group of loops have
symbolic bounds that depend on the input, e.g. the size of the
grid in a program simulating a three-dimensional space. The
number of iterations can be represented by an expression of a
mix of constants and symbolic values. We need to convert a
symbolic expression into a number because the later affinity
analysis is based on numerical values. The exact iteration count
is impossible to obtain. To distinguish between high-trip count
loops from low-trip count loops, we assume that a symbolic
value is reasonably large (100) since most low-trip count loops
have a constant bound. This strategy works well in our
experiments.

The third category includes many while-loops, where the exit
condition is calculated in each iteration. Many while-loops are
small and do not access arrays, so they are ignored in our
analysis. In other small while-loops, we take the size of the
largest array referenced in the loop as the number of iterations.
If the size of all arrays is unknown, we simply assign a constant
100 as the iteration count.

The array regrouping is not very sensitive to the accuracy of
loop iteration estimations. If two arrays are always accessed
together, they would be regarded as arrays with perfect affinity
regardless how inaccurate the iteration estimations are. Even for
arrays without perfect affinity, the high regrouping threshold
provides good tolerance of estimation errors as discussed in
Section 4.1.

The frequency of the innermost loop is the product of its
iteration count, the number of iterations in all enclosing loops in
the same procedure, and the estimated frequency of the
procedure invocation. The execution frequency of loops and
subroutines is estimated using the same interprocedural analysis
method described in Section 2.5. It roughly corresponds to in-
lining all procedural calls.

For branches, we assume that both paths are taken except when
one branch leads to the termination of a program, i.e., the stop
statement. In that case, we assume that the program does not
follow the exit branch. This scheme may overestimate the
affinity relation. Consider a loop whose body is a statement

with two branches α and β . Suppose array A is accessed in the
branch α and B in the β branch. In an execution, if the two
branches are taken in alternative loop iterations, then the affinity
relation is accurate, that is, the two arrays are used together.
However, if α is taken in the first half iterations and β in the
second half (or vice versa), then the two arrays are not used
together. The static result is an overestimate.

2.4 Profiling-based Frequency Analysis

By instrumenting a program, the exact number of iterations
becomes known for the particular input. To consider the effect
of the entire control flow, we count the frequency of execution
of all basic blocks. Simple counting would insert a counter and
an increment instruction for each basic block. In this work, we
use the existing implementation in the IBM compiler [12],
which implements more efficient counting by calculating from
the frequency of neighboring blocks, considering a flow path,
and lifting the counter outside a loop. Its overhead is less than
100% for all programs we tested. The execution frequency for
an innermost loop is the frequency of the loop header block.
When a loop contains branches, the analysis is an overestimate
for reasons described in Section 2.3.

2.5 Context-sensitive Interprocedural
Reference Affinity Analysis

Aliases in FORTRAN programs are caused by parameter
passing and storage association. We consider only the first
cause. We use an interprocedural analysis based on the
invocation graph, as described by Emami et al [7]. Given a
program, the invocation graph is built by a depth-first traversal
of the call structure starting from the program entry. Recursive
call sequences are truncated when the same procedure is called
again. In the absence of recursion, the invocation graph
enumerates all calling contexts for an invocation of a procedure.
A special back edge is added in the case of a recursive call, and
the calling context can be approximated.

The affinity analysis proceeds in two steps. The first step takes
one procedure at a time, treats the parameter arrays as
independent arrays, identifies loops inside the procedure, and the
access vector for each array. The procedure is given by
BuildStaticAFVList in Figure 2.

The second step traverses the invocation graph from the bottom
up. At each call site, the affinity results of the callee are mapped
up to the caller based on the parameter bindings, as given by
procedures BuildDynamicAFVList, UpdateAFVList, and
UpdateDyn in Figure 2. As an implementation, the lists from all
procedures are merged in one vector, and individual lists are
extracted when needed, as in UpdateDyn. The parameter
binding for a recursive call is not always precise. But a fixed
point can be obtained in linear time using an algorithm proposed
by Cooper and Kennedy (Section 11.2.3 of [1]).

Because of the context sensitivity, a loop contributes multiple
elements to the access-frequency vector, one for every calling
context. However, the number of calling contexts is small.
Emami et al. reported on average 1.45 invocation nodes per call

site for a set of C programs. [7]. We saw a similar small ratio in
FORTRAN programs.

The calculation of the access-frequency vector uses the
execution frequency of each loop, as in procedure UpdateDyn.
In the case of static analysis, the frequency of each invocation
node is determined by all the loops in its calling context, not
including the back edges added for recursive calls. The
frequency information is calculated from the top down. Indeed,
in our implementation, the static frequency is calculated at the
same time as the invocation graph is constructed.

The frequency from the lightweight profiling can be directly
used if the profiling is context sensitive. Otherwise, the average
is calculated for the number of loop executions within each
function invocation. The average frequency is an approximation.

The last major problem in interprocedural array regrouping is
the consistency of data layout for parameter arrays. Take, for
example, a procedure that has two formal parameter arrays. It is
called from two call sites; each passes a different pair of actual
parameter arrays. Suppose that one pair has reference affinity
but the other does not. To allow array regrouping, we will need
two different layouts for the formal parameter arrays. One
possible solution is procedural cloning, but this leads to code
expansion, which can be impractical in the worst case. In this
work, we use a conservative solution. The analysis detects
conflicts in parameter layouts and disables array regrouping to
resolve a conflict. In the example just mentioned, any pair of
arrays that can be passed into the procedure are not regrouped.
In other words, array regrouping guarantees no need of code
replication in the program.

The invocation graph excludes pointer-based control flow and
some use of dynamically loaded libraries. The former does not
exist in FORTRAN programs and the latter is a limitation of
static analysis.

3. IMPLEMENTATION

This work is implemented in IBM® TPO (Toronto Portable
Optimizer), which is the core optimization component in IBM®
C/C++ and FORTRAN compilers. It implements both compile-
time and link-time methods for intra- and interprocedural
optimizations. It also implements profiling feedback
optimizations. We now describe the structure of TPO and the
implementation of the reference affinity analysis.

TPO uses a common graph structure based on Single Static
Assignment form (SSA) [1] to represent the control and data
flow within a procedure. Global value numbering and
aggressive copy propagation are used to perform symbolic
analysis and expression simplifications. It performs pointer
analysis and constant propagation using the same basic
algorithm from Wegman and Zadeck [14], which is well suited
for using SSA form of data flow. For loop nests, TPO performs
data dependence analysis and loop transformations after data
flow optimizations. We use symbolic analysis to identify the
bounds of arrays and estimate the execution frequency of loops.
We use dependence analysis to identify regular access patterns
to arrays.

During the link step, TPO is invoked to re-optimize the program.
Having access to the intermediate code for all the procedures in
the program, TPO can significantly improve the precision of the
data aliasing and function aliasing information. Interprocedural
mod-use information is computed at various stages during the
link step.

The reference affinity analysis is implemented at the link step.
A software engineering problem is whether to insert it before or
after loop transformations. Currently the analysis happens first,
so arrays can be transformed at the same compilation pass as
loops are. As shown later, early analysis does not lead to slower
performance in any of the test programs. We are looking at
implementation options that may allow a later analysis when the
loop access order is fully determined.

We have implemented the analysis that collects the static access-
frequency vector and the analysis that measures per-basic-block
execution frequency through profiling. We have implemented a
compiler flag that triggers either static or profiling-based affinity
analysis. The invocation graph is part of the TPO data structure.
We are in the process of completing the analysis that includes
the complete context sensitivity. The current access-frequency
vector takes the union of all contexts. We have implemented the
reference affinity graph and the linear-time partitioning. The
array transformations are semi-automated as the implementation
needs time to fully bond inside the compiler.

The link step of TPO performs two passes. The first is a
forward pass to accumulate and propagate constant and pointer
information within the entire program. Reference affinity
analysis is part of the global reference analysis used for
remapping global data structures. It can clone a procedure [1]
when needed, although we do not use cloning for array
regrouping. The second pass traverses the invocation graph
backward to perform various loop transformations.
Interprocedural code motion is also performed during the
backward pass. This transformation will move upward from a
procedure to all of its call points. Data remapping
transformations, including array regrouping when fully
implemented, are performed just before the backward pass to
finalize the data layout. Loop transformations are performed
during the backward pass to take full advantage of the
interprocedural information. Interprocedural mod-use
information is recomputed again in order to provide more
accurate information to the back-end code generator.

Data Structure
staticAFV List : the list of local access-frequency vectors, one for each array and each subroutine
dynAFV List : the list of global access-frequency vectors, one for each array
loopFreq : the local estimate of the execution frequency of a loop
IGNode : the data structure of a node in the invocation graph, with the following attributes
freq : the estimated frequency of the node
staticStartId : the position of the subroutine�s first loop in staticAFVList vectors
dynStartId : the position of the subroutine�s first loop in dynAFVList vectors
groupList : the list of affinity groups
Algorithm
1) building control flow graph and invocation graph with data flow analysis
2) estimating the execution frequency through either static analysis or profiling (Section 2.3 and 2.4)
3) building array access-frequency vectors using interprocedural analysis (this algorithm, explained in Section 2.5)
4) calculating the affinity between each array pair and constructing the affinity graph (Section 2.1)
5) linear-time graph partitioning to find affinity groups (Section 2.1)

Procedure BuildAFVList()
// build access frequency vectors
 BuildStaticAFVList ();
 BuildDynamicAFVList ();
End
Procedure BuildStaticAFVList()
// local access frequncy vectors
 id = 0;
 For each procedure proc
 For each inner-most loop l in proc
 refSet = GetArrayRefSet(l);
 If (refSet == NULL)

Continue;
 End
 id ++;
 For each member a in refSet
 staticAFVList[a][id]=loopFreq(l);
 End
 End
 End
End
Procedure BuildDynamicAFVList()
// global access frequency vectors
 For each leaf node n in the invocation graph
 UpdateAFVList(n);
 End
End

Procedure UpdateAFVList(IGNode n)
 For each array a in n.refSet
 UpdateDyn(a,n);
 End
 par = n.Parent();
 If (par == NULL)
 return;
 End
 For each array virtual parameter p
 q = GetRealParameter(p);
 UpdateDyn(q,n);
 End
 n.visited = true;
 If (IsAllChildrenUpdated(par))
 UpdateAFVList(par);
 End
End
Procedure UpdateDyn(array a, IGNode n)
 s1=n.staticStartId;
 s2=n.dynStartId;
 i=0;
 While(i<n.loopNum)
 dynAFVList[a][s2+i] +=staticAFVList[a][s1+i]*n.freq;
 i++;
 End
End
Procedure GraphPartition()
// partition into affinity groups
 For each edge e in the affinity graph g
 If (edge.affinity > Threshold)
 g.merge(edge);
 End
 End
 groupList = g.GetNodeSets();
End

Figure 2: Interprocedural reference affinity analysis

4. EVALUATION

We test on two machine architectures shown in Table 1. We use
11 benchmarks for testing. Eight are from SPEC CPU2000. The
other three are programs used in distance-based affinity analysis
by Zhong et al. [15]. Table 2 gives the source and a description
of the test programs. Most of them are scientific simulations for
quantum physics, meteorology, fluid and molecular dynamics.
Two are image processing and number theory. The table shows
that they use from 4 to 92 arrays.

Table 1: Machine architectures
Machine Type IBM® p690 Turbo+ Intel® PC
Processor IBM® POWER4�+

1.7GHz
Pentium® 4
2.8GHz

L1 data cache 32 KB, 2-way, 128 B
cache line

8 KB, 64 B cache
line

L2 data cache 1.5 MB, 4-way 512 KB, 8-way

Table 2: Test programs
Benchmark Source Description Arrays

Applu Spec2K Physics/Quantum
Chromodynamics 38

Apsi Spec2K Meteorology:Pollutant
Distribution 92

Facerec Spec2K Image Processing: Face
Recognition 44

Galgel Spec2K Computational
Fluid Dynamics 75

Lucas Spec2K Number
Theory/Primality Testing 14

Mgrid Spec2K Multi-grid Solver:3D
Potential Field 12

Swim2K Spec2K Shallow Water Modeling 14

Wupwise Spec2K Physics/Quantum
Chromodynamics 20

Swim95 Zhong+ Shallow Water
Modeling 14

Tomcatv Zhong+ Vectorized Mesh
Generation 9

MolDyn Zhong+ Molecular Dynamics
Simulation 4

Affinity groups
Table 3 shows the affinity groups identified by interprocedural
reference affinity analysis using static estimates. The program
that has most non-trivial affinity groups is Galgel. It has eight
affinity groups, including 24 out of 75 arrays in the program.
Four programs---Apsi, Lucas, Wupwise, and MolDyn---do not
have affinity groups with more than one array. Apsi uses only
one major array, although parts of it are taken as many arrays in
over 90 subroutines. It is possible to split the main array into
many smaller pieces. It remains our future work. Lucas,
Wupwise, and MolDyn have multiple arrays but no two have
strong reference affinity. The affinity groups in Facerec and
Mgrid contain only small arrays. The other three SPEC
CPU2000 programs, Applu, Galgel, and Swim2K, have reference
affinity among large arrays.

Table 3: Affinity groups
Benchmark Affinity groups
Applu (imax,jmax,kmax) (idmax,jdmax,kdmax)

(phi1,phi2) (a,b,c) (ldx,ldy,ldz) (udx,udy,udz)

Apsi <none>
Facerec (coordx,coordy)
Galgel (g1,g2,g3,g4) (f1,f2,f3,f4) (vyy,vyy2,vxy,vxy2)

(vxxx,vyxx) (vyyy,vxxy,vxyy,vyxy) (v1,v2)
(wxtx,wytx) (wypy,wxpy)

Lucas <none>
Mgrid (j1,j2,j3)
Swim2K (unew,vnew,pnew) (u,v) (uold,vold,pold)

(cu,cv,z,h)
Wupwise <none>
Swim95 (unew,vnew,pnew) (u,v)

(uold,vold,pold) (cu,cv,z,h)
 compared to [15]: (unew,vnew,pnew) (u,v)

(uold,pold) (vold) (cu,cv,z,h)
Tomcatv (x,y) (rxm,rym) (rx,ry)
 compared to [15]: (x,y) (rxm,rym) (rx,ry)
MolDyn <none>
 compared to [15]: <none>

Comparison with distance-based affinity analysis
Swim95, Tomcatv, and MolDyn are all FORTRAN programs
tested by Zhong et al. [15]. Their distance-based analysis
measures the reuse distance of every access in a trace. The
profiling time is in hours for a program. Zhong et al. also used
the profiling method for structure splitting in C programs. We
consider only FORTRAN programs in this study.

The bottom six rows of Table 3 compare the affinity groups
from reuse-distance profiling. Our program analysis gives the
same results for Tomcatv and MolDyn without any profiling.
The results for Swim95 differ in one of the four non-trivial
groups.

Table 4 shows the performance difference between the two
layouts on IBM and Intel machines. At �-O3�, the compiler
analysis gives better improvement than distance-based profiling.
The two layouts have the same performance at �-O5�, the
highest optimization level. Without any profiling, the
frequency-based affinity analysis is as effective as distance-
based affinity analysis.

Table 4: Comparison of frequency and K-distance analysis
on Swim95

 Frequency K-distance
Groups unew, vnew,

pnew
u,v
uold,vold,pold
cu,cv,z,h

unew, vnew,
pnew
u,v
uold,pold
cu,cv,z,h

time 17.1s 17.6s -03
speedup 96% 90%
time 15.2s 15.3s

IBM

-05
speedup 91% 91%
time 41.2s 42.3s -03
speedup 48% 44%
time 34.9s 34.9s

Intel

-05
speedup 42% 42%

Comparison with lightweight profiling
The lightweight profiling gives the execution frequency of loop
bodies and call sites. These numbers are used to calculate data-
access vectors. The resulting affinity groups are the same
compared to the pure compiler analysis. Therefore, code
profiling does not improve the regrouping results of the analysis.
One exception, however, is when a program is transformed
significantly by the compiler. The profiling results reflect the
behavior of the optimized program, while our compiler analysis
measures the behavior of the source program. Among all test
programs, Swim2K and Swim95 are the only ones in which
binary-level profiling of the optimized program yields different
affinity groups than compiler analysis.

The performance improvement from array regrouping
Table 5 and Table 6 show the speedup on IBM and Intel
machines, respectively. We include only programs where array
regrouping is applied. Each program is compiled with both
�-O3� and �-O5� optimization flags. At �-O5� on IBM
machines, array regrouping obtained more than 10%
improvement on Swim2K, Swim95, and Tomcatv, 2-3% on Applu
and Facerec, and marginal improvement on Galgel and Mgrid.
The improvement is significantly higher at �-O3�, at least 5%
for all but Mgrid. The difference comes from the loop
transformations, which makes array access more contiguous at
�-O5� and reduces the benefit of array regrouping. The small
improvements for Facerec and Mgrid are expected because only
small arrays show reference affinity.

Our Intel machines did not have a good FORTRAN 90 compiler,
so Table 6 shows results for only FORTRAN 77 programs. At
�-O5�, array regrouping gives similar improvement for Swim2K
and Swim95. It is a contrast to the different improvement on
IBM, suggesting that the GNU compiler is not as highly tuned
for SPEC CPU2000 programs as the IBM compiler is. Applu
runs slower after array regrouping on the Intel machine. The
regrouped version also runs 16% slower at �-O5� than �-O3�.
We are investigating the reason for this anomaly.

Table 5: Execution time (sec.) on IBM® POWER4�
Benchmark -03 Optimization -05 Optimization

Original Regrouped

(speedup)
Original Regrouped

(speedup)

Applu 176.4 136.3
(29.4%) 161.2 157.9

(2.1%)

Facerec 148.6 141.3
(5.2%) 94.2 92.2

(2.2%)

Galgel 123.3 111.4
(10.7%) 83.2 82.6

(0.7%)

Mgrid 231.4 230.1
(0.6%) 103.9 103.0

(0.9%)

Swim2K 236.8 153.7
(54.1%) 125.2 110.1

(13.7%)

Swim95 33.6 17.1
(96.5%) 29.0 15.2

(90.8%)

Tomcatv 17.3 15.4
(12.3%) 16.8 15.1

(11.3%)

Table 6: Execution time (sec.) on Intel® Pentium® 4
Benchmark -03 Optimization -05 Optimization

Original Regrouped

(speedup)
Original Regrouped

(speedup)

Applu 427.4 444
 (-3.7%) 429.4 444.6

 (-3.4%)
Facerec - - - -
Galgel - - - -

Mgrid 461.7 460.6
(0.20%) 368.9 368.1

(0.2%)

Swim2K 545.1 315.7
(72.70%) 408.8 259.4

(57.6%)

Swim95 61.1 41.2
(48.30%) 49.7 34.9

(42.4%)

Tomcatv 48.8 44.5
(9.70%) 40.9 37.8

(8.2%)

The choice of the affinity threshold
In the experiment, the affinity threshold is set at 0.95, meaning
that for two arrays to be grouped, the normalized Manhattan
distance between the access-frequency vectors is at most 0.05.
To evaluate how sensitive the analysis is to this threshold, we
apply X-means clustering to divide the affinity values into
groups. Table 7 shows the lower boundary of the largest cluster
and the upper boundary of the second largest cluster. All
programs show a sizeable gap between the two clusters, 0.13 for
Apsi and more than 0.2 for all other programs. Any threshold
between 0.87 and 0.99 would yield the same affinity groups.
Therefore, the analysis is quite insensitive to the choice of the
threshold.

Table 7: The affinities of the top two clusters

Benchmark Cluster-I
lower boundary

Cluster-II
upper boundary

Applu 0.998 0.667
Apsi 1 0.868
Facerec 0.997 0.8
Galgel 1 0.8
Lucas 1 0.667
Mgrid 1 0.667
Swim 0.995 0.799
Swim95 0.995 0.799
Tomcatv 1 0.798
Wupwise 1 0.8

5. RELATED WORK

In the context of parallelization, Kennedy and Kremer [9],
Anderson et al. [2], and Jeremiassen and Eggers [8] used data
transformation to improve locality for parallel programs.
Cierniak and Li [4] combined loop and data transformations to
improve locality, an approach that was later used by other
researchers. The goal of most of these techniques is to improve
data reuse within a single array. An exception is group and
transpose, which groups single-dimension vectors used by a
thread to reduce false sharing [8]. Grouping all local data may
reduce cache spatial locality if they are not used at the same time.

Ding and Kennedy used array regrouping to improve program
locality [5]. Their technique interleaves the elements of two
arrays if they are always accessed together. They later
developed partial regrouping for high-dimensional arrays [6].
These methods are conservative and do not consider the
frequency of the data access and the control flow inside a loop
nest. Their compiler could not handle most SPEC floating-point
benchmarks. Recently, Zhong et al. defined the concept of
reference affinity at the trace level and gave a profiling-based
method for array regrouping and structure splitting [15]. The
profiling requires measuring the reuse distance of each data
access on a trace and attributes the result to the source-level data
structures. For three FORTRAN programs, they showed that the
profiling-based regrouping outperformed the compiler-based
regrouping by an average of 5% on IBM® POWER4� and 8%
on Intel® Pentium® 4. However, the profiling analysis is
several orders of magnitude slower than a normal program
execution. In this paper, we have developed a new method that
is more aggressive than the previous compiler technique and far
less costly than the previous profiling method. In addition, we
test the technique on most SPEC floating-point benchmarks.

Locality between multiple arrays can be improved by array
padding [3,10], which changes the space between arrays or
columns of arrays to reduce cache conflicts. In comparison, data
regrouping is preferable because it works for all sizes of arrays
on all configurations of cache, but padding is still needed if not
all arrays can be grouped together.

6. CONCLUSIONS

Affinity analysis is an effective tool for data layout
transformations. This work has developed a frequency-based
affinity model, a context-sensitive interprocedural analysis,
static estimate and lightweight profiling of the execution
frequency. The analysis methods are implemented in a
production compiler infrastructure and tested on SPEC
CPU2000 benchmark programs. Array regrouping improves the
performance for the majority of programs tested. The pure
compiler analysis performs as well as data or code profiling does.
These results show that array regrouping is an excellent
candidate for inclusion in future optimizing compilers.

7. REFERENCES

[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan
Kaufmann Publishers, October 2001.
[2] J. Anderson, S. Amarasinghe, and M. Lam. Data and
computation transformation for multiprocessors. In Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Santa Barbara, CA, July 1995.
[3] D. Bailey. Unfavorable strides in cache memory systems.
Technical Report RNR-92-015, NASA Ames Research Center,
1992.
[4] M. Cierniak and W. Li. Unifying data and control
transformations for distributed shared-memory machines. In
Proceedings of the SIGPLAN �95 Conference on Programming
Language Design and Implementation, La Jolla, California, June
1995.
[5] C. Ding and K. Kennedy. Inter-array data regrouping. In
Proceedings of The 12th International Workshop onLanguages
and Compilers for Parallel Computing, La Jolla, California,
August 1999.
[6] C. Ding and K. Kennedy. Improving effective bandwidth
through compiler enhancement of global cache reuse. Journal of
Parallel and Distributed Computing, 64(1), 2004.
[7] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation, 1994.
[8] T. E. Jeremiassen and S. J. Eggers. Reducing false sharing
on shared memory multiprocessors through compile time data
transformations. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
pages 179�188, Santa Barbara, CA, July 1995.
[9] K. Kennedy and U. Kremer. Automatic data layout for
distributed memory machines. ACM Transactions on
Programming Languages and Systems, 20(4), 1998.
[10] G. Rivera and C.-W. Tseng. Data transformations for
eliminating conflict misses. In Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation, 1998.
[11] V. Sarkar. Determining average program execution times
and their variance. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, Portland, Oregon, January 1989.
[12] R. Silvera, R. Archambault, D. Fosbury, and B. Blainey.
Branch and value profile feedback for whole program
optimization. Unpublished, no date given.

[13] T. A. Wagner, V. Maverick, S. L. Graham, and M. A.
Harrison. Accurate static estimators for program optimization. In
Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, 1994.
[14] M.Wegman and K. Zadeck. Constant propagation with
conditional branches. In Conference Record of the Twelfth
Annual ACM Symposium on the Principles of Programming
Languages, New Orleans, LA, January 1985.
[15] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array
regrouping and structure splitting using whole-program
reference affinity. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, June 2004.
[16] K. McKinley, O. Temam. A quantitative analysis of loop
nest locality. In Proceedings of the seventh international
conference on Architectural support for programming languages
and operating systems, Cambridge, MA, US, 1996

Trademarks

IBM and POWER4 are trademarks or registered trademarks of
International Business Machines Corporation in the United
States, other countries, or both.

Intel and Pentium are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

