Instruction Balance and its Relation to
Program Energy Consumption

Tao Li Chen Ding

Computer Science Department
University of Rochester
Rochester, New York
{taoli,cding}@cs.rochester.edu

Abstract. A computer consists of multiple components such as func-
tional units, cache and main memory. At each moment of execution, a
program may have a varied amount of work for each component. Recent
development has exploited this imbalance to save energy by slowing the
components that have a lower load. Example techniques include dynamic
scaling and clock gating used in processors from Transmeta and Intel.
Symmetrical to reconfiguring hardware is reorganizing software. We can
alter program demand for different components by reordering program
instructions. This paper explores the theoretical lower bound of energy
consumption assuming that both a program and a machine are fully ad-
justable. It shows that a program with a balanced load always consumes
less energy than the same program with uneven loads under the same
execution speed. In addition, the paper examines the relation between
energy consumption and program performance. It shows that reducing
power is a different problem than that of improving performance. Finally,
the paper presents empirical evidence showing that a program may be
transformed to have a balanced demand in most parts of its execution.

1 Introduction

Many devices for personal and network computing are portable devices powered
by batteries. Higher energy efficiency would allow for smaller batteries, lower
device weight, and longer uninterrupted operation. As a result, managing the
energy consumption of portable processors has become important because it di-
rectly leads to lower cost and better service. In addition, power reduction also
helps traditional computing platforms such as desktop PCs and even supercom-
puters by reducing their packaging complexity and cost. As computing devices
permeate our daily life, saving energy has broad benefits to the society and
environment.

Energy is consumed by all parts of a computer system, including functional
units, cache and main memory. For each component, the power usage is largely
determined by its operating speed. On most machines, the hardware configu-
ration is fixed. When a program does not utilize all available capacity, some
components are underutilized and waste energy. The recent interest in energy

efficiency has prompted rapid development of reconfigurable processors, which
adjust hardware speed to match the dynamic demand of applications. For exam-
ple, when CPU is under-utilized due to slow memory, its frequency and voltage
are switched down to save energy. This technique is called dynamic scaling. It
has already found its way into commercial processors such as Transmeta Crusoe
and Intel XScale. For example, during execution, Crusoe TM5800 can switch its
voltage between 0.9 volt to 1.3 volt and adjust its frequency between 367MHz
and 800MHz. Given the improvement in hardware, a natural subsequent question
is whether software can be adapted to fully utilize the emerging reconfigurable
processors.

For many years, programs have been analyzed and optimized for performance.
One effective optimization is demand reduction, which eliminates redundant pro-
gram instructions and memory access. While the fastest instructions are those
that do not exist, those are also the most energy efficient. Although demand re-
duction saves power, it does not specifically utilize the adaptiveness of hardware.
The question remains open on whether we can save additional energy after de-
mand reduction has been applied. The following example will demonstrate that
such opportunity exists. In particular, it will show that demand reordering can
save energy on reconfigurable processors such as Transmeta Crusoe and Intel
XScale.

A Motivating Example

For this example, we assume a simple machine with two components: CPU and
main memory. We model each program as a sequence of instruction blocks, where
blocks must be executed sequentially but operations within each block are fully
parallel. We call the ratio of CPU operations (cpu op) to memory operations
(mem op) the instruction balance. Part (a) of Figure 1 shows a program with
two blocks with instruction balances 4 and 1. Part (b) shows a reordered program
that has an identical instruction balance of 1.

bl ock 1: bl ock 1
4 cpu op 4 cpu op
1 mem op 4 mem op

bl ock 2: bl ock 2
1 cpu op 1 cpu op
4 nmem op 1 mem op

(a) Example program (b) Bal anced program
(different cpu and nmem m x) (same cpu and mem mix)

Fig. 1. Example of program reordering

Program Block (Frequency Exe. time (t)|Energy E ~tfc

Example program |block 1|fepu = frnem = fmas f:am 8 frmazC

with no block 2 fcpu = fmem = fmam f":lam 8f’r2nazc

dynamic scaling |total f’r:am 16 fraaC
gy

Example program block 1 fcpu = fmaac;fmem = ifmacc Frmaz 4%fr2nawc
with block 2 fcpu = ifmam,fmem = fmam 4 4%f72namc

fmaw
dynamic scaling [total 8 8.13f70uC

fmae

Balanced program block 1 fcpu = gfmam,fmem = %fmam 5fmaz 3%f72nawc
8

with block 2 fcpu = %fmaw;fmem = %fma:c 5Fmaz g_gf'?namc
dynamic scaling |total £ 3.91f7.C

fmae

Table 1. Power consumption of example programs

Table 1 shows energy consumption for three configurations. The first is orig-
inal program without dynamic scaling, where both hardware and software are
fixed. The second is original program with dynamic scaling, where software is
fixed but hardware is adaptive. The last is the balanced program with dynamic
scaling, where software is reorganized and hardware is adaptive. Each config-
uration includes three rows: two for instruction blocks and one for their total.
The data for each configuration are listed in columns. The third column lists the
frequency used by CPU and memory unit, fcpy, and fpem. The fourth column
shows the execution time, ¢, which is the number of operations divided by the
operating frequency. The total energy, E, shown in the last column, is summed
for two units. Each unit consumes energy tf3c, where ¢ is the time, f is the
frequency, and c¢ is a architectural dependent constant. We assume the same
constant for CPU and memory.

In the first configuration, all units run at the peak speed, fpqz- In the second
configuration, only one unit runs at the peak speed, the other unit runs at a lower
frequency, % fmaz- In the third configuration, both units run at a lower speed,
% fmaz- The three rows labeled with “total” give the overall speed and energy
consumption. All three configurations have the same execution time, -2—. The
energy consumption, however, is very different. Dynamic scaling saves about half
of the energy (49%) compared to no scaling. Program reordering further reduces
the energy consumption by over a half (another 52%). In other words, program
reordering is able to double the energy saving without removing any instruction
from the program.

The rest of this paper presents a theoretical basis for program reordering
for the purpose of energy reduction. Section 2 defines the program and ma-
chine model. Section 3 and 4 prove the basic and extended theorems. Section
5 addresses the relation with performance optimization. Section 6 evaluates a
benchmark program. Finally, Section 7 discusses related work, and Section 8
concludes.

2 Program and Machine Model

This section describes our system model. Since we intend to find the highest
energy efficiency possible, we impose the least restrictions on our model. To sim-
plify the presentation, we assume a machine with only two identical components
running at any non-negative frequency. The extended theorems that include N
asymmetrical components and discrete frequencies are given in Section 4.

Program Model We view a program, P, by its execution trace, which we model as
a sequence of instruction blocks, By, Bs, ..., By,. Each block, B;, is a pair (a;, b;),
where a; is the number of CPU operations, and b; is the number of memory op-
erations. We assume a sequential execution of blocks but no dependence among
different types of operations inside a block. For example, we assume that CPU
and memory operations can be executed independent of each other. This pro-
gram model is not as unreasonable as it seems. For example, we can view the
set of instructions executed at each machine cycle as a block.

The instruction balance for a block B; is the ratio %. If the balance of all

b;
blocks is the same, that is, for any ¢ and j, % = Z—j, we say the program has a

constant instruction balance. We call the program a balanced program. The con-
dition can be rewritten as Z—J = Z—; The second format is more convenient when
we extend the formulation to instructions of more than two types in Section 4.
We note that a constant balance is not necessarily a unit balance. The number of
CPU and memory operations does not need to be the same. In fact, a balanced
program can have any number of instructions in each type. Finally, to find the
theoretical maximum, we assume that a compiler can freely move instructions
from one block to another but cannot eliminate any instruction in any block.

Machine Model A machine consists multiple functional units whose frequency
can be independently adjusted by hardware to match software demand (i.e.
dynamic scaling). The total energy cost is the power consumption of each unit
multiplied by the execution time. Burd and Brodersen divided CMOS power into
static and dynamic dissipation [2]. Static power due to bias and leakage currents
can be made insignificant by improved circuit design. Dynamic power, which
dominates overall power, is proportional to V2-f-C where V is the supply voltage,
f is the clock speed and C is the effective switching capacitance [2]. Here we
assume that the voltage can be scaled linearly with frequency. Therefore, power
consumption is a cubic function of frequency, that is, for unit i, P; = f3c;, where
¢; is an architectural dependent constant. We assume that all ¢;s are identical
in proving the basic theorem. The extend theorems will remove this assumption
in Section 4.2. We do not explicitly consider any overhead incurred by dynamic
scaling. However, switching overhead does not change our theorem because in
the optimal case, program demand is constant and incurs no switching cost.

The above machine and program model is too simple to model a real sys-
tem. Program instructions cannot be arbitrarily reordered. The scaling between

voltage and frequency is not linear [10]. However, the simplified model is use-
ful in our theoretical study because it allows for the most freedom in software
reorganization and gives a closed formula for energy consumption.

3 Instruction Balance and Energy Consumption

We now present the basic theorem: a program organization is optimal for energy
if and only if all instruction blocks have the same instruction balance. To prove,
we show that for any program with uneven instruction balances, its balanced
counterpart can finish execution in the same amount of time but consume less
energy. We next formulate the energy consumption of a program and its balanced
counterpart.

3.1 Problem Formulation

Assume a program of n instruction blocks, P = (B, ..., B, ..., Bn), B; = (a;, b;),
i = 1,...,n. Let f be the maximum processor frequency. The original energy
consumption Eyrigine is computed in the following three steps.

M
— The execution time of each block is t; = —*, where M; = maz(a;, b;), and

f is the maximal frequency of functional units.
m;

— The power consumption of each block is P; = f° + (ﬁ
i
min(a;, b;) and M; = max(a;,b;). The second term includes the effect of
dynamic scaling.
— The energy consumption of the program is

orzgznal th Z f (f3 ZM +mz f2 Za +bz fz

i=1

f)3, where m; =

The overall balance of the program is %, where A = > a;, and B =
>, b;. If we re-balance the program, i.e. transforming the program into P =

(Bll, ...,B;., ...,B;l) B (az, bz) then all balances are the same, i.e. :—, = %. Let

U M.
P runs in the same time as P, which is tspsq = Zt Z 7’ The following

=1
three steps compute the energy consumption, Ebal(mced, for the transformed

program P .
— The frequency of CPU is fep, = A

tiotal

— The frequency of the memory unit is fiem = %
— The energy consumption is
A3 + B? ra)+ (X bi)?
Ebalanced = ttotal(fgpu + f73nem) — = 5 f2 — (Ez—l l)n (212_1 l) f2
(Xiz1 Mi) (Xoiz1 Mi)

We now remove the common positive term f? from Eorigina and Eygranced-
The following theorem states their inequality and the condition for equality.

3.2 The Basic Theorem

The following theorem says that the energy consumption of any program, rep-
resented by the left-hand side formula, is always greater than or equal to the
energy consumption of its balanced self, represented by the right-hand side for-
mula, assuming the same execution time. Therefore, program re-balancing saves
energy. The theorem is stronger than required by the formulation. It allows for
M; > mazx(a;,b;), while the formulation needs only M; = max(a;,b;). The gen-
eralization turns out to be the key to our proof. It makes the induction possible.

Theorem 1 The following inequality holds.
z": a; + b (Cim @)’ + (T b)°

(Xim Mi)?

where a;,b; > 0, Y0 1 a; >0, Y0, b; > 0, and M; > maz(a;,b;) > 0. The
equality holds when and only when ¢+ = 'Z—j for alli and j.

Proof: We first use induction and then reduce the case of n + 1 to the case of
n = 2, which we prove with a calculus method.
If n = 1, the inequality holds trivially. Now suppose it holds for 7.

al + b3 > @)’ + o bi)?

i=1 Ml2 (Z?:1 Mi)2

n

We need to prove
+1 n+1 n+1
S+ b (0 a) + <Ez 2 b)°
7 = 1

After separating the terms involved in the case of n and applying the induction
hypothesis, the inequality becomes

(g ai)® + (O by)? n ad iy + b5 > iy ai+ani1)® + Oy bi + bpya)®

(Xiey My)? Mi, - (X My 4 Myqa)?

Nowleta = Y1 a;,b =30 bi, M =31 M;. Wehave M' > maz(a',b')
because M; > maz(a;,b;),i = 1,...,n. So we arrive at the same inequality as the
case n = 2, which is

al +b3 ad+0b3 S (a1 + a2)® + (by + b2)3
M12]\42 - (Ml + M2)2
where M; > max(a1,b1), Ma > max(az,bs). Next, we split the inequality into
3 3 3 b3 b3 b b
two parts: ! Mad > (br +52)°

M2+M2_(M1+M2) M2+M2_(M1+M2)

Since the above two inequalities are equivalent, we prove the first one in the
following lemma. Note that the lemma is stronger than required: M; and M>
can be any positive number and do not have to be greater than a; and as.

3 3 3
a3 a3 (a1 + a2)

Lemma 1. Mf + W > m, where a1, a2,> 0 and My, Ms > 0.

Proof: We first convert M, to 1 by dividing both sides with M2. Then we

multiply both sides with the product of their denominators. The inequality is

converted to

(M1 + M~2)a? + (2M + M?)a3 > 3a1a5(a1 + a2)

where a1, as,b1,b0 > 0, and M > 0. If a; = 0 or az = 0, the inequality holds
trivially. Now we assume that a;,as > 0. Define

f(M)=(2M '+ M2)a} + (2M + M?)a3

where M, ay,as > 0. We will show that f(M) researches its minimum value at

%, which is f (Z—l) = 3ajas(a; + az). The first and second derivatives are

2 2

f (M) = (—2M~2 = 2M~%)a® + (2 + 2M)a, and

f (M) =(A4M™3+6M a3 +2a3 >0

Since f" (M) > 0, s0 f(M) > f(%),‘v’M > 0. The lemma holds and the theorem
2

follows.

4 Extended Theorems

The basic theorem assumes a machine that has two components and operates on
any non-negative frequency. This section extends the theorem to a machine that
has more than two components and operates on a set of fixed frequencies. The
set of frequencies needs not to be the same for each component, nor does the
constant factor in the energy equation. In the case of clock gating, a component
has two frequencies: one is the operating frequency and the other is zero.

4.1 Multiple Functional Units

We generalize first the definition of instruction balance and then the theorem.

Definition 1. Assume a program P, P = (B1,..., Bi,...; Bp), Bi = (@1, -+, Gim),
i =1,...,n. The instruction balance for each block B; is an m-tuple (a1, ..., Gim)-
Aim
for
)

. . . ., Qi1
A program is said to have a constant instruction balance if —— = --- =

a;i1 Ajm
any B;, B;.

Theorem 2 (Generalization of Theorem 1 for N functional units):

i a?l +- 'agm > (2?21 ain)® +--- (2?21 aim)®
M - (i M;)?

i=1 g

where a;1, ..., aim > 0 and M; > maz(a;, ..., aim) > 0.

Proof: We prove the generalized theorem by induction on m. The inductive case
is established by applying theorem 1.

Since M; > max{a;, ..., Gim, Gim+1} > maz{a;,...,aim }, by induction hy-
pothesis we have

n 3 3 3 3 n

z:ai1+ai2+”'+aim+aim+1 _}: zl+a22 i zm+§: zm+1
M? n M2

i=1 ? i=1

Crian)+ (X an)? +--+ (XL, aim)? + Z zm+1
(i M;)2
fm+1 ad, i 03 ,
Note that Z = Z — a7 where b1 = 0,Vi = 1,...,n,
i=1 M i=1 i
and M; > maz{a, ..., Gim, Gim+1} > max{aim+1} > maz{aim+1,bim+1}- Now
we apply Theorem 1 and get

>

i i1 + bimi1 S (i @ima1)® + iy bimt1)® (D aim+1)3‘
P M? - (Qoimy Mi)? (Ximy Mi)?
. Hence we have

3 3 3 3
Zai1+ai2+"'+aim+aim+1

i=1 i

S iy ain)® + O ain)® +---

N (Zi:1 Mz)

(2?21 ai1)3 + (Z?:1 ai2)3 +o+ (Z?:1 azm)3 (21:1 azm+1)3
+

) (o STAL
_ Cian)’ + (Ci a2)® 4+ () Gim41)®
(i M;)?
So the generalized theorem holds.

+ (Zz 1 Gim)® n Z zm+1

>

The generalized theorem says that on machines with any number of components,
a balance program consumes less energy than its unbalanced counterpart, given
the same execution time.

4.2 Discrete Operating Frequencies

So far we have assumed that a frequency can be any non-negative rational num-
ber. On real machines, a frequency must be an integer and wvalid frequencies
are pre-determined. For example, Transmeta Crusoe has 32 steps in its range
of operating frequency and voltage. A less obvious case is clock gating, where
a component either runs in full speed or is shut down completely. This case
is equivalent to having two valid frequencies. The optimal frequency, as deter-
mined by the instruction balance and execution time, may lie between two valid
frequencies. The solution in this case is to alternate between two closest valid
frequencies. We now show the optimality of the alternation scheme by proving
it for each component.

Assuming that the optimal frequency, fop:, lies between two (closest) valid
frequencies g1 and g2, we will show that alternating between these two frequen-
cies consumes less energy than any other scheme that uses frequencies outside
the range of g; and go. In other words, running the program at any other fre-
quency at any time would consume more energy. In our proof, we compare the
optimal scheme with schemes that can use all frequencies outside g; and gs,
not just those of a fixed set of valid frequencies. In addition, our program and
machine model (Section 2) does not permit a frequency that is higher than the
maximal machine frequency. So the following proof covers all cases of discrete
frequencies and does not lose any generality.

We now formulate the problem. Assume a component that can operate on any
frequency except between a lower point g; and a higher point g» (although ¢g; and
g2 are valid). Assume a program with N blocks, each has a; operations and takes
t; to execute. The operating frequency for each block is f; = %, which must lie

Ei:n
a;
i=1 °

i=1__ Agsume

outside g; and g2. From Theorem 2, the optimal frequency, f, is

that the optimal frequency is not a valid frequency, i.e., f > ¢1 anHlf < g2- The
alternation scheme runs the component by frequency g; in time 77 and by g» in
Ty, where Ty +T> = >~ " t; and g1 T1+g2T> = Y, a;. The energy consumption
of the original scheme, E, iginar, is Y iy fiti. The energy consumption of the
alternation scheme, E,;, is g3T1 + g37T5. The following theorem states that the
alternation scheme consumes the least amount of energy.
i=n
Theorem 3 (Theorem for discrete frequencies): Z 2t > @Ti + g3Ts, where
i=1
fi:gla.qZ Z 07 tz > O; Tl + T2 = Z:i? ti: Ezi? iti = ngl + g2T2: and either
fi> g2 or fi < g1.

As in the proof of Theorem 1, we use induction on n and reduce the case of
n =n+ 1 to the case of n = 2, which is equivalent to the following lemma.

Lemma 2. fit; + f3(T —t1) > g3ta + g5(T — ta), where 0 < f; < g1 < g2 <
fg, t1,t2 > 0, and f1t1 + f2(T — tl) = g1t +92(T — tg).

Proof: Let W = fit1 + fo(T — t1). We can represent #; and t» with W, that
is, t1 = V‘;;_ff and to = Wl__g;QT. In addition, let fT" = W. Substitute ¢; and ¢,
with f in the inequality and simplify the equation to the following inequality,
which is surprisingly well behaved considering that it has five variables that are
only loosely constrained.

fR+ LRS-+) > foi+9:(f —91) (g1 + 92)

where fi < g1 < f<g2 < fo.

Since f; > g1 and fo > go, it is sufficient to show (f — f1)(f1 + ¢2) >
(f—91)(g1+g2)- Define a function F(z) = (f—z)(x+g2) = =22+ (f—g2)x+ f9o.
F(z) hits its maximal point at x = —1:293. Since f < g2, F'(x) is decreasing when
z > 0. Hence, F(f1) > F(g1) when f; < g;. Thus, the inequality holds, so is the
lemma and Theorem 3.

We make three additional comments on the proof. First, the solution for dis-
crete frequencies can be generalized to multiple components by applying the
alternation scheme on each unit. Components can be asymmetrical. The mini-
mal energy consumption of the whole system is minimal if and only if the energy
consumption of each component is minimal. Second, this alternation scheme is
best among all execution schemes that require the same or less execution time.
Finally, the optimality holds when considering the overhead of switching between
valid frequencies. The optimal alternation scheme switches only once, which is
optimal.

In essence, Lemma 2 is a constrained version of Lemma 1. These two lemmas
form the basis for the entire proof of the paper. Intuitively, they establish the
optimality condition for a single component in two execution cycles. The rest of
the proof extends them to multiple components and time cycles.

5 Energy Consumption and Program Performance

Program reordering has been studied for improving program performance. How-
ever, the problem is a new one in the case of energy reduction because the
optimal order for energy is different from that for performance. We show this
difference with an example.

We assume a machine with one integer unit and one floating-point unit,
with the same maximal frequency f. Figure 2 shows three versions of the same
program: unoptimized, optimized for performance, optimized for energy and
performance. The execution time of the unoptimized program is % The second

version runs faster—in time 2, which is optimal because FPU must execute all 8
floating-point operations. However, the second version is not most energy efficient
because it has uneven instruction balances. The third program has constant
instruction balances and, according to our theorem, consumes minimal energy.
The third program also yields optimal performance, %.

bl ock 1: bl ock 1: bl ock 1:
2 fp op 2 fp op 2 fp op
3int op 2int op 1int op
bl ock 2: bl ock 2: bl ock 2:
6 fp op 6 fp op 6 fp op
1int op 2 int op 3 int op

(a) Oiginal (b) Performance optinized (c) Energy optinized
(unbal anced) (bounded balance) (constant bal ance)

Fig. 2. Difference between performance and energy optimization

The simplified machine and program model does not consider the depen-
dence and latency among program instructions. So the primary factor affecting
performance is the utilization of critical resource. If the critical resource is fully
utilized, the performance is optimal (assuming we cannot remove any instruc-
tion). In the previous example, the program has more floating-point operations
than integer operations, so FPU is the critical resource. To keep the resource
fully utilized, the ratio of floating-point operations to integer operations must
be no less than one. The first program is not performance optimal because the
first block has more integer operations than floating-point operations and there-
fore cannot fully utilize the critical resource. Both the second and third programs
correct this problem and obtain the fastest speed. In fact, any reordering scheme
is performance optimal if it bounds the balance to be no less than one.

The difference can now be described in terms of instruction balance. For
best performance, we want full utilization of the critical resource and therefore
a bounded balance. For minimal energy, we need a stronger condition that all
blocks must have the same instruction balance. The requirement for a constant
balance is even more important considering the switching cost of hardware. Con-
stant balances do not require dynamic reconfiguration during execution. Table 2
summarizes the differences between issues of performance and those of energy.

Improving Performance Saving Energy
Goal full utilization of critical resource| balanced use of all resources
Reordering| bounded instruction balances |constant instruction balances

Table 2. Comparison of Program Reordering for Performance and for Energy

6 Evaluation

This section studies the effect of program reordering in a benchmark program,
Swim from Spec95 suite. The program solves shallow water equations, a com-
putation that is common in applications such as weather prediction. The main
body of Swim consists of three loop nests enclosed in a time-step loop. Since
different loops tend to have different instruction balances, we tried to combine
them through loop fusion. We used a research compiler [7] that implements
more aggressive loop fusion than current commercial compilers from Compaq,
Sun, and SGI. It fused all three loop nests in Swim. Next we examine the effect
of loop fusion on instruction balance.

We collected the execution trace and divided it into blocks of 500 instructions.
For each block, we counted the number of different types of instructions and
computed the balance. The trace collection and instruction enumeration were
done on a Compaq Alpha 4000 Server using the ATOM tool [14]. To simplify
the presentation, we will limit the discussion to only the ratio of floating-point
to integer operations.

For this experiment, we ran the program in one iteration with an input size of
512x512. The original version has a total of 339 million instructions, out of which
166 million are floating-point and 43 million are integer operations. The upper
two graphs of Figure 3 show the temporal graph and histogram of instruction
balances. The temporal graph shows three segments, likely corresponding to the
three loop nests. The ranges of instruction balances differ significantly in three
segments: they are between 7 and 12, between 4 and 7, and between 2 and 3.
The histogram shows the variation cumulatively. Instruction balances range from
nearly 0 to 12 with high concentration points at 2.6 and 8.0 as well as a spread
between 4.6 and 6.8. The largest single-point concentration covers no more than
15% of the program.

0000

9000

8000

7000

6000

5000

4000

3000

2000

2
1000

QD 1 2 3 4 5 6 7 On
x104

(a) Temproal graph before fusion (b) Histogram before fusion

(c) Temproal graph after fusion (d) Histogram after fusion

Fig. 3. Program balances of SPEC/Swim before and after loop fusion

Loop fusion altered the distribution of instruction balances, as shown by the
lower two graphs in Figure 3. In the temporal graph, the number of segments
has been reduced to two, one ranges between 6 and 12 and the other between
4 and 6. The histogram shows a dramatic change: over 70% of the program
has an identical balance of 11.2, and all the rest are between 4.8 and 6.8. The

histogram also shows that the seeming variation in the first segment in the
temporal graph does not materialize in the histogram. Effectively, the fused
version has a constant program demand in the first part of the computation. The
number of instruction balances that are not 11.2 is too small to be seen on the
histogram. Not shown in the figure, we also observed that loop fusion removed
about 40% of integer operations because of the reduction in loop and data access
overhead. The number of floating-point operations remained unchanged. Further
study is needed to examine the full effect of program transformation, which is
beyond the scope of this paper.

In summary, the study of Spec/Swim program has shown that program re-
ordering can significantly alter program demand and re-balance the mix of in-
structions. For the ratio of floating-point to integer operations, program portion
that has a constant balance is increased from under 15% to over 70%. The re-
sult of this experiment provides preliminary evidence that changing instruction
balances is not only desirable but also feasible in a real application.

7 Related Work

A significant effort has been devoted to circuit or architectural improvement for
power efficiency. Circuit-level features cannot be directly controlled by software,
but architectural ones sometimes can. Our strategy depends on dynamic voltage
and frequency scaling [2], which is being used by commercial processors such as
Transmeta Crusoe and Intel XScale. Other architectural techniques such as clock
gating [9] are also included in our model. Recently, Semeraro et al. studied fine-
grained dynamic scaling, where funtional units within a processor may be scaled
independently with each other [13]. The goal of our work is complementary and
is to examine how can software better utilize these hardware features so that the
whole system is optimized.

Software techniques have been studied for reducing energy usage [16,15,17].
Tiwari et al. reported that the most energy saving was obtained by reducing
memory misses (up to 40% saving) and the least effective was energy-based code
generation and instruction scheduling [17]. Better caching leads to power saving
in the memory system. Vijaykrishnan et al. evaluated a set of cache optimizations
by a compiler [18]. Most techniques save energy by reducing program demand. In
contrast, we show the potential of demand reordering, which is targeted specif-
ically at reconfigurable hardware. Demand reordering at the instruction level is
the subject of two recent work. Both tried to spread out non-critical instructions
and make program demand less concentrated. Greg et al. studied the potential
benefit by rescheduling the execution trace [13]. Yang et al. modified software
pipelining and measured its effect on the SPEC Integer benchmark suite [19].
Both reported double-digit percentage energy saving with no or little perfor-
mance degradation.

In the past, power models at the CMOS level were studied for the pro-
cessor core [2] and for memory hierarchy [5]. Instruction-level power consump-
tion for fixed-configuration processors was measured for real machines [16,12].

Architectural-level simulators have been developed [1,18,13]. Furthermore, re-
searchers also studied better software feedback for reconfigurable hardware [10]
and OS support for paging [11] and disk scheduling [8]. These techniques do
not change the demand of software but improve the effectiveness of hardware
adaptation. Techniques of program reordering like ours will benefit from power
models and advanced system support.

Program optimization has been studied for many years for improving pro-
gram performance. Here we review the ones that are related to instruction bal-
ance. Balance was introduced to model FPU throughput and load/store band-
width [3]. Transformations such as unroll-and-jam are used to improve program
balance [4]. To consider all levels of memory hierarchy, our earlier work extended
the definition of balance from a ratio to a tuple [6]. In this paper, we further ex-
tend the definition to include all components of a computer including functional
units within the CPU.

8 Conclusion and Future Work

This paper has presented a theoretical result to an important optimization prob-
lem regarding the best program organization on a machine of different com-
ponents operating on a different set of frequencies. It has proved that a pro-
gram with constant instruction balances consumes the least amount of energy,
that balancing program instructions guarantees power saving without perfor-
mance degradation, and that energy-based reordering is a different problem than
performance-based reordering.

We are currently measuring instruction balance in programs and its exact role
in energy consumption. We are also designing a Smooth compiler for improving
instruction balances by building upon the global program and data transforma-
tions that we have developed previously [7].

Acknowledgment

The idea of this work was originated from a discussion with the PIs of the
CAP project, Micheal Scott, Dave Albonesi, and Sandhya Dwarkadas. Bin Han
provided an important hint that led to the proof of Lemma 1. We are also
grateful to Xianghui Liu and members of the system group at the Computer
Science Department of University of Rochester for their helpful discussions.

References

1. D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-
level analysis and optimization. In Proceedings of the 27th International Symposium
on Computer Architecture, Vancouver, BC, 2000.

2. T. Burd and R. Brodersen. Processor design for portable systems. Journal of LST
Signal Processing, 13(2-3):203-222, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and improving
balance for pipelined machines. Journal of Parallel and Distributed Computing,
5(4):334-358, August 1988.

S. Carr and K. Kennedy. Improving the ratio of memory operations to floating-
point operations in loops. ACM Transactions on Programming Languages and
Systems, 16(6):1768-1810, 1994.

A. M. Despain and C. Su. Cache designs for energy efficiency. In Proceedings of
28th Hawaii International Conference on System Science, 1995.

C. Ding and K. Kennedy. Memory bandwidth bottleneck and its amelioration by a
compiler. In Proceedings of 2000 International Parallel and Distribute Processing
Symposium (IPDPS), Cancun, Mexico, May 2000.

C. Ding and K. Kennedy. Improving effective bandwidth through compiler en-
hancement of global cache reuse. In Proceedings of International Parallel and Dis-
tributed Processing Symposium, San Francisco, CA, 2001. http://www.ipdps.org.
F. Douglis, R. Caceres, B. Marsh, F. Kaashoek, K. Li, and J. Tauber. Storage al-
ternatives for mobile computers. In Proceedings of the first symposium on operating
system design and implementation, Monterey, CA, 1994.

S. Gary et al. PowerPC 603, a microprocessor for portable computers. In IEEE
Design and Test of Computers, pages 14-23, 1994.

C.-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic frequency and
voltage scaling. In Workshop on Power-Aware Computer Systems, Cambridge,
MA, 2000.

A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page allocation. In
Proceedings of the 9th international conference on architectural support for pro-
gramming languages and operating systems, Cambridge, MA, 2000.

J. T. Russell and M. F. Jacome. Software power estimation and optimization for
high performance, 32-bit embedded processors. In Proceedings of International
Conference on Computer Design, Austin, Texas, 1998.

G. Semeraro, M. Grigorios, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,
and M. L. Scott. Energy-efficient processor design using multiple clock domains
with dynamic voltage and frequency scaling. Submitted for publication, 2001.

A. Srivastava and A. Eustace. ATOM: A system for building customized program
analysis tools. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, Orlando Florida, June 1994.

C. Su, C. Tsui, and A. M. Despain. Low power architecture design and com-
pilation techniques for high-performance processors. In Proceedings of the IEEE
COMPCON, pages 489-498, 1994.

V. Tiwari, S. Maik, and A. Wolfe. Power analysis of embedded software: a first
step towards software power minimization. IEEE Transaction on VLSI Systems,
1994.

V. Tiwari, S. Maik, A. Wolfe, and M. Lee. Instruction level power analysis and
optimization of software. Journal of VLSI Signal Processing, 13(2):1-18, 1996.

N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. Energy-driven
integrated hardware-software optimizations using SimplePower. In Proceedings of
the 27th International Symposium on Computer Architecture, Vancouver, BC, 2000.
H. Yang, G. R. Gao, and G. Cai. Maximizing pipelined functional unit usage for
minimum power software pipelining. Technical Report CAPSL Technical Memo
41, University of Delaware, Newark, Delaware, September 2001.

