
Inter-array Data Regrouping

Chen Ding Ken Kennedy

Rice University, Houston TX 77005, USA

Abstract. As the speed gap between CPU and memory widens, mem-
ory hierarchy has become the performance bottleneck for most appli-
cations because of both the high latency and low bandwidth of direct
memory access. With the recent introduction of latency hiding strate-
gies on modern machines, limited memory bandwidth has become the
primary performance constraint and, consequently, the e�ective use of
available memory bandwidth has become critical. Since memory data
are transferred one cache block at a time, improving the utilization of
cache blocks can directly improve memory bandwidth utilization and
program performance. However, existing optimizations do not maximize
cache-block utilization because they are intra-array; that is, they improve
only data reuse within single arrays, and they do not group useful data
of multiple arrays into the same cache block. In this paper, we present
inter-array data regrouping, a global data transformation that �rst splits
and then selectively regroups all data arrays in a program. The new
transformation is optimal in the sense that it exploits inter-array cache-
block reuse when and only when it is always pro�table. When evaluated
on real-world programs with both regular contiguous data access, and ir-
regular and dynamic data access, inter-array data regrouping transforms
as many as 26 arrays in a program and improves the overall performance
by as much as 32%.

1 Introduction

As modern single-chip processors have increased the rate at which they execute
instructions, performance of the memory hierarchy has become the bottleneck
for most applications. In the past, the principal challenge in memory hierarchy
management was in overcoming latency, but computation blocking and data
prefetching have ameliorated that problem signi�cantly. As exposed memory
latency is reduced, the bandwidth constraint becomes dominant because the
limited memory bandwidth restricts the rate of data transfer between memory
and CPU regardless of the speed of processors or the latency of memory access.
Indeed, we found in an earlier study that the bandwidth needed to achieve peak
performance levels on intensive scienti�c applications is up to 10 times greater
than that provided by the memory system[7]. As a result, program performance
is now limited by its e�ective bandwidth; that is, the rate at which operands of
a computation are transferred between CPU and memory.

The primary software strategy for alleviating the memory bandwidth bottle-
neck is cache reuse, that is, reusing the bu�ered data in cache instead of accessing

memory directly. Since cache consists of non-unit cache blocks, su�cient use of
cache blocks becomes critically important because low cache-block utilization
leads directly to both low memory-bandwidth utilization and low cache utiliza-
tion. For example for cache blocks of 16 numbers, if only one number is useful
in each cache block, 15/16 or 94% of memory bandwidth is wasted, and further-
more, 94% of cache space is occupied by useless data and only 6% of cache is
available for data reuse.

A compiler can improve cache-block utilization, or equivalently, cache-block
spatial reuse, by packing useful data into cache blocks so that all data elements in
a cache block are consumed before it is evicted. Since a program employs many
data arrays, the useful data in each cache block may come from two sources:
the data within one array, or the data from multiple arrays. Cache-block reuse
within a single array is often inadequate to fully utilize cache blocks. Indeed, in
most programs, a single array may never achieve full spatial reuse because data
access cannot always be made contiguous in every part of the program. Common
examples are programs with regular, but high dimensional data, and programs
with irregular and dynamic data. When non-contiguous access to a single array
is inevitable, the inclusion of useful data from other arrays can directly increase
cache-block reuse.

This paper presents inter-array data regrouping, a global data transforma-
tion that �rst splits and then selectively regroups all data arrays in a program.
Figure 1 gives an example of this transformation. The left-hand side of the �g-
ure shows the example program, which traverses a matrix �rst by rows and then
by columns. One of the loops must access non-contiguous data and cause low
cache-block utilization because only one number in each cache block is useful.
Inter-array data regrouping combines the two arrays as shown in the right-hand
side of Figure 1. Assuming the �rst data dimension is contiguous in memory, the
regrouped version guarantees at least two useful numbers in each cache block
regardless the order of traversal.

For j=1, N
For i=1, N

F(a[i,j], b[i,j])
End for

End for

// row-by-row traversal

// column-by-column traversal

End for
End for

For j=1, N
For i=1, N

Array a[N,N], b[N,N] Array c[2,N,N]

// row-by-row traversal

// column-by-column traversal

End for
End for

For j=1, N
For i=1, N

For j=1, N
For i=1, N

End for
End for

F(c[1,i,j], c[2,i,j])

G(c[1,i,j], c[2,i,j])G(a[i,j], b[i,j])

Fig. 1. Example of Inter-array Data Regrouping

In addition to improving cache spatial reuse, data regrouping also reduces the
page-table (TLB) working set of a program because it merges multiple arrays into
a single one. Otherwise, a program may touch too many arrays, causing over
ow
of TLB. On modern machines, TLB misses are very harmful to performance
because CPU cannot continue program execution during a TLB miss.

Inter-array data regrouping can also improve communication performance of
shared-memory parallel machines. On these machines, cache blocks are the basis
of data consistency and consequently the unit of communication among parallel
processors. Good cache-block utilization enabled by inter-array data regroup-
ing can amortize the latency of communication and fully utilize communication
bandwidth.

The rest of the paper is organized as follows. The next section formulates
the problem of inter-array data regrouping and presents its solution. Section
3 evaluates the transformation on two well-known kernels and two real-world
applications. Section 4 discusses related work, and Section 5 concludes.

2 Inter-array Data Regrouping

This section �rst describes the necessary program analysis for data regrouping,
then gives the regrouping algorithm, proves its optimality, and �nally discusses
three extensions of the regrouping problem and presents their solutions as well.

2.1 Program Analysis

Given a program, a compiler identi�es in two steps all opportunities of inter-
array data regrouping. The �rst step partitions the program into a sequence of
computation phases. A computation phase is de�ned as a segment of the program
that accesses data larger than cache. A compiler can automatically estimate the
amount of data access in loop structures with the technique given by Ferrante
et al[8].

The second step of the analysis identi�es sets of compatible arrays. Two
arrays are compatible if their sizes di�er by at most a constant, and if they
are always accessed in the same order in each computation phase. For example,
the size of array A(3; N) is compatible with B(N) and with B(N � 3) but not
with C(N=2) or D(N;N). The access order from A(1) to A(N) is compatible
with B(1) to B(N) but not with the order from C(N) to C(1) or from D(1) to
D(N=2). The second criterion does allow compatible arrays to be accessed dif-
ferently in di�erent computation phases, as long as they have the same traversal
order in the same phase1.

1 In general, the traversal orders of two arrays need not to be the same as long as
they maintain a consistent relationship. For example, array A and B have consistent
traversal order if whenever A[i] is accessed, B[f(i)] is accessed, where f(x) is a
one-to-one function.

The second step requires identifying the data access order within each array.
Regular programs can be analyzed with various forms of array section analy-
sis. For irregular or dynamic programs, a compiler can use the data-indirection
analysis described by Ding and Kennedy (in Section 3.2 of [6]).

The other important job of the second step is the separation of arrays into the
smallest possible units, which is done by splitting constant-size data dimensions
into multiple arrays. For example, A(2; N) is converted into A1(N) and A2(N).

After the partitioning of computation phases and compatible arrays, the
formulation of data regrouping becomes clear. First, data regrouping transforms
each set of compatible arrays separately because grouping incompatible arrays is
either impossible or too costly. Second, a program is now modeled as a sequence
of computation phases each of which accesses a subset of compatible arrays. The
goal of data regrouping is to divide the set of compatible arrays into a set of new
arrays such that the overall cache-block reuse is maximized in all computation
phases.

2.2 Regrouping Algorithm

We now illustrate the problem and the solution of data regrouping through an
example of a hydrodynamics simulation program, which computes the movement
of particles in some three-dimensional space. Table 1 lists the six major compu-
tation phases of the program as well as the attributes of particles used in each
phase. Since the program stores an attribute of all particles in a separate array,
di�erent attributes do not share the same cache block. Therefore, if a computa-
tion phase uses k attributes, it needs to load in k cache blocks when it accesses
a particle.

Table 1. Computation phases of a hydrodynamics simulation program

Computation phases Attributes accessed
1 constructing interaction list position

2 smoothing attributes position, velocity, heat, derivate, viscosity

3 hydrodynamic interactions 1 density, momentum

4 hydrodynamic interactions 2 momentum, volume, energy, cumulative totals

5 stress interaction 1 volume, energy, strength, cumulative totals

6 stress interaction 2 density, strength

Combining multiple arrays can reduce the number of cache blocks accessed
and consequently improve cache-block reuse. For example, we can group position

and velocity into a new array such that the ith element of the new array contains
the position and velocity of the ith particle. After array grouping, each particle
reference of the second phase accesses one fewer cache blocks since position and
velocity are now loaded by a single cache block. In fact, we can regroup all �ve

arrays used in the second phase and consequently merge all attributes into a
single cache block (assuming a cache block can hold �ve attributes).

However, excessive grouping in one phase may hurt cache-block reuse in other
phases. For example, grouping position with velocity wastes a half of each cache
block in the �rst phase because the velocity attribute is never referenced in that
phase.

The example program shows two requirements for data regrouping. The �rst
is to fuse as many arrays as possible in order to minimize the number of loaded
cache blocks, but at the same time, the other requirement is not to introduce
any useless data through regrouping. In fact, the second requirement mandates
that two arrays should not be grouped unless they are always accessed together.
Therefore, the goal of data regrouping is to partition data arrays such that (1)
two arrays are in the same partition only if they are always accessed together,
and (2) the size of each partition is the largest possible. The �rst property ensures
no waste of cache, and the second property guarantees the maximal cache-block
reuse.

Although condition (1) might seem a bit restrictive in practice, we note that
many applications use multiple �elds of a data structure array together. Our
algorithm will automatically do what the Fortran 77 hand programmer does
to simulate arrays of data structures: implement each �eld as a separate array.
Thus it should be quite common for two or more arrays to always be accessed
together. In Section 2.4 we discuss methods for relaxing condition (1) at the cost
of making the analysis more complex.

The problem of optimal regrouping is equivalent to a set-partitioning prob-
lem. A program can be modeled as a set and a sequence of subsets where the set
represents all arrays and each subset models the data access of a computation
phase in the program.

Given a set and a sequence of subsets, we say two elements are buddies
if for any subset containing one element, it must contain the other one. The
buddy relation is re
exive, symmetric, and transitive; therefore it is a partition.
A buddy partitioning satis�es the two requirements of data regrouping because
(1) all elements in each partition are buddies, and (2) all buddies belong to
the same partition. Thus the data regrouping problem is the same as �nding a
partitioning of buddies.

The buddy partitioning can be solved with e�cient algorithms. For example,
the following partitioning method uses set memberships for each array, that is, a
bit vector whose entry i is 1 if the array is accessed by the ith phase. The method
uses a radix sort to �nd arrays with the same set memberships, i.e. arrays that
are always accessed together. Assuming a total of N arrays and S computation
phases, the time complexity of the method is O(N � S). If a bit-vector is used
for S in the actual implementation, the algorithm runs in O(N) vector steps. In
this sense, the cost of regrouping is linear to the number of arrays.

2.3 Optimality

Qualitatively, the algorithm groups two arrays when and only when it is always
pro�table to do so. To prove, consider on the one hand, data regrouping never
includes any useless data into cache, so it is applied only when pro�table; on
the other hand, whenever two arrays can be merged without introducing useless
data, they are regrouped by the algorithm. Therefore, data regrouping exploits

inter-array spatial reuse when and only when it is always pro�table.

Under reasonable assumptions, the optimality can also be de�ned quantita-
tively in terms of the amount of memory access and the size of TLB working set.
The key link between an array layout and its overall data access is the concept
called iteration footprint, which is the number of distinct arrays accessed by one
iteration of a computation phase. Assuming an array element is smaller than a
cache block but an array is larger than a virtual memory page, then the iteration
footprint is equal to the number of cache blocks and the number of pages accessed
by one iteration. The following lemma shows that data regrouping minimizes the
iteration footprint.

Lemma1. Under the restriction of no useless data in cache blocks, data re-

grouping minimizes the iteration footprint of each computation phase.

Proof. After buddy partitioning, two arrays are regrouped when and only when
they are always accessed together. In other words, two arrays are combined
when and only when doing so does not introduce any useless data. Therefore,
for any computation phase after regrouping, no further array grouping is possible
without introducing useless data. Thus, the iteration footprint is minimal after
data regrouping.

The size of a footprint directly a�ects cache performance because the more
distinct arrays are accessed, the more active cache blocks are needed in cache,
and therefore, the more chances of premature eviction of useful data caused by
either limited cache capacity or associativity. For convenience, we refer to both
cache capacity misses and cache interference misses collectively as cache overhead
misses. It is reasonable to assume that the number of cache overhead misses is a
non-decreasing function on the number of distinct arrays. Intuitively, a smaller
footprint should never cause more cache overhead misses because a reduced
number of active cache blocks can always be arranged so that their con
icts
with cache capacity and with each other do not increase. With this assumption,
the following theorem proves that a minimal footprint leads to minimal cache
overhead.

Theorem2. Given a program of n computation phases, where the total number

of cache overhead misses is a non-decreasing function on the size of its iteration

footprint k, then data regrouping minimizes the total number of overhead misses

in the whole program.

Proof. : Assuming the number of overhead misses in the n computation phases
is f1(k1); f2(k2); : : : ; fn(kn), then the total amount of memory re-transfer is pro-
portional to f1(k1) + f2(k2) + : : :+ fn(kn). According to the previous lemma,
k1; k2; : : : ; kn are the smallest possible after regrouping. Since all functions are
non-decreasing, the sum of all cache overhead misses is therefore minimal after
data regrouping.

The assumption made by the theorem covers a broad range of data access
patterns in real programs, including two extreme cases. The �rst is the worst
extreme, where no cache reuse happens, for example, in random data access. The
total number of cache misses is in linear proportion to the size of the iteration
footprint since each data access causes a cache miss. The other extreme is the
case of perfect cache reuse where no cache overhead miss occurs, for example, in
contiguous data access. The total number of repeated memory transfer is zero.
In both cases, the number of cache overhead misses is a non-decreasing function
on the size of the iteration footprint. Therefore, data regrouping is optimal in
both cases according to the theorem just proved.

In a similar way, data regrouping minimizes the overall TLB working set of
a program. Assuming arrays do not share the same memory page, the size of the
iteration footprint, i.e. the number of distinct arrays accessed by a computation
phase, is in fact the size of its TLB working set. Since the size of TLB working
set is a non-decreasing function over the iteration footprint, the same proof can
show that data regrouping minimizes the overall TLB working set of the whole
program.

A less obvious bene�t of data regrouping is the elimination of useless data by
grouping only those parts that are used by a computation phase of a program.
The elimination of useless data by array regrouping is extremely important for
applications written in languages with data abstraction features, as in, for exam-
ple, C, C++, Java and Fortran 90. In these programs, a data object contains lots
of information, but only a fraction of it is used in a given computation phase.

In summary, the regrouping algorithm is optimal because it minimizes all
iteration footprints of a program. With the assumption that cache overhead is
a non-decreasing function over the size of iteration footprints, data regrouping
achieves maximal cache reuse and minimal TLB working set.

2.4 Extensions

The previous section makes two restrictions in deriving the optimal solution for
data regrouping. The �rst is disallowing any useless data, and the second is
assuming a static data layout without dynamic data remapping. This section
relaxes these two restrictions and gives modi�ed solutions. In addition, this sec-
tion expands the scope of data regrouping to minimizing not only memory reads
but also memory writebacks.

Allowing Useless Data The base algorithm disallows regrouping any two
arrays that are not always accessed together. This restriction may not always

be desirable, as in the example program in the left-hand side of Figure 2, where
array A and B are accessed together for in the �rst loop, but only A is accessed
in the second loop. Since the �rst loop is executed 100 times as often as the
second loop, it is very likely that the bene�t of grouping A and B in the �rst
exceeds the overhead of introducing redundant data in the second. If so, it is
pro�table to relax the prohibition on no useless data.

Allowing useless data

for step=1, t
for i=1, N

Foo(A[i], B[i])

for i=1, N
Bar(A[i])

end for

end for
end for

Allowing dynamic data remapping

Foo(A[i], B[i])

for step=1, t
for i=1, N

end for
end for

for step=1, t
for i=1, N

Bar(A[i])
end for

end for

Fig. 2. Examples of extending data regrouping

However, the tradeo� between grouping fewer arrays and introducing useless
data depends on the precise measurement of the performance gain due to data
regrouping and the performance loss due to redundant data. Both the bene�t
and cost are program and machine dependent and neither of them can be stati-
cally determined. One practical remedy is to consider only frequently executed
computation phases such as the loops inside a time-step loop and to apply data
regrouping only on them.

When the exact run-time bene�t of regrouping and the overhead of useless
data is known, the problem of optimal regrouping can be formulated with a
weighted, undirected graph, called a data-regrouping graph. Each array is a node
in the graph. The weight of each edge is the run-time bene�t of regrouping
the two end nodes minus its overhead. The goal of data regrouping is to pack
arrays that are most bene�cial into the same cache block. However, the packing
problem on a data-regrouping graph is NP-hard because it can be reduced from
the G-partitioning problem[12].

Allowing Dynamic Data Regrouping Until now, data regrouping uses a
single data layout for the whole program. An alternative strategy is to allow
dynamic regrouping of data between computation phases so that the data layout
of a particular phase can be optimized without worrying about the side e�ects
in other phases. For example, in the example program in the right-hand side of
Figure 2, the best strategy is to group A and B at the beginning of the program
and then separate these two arrays after the �rst time-step loop.

For dynamic data regrouping to be pro�table, the overhead of run-time data
movement must not exceed its bene�t. However, the exact bene�t of regrouping
and the cost of remapping are program and machine dependent and consequently
cannot be determined by a static compiler. As in the case of allowing useless data,
a practical approach is to apply data regrouping within di�erent time-step loops
and insert dynamic data remapping in between.

When the precise bene�t of regrouping and the cost of dynamic remapping
is known, the problem can be formulated in the same way as the one given
by Kremer[13]. In his formulation, a program is separated into computation
phases. Each data layout results in a di�erent execution time for each phase
plus the cost of changing data layouts among phases. The optimal layout, either
dynamic or static, is the one that minimizes the overall execution time. Without
modi�cation, Kremer's formulation can model the search space of all static or
dynamic data-regrouping schemes. However, as Kremer has proved, �nding the
optimal layout is NP-hard. Since the search space is generally not large, he
successfully used 0-1 integer programming to �nd the optimal data layout. The
same method can be used to �nd the optimal data regrouping when dynamic
regrouping is allowed.

Minimizing Data Writebacks On machines with insu�cient memory band-
width, data writebacks impede memory read performance because they consume
part of the available memory bandwidth. To avoid unnecessary writebacks, data
regrouping should not mix the modi�ed data with the read-only data in the
same cache block.

To totally avoid writing back read-only data, data regrouping needs an extra
requirement. Two arrays should not be fused if one of them is read-only and the
other is modi�ed in a computation phase. The new requirement can be easily
enforced by a simple extension. For each computation phase, split the accessed
arrays into two disjoint subsets: the �rst is the set of read-only arrays and the
second is the modi�ed arrays. Treat each sub-set as a distinctive computation
phase and then apply the partitioning. After data regrouping, two arrays are
fused if and only if they are always accessed together, and the type of the access
is either both read-only or both modi�ed. With this extension, data regrouping
�nds the largest subsets of arrays that can be fused without introducing useless
data or redundant writebacks.

When redundant writebacks are allowed, data regrouping can be more ag-
gressive by �rst combining data solely based on data access and then separating
read-only and read-write data within each partition. The separation step is not
easy because di�erent computation phases read and write a di�erent set of ar-
rays. The general problem can be modeled with a weighted, undirected graph,
in which each array is a node and each edge has a weight labeling the combined
e�ect of both regrouping and redundant writebacks. The goal of regrouping is to
pack nodes into cache blocks to maximize the bene�t. As in the case of allowing
useless data, the packing problem here is also NP-hard because it can be reduced
from the G-partitioning problem[12].

3 Evaluation

3.1 Experimental Design

We evaluate data regrouping both on regular programs with contiguous data
traversal and on irregular programs with non-contiguous data access. In each
class, we use a kernel and a full application. Table 2 and Table 3 give the de-
scription of these four applications, along with their input size. We measure the
overall performance except Moldyn, for which we measure only the major compu-
tation subroutine compute force. The results of Moldyn and Magi were partially
reported in [6] where data regrouping was used as a preliminary transformation
to data packing.

Table 2. Program description

name description access pattern source No. lines

Moldyn molecular dynamics simulation irregular CHAOS group 660
Magi particle hydrodynamics irregular DoD 9339
ADI alternate-direction integration regular standard kernel 59

Sweep3D nuclear simulation regular DOE 2105

Table 3. Data inputs

application input size source of input exe. time
Moldyn 4 arrays, 256K particles, 1 iteration random initialization 53.2 sec
Magi 84 arrays, 28K particles, 253 cycles provided by DoD 885 sec

ADI 3 arrays, 1000x1000 per array , 10 iterations random initialization 2.05 sec.
Sweep3D 29 arrays, 50x50x50 per array provided by DoE 56 sec.

The test programs are measured on a single MIPS R10K processor of SGI
Origin2000, which provides hardware counters that measure cache misses and
other hardware events with high accuracy. The processor has two caches: the
�rst-level (L1) cache is 32KB with 32-byte cache blocks and the second-level (L2)
cache is 4MB with 128-byte cache blocks. Both are two-way set associative. The
processor achieves good latency hiding through dynamic, out-of-order instruction
issue and compiler-directed prefetching. All applications are compiled with the
highest optimization
ag except Sweep3D and Magi, where the user speci�ed
-O2 to preserve numerical accuracy. Prefetching is turned on in all programs.

exe. time L1 misses L2 misses TLB misses
0.00

0.50

1.00

1.50

no
rm

al
iz

ed
 s

ca
le

Moldyn

original
opt regrouping

(59%) (14%) (7.9%)

exe. time L1 misses L2 misses TLB misses
0.00

0.50

1.00

1.50

no
rm

al
iz

ed
 s

ca
le

Magi

original
grouping all
opt regrouping

(14%) (0.6%) (2.8%)

exe. time L1 misses L2 misses TLB misses
0.00

0.50

1.00

1.50

no
rm

al
iz

ed
 s

ca
le

ADI

original
regrouping

(31%) (7.0%) (0.04%)

exe. time L1 misses L2 misses TLB misses
0.00

0.50

1.00

1.50

no
rm

al
iz

ed
 s

ca
le

Sweep3D

original
regrouping

(25%) (1.9%) (1.1%)

Fig. 3. E�ect of Data Regrouping

3.2 E�ect of Data Regrouping

Each of the four graphs of Figure 3 shows the e�ect of data regrouping on one
of the applications; it shows the changes in four pairs of bars including the
execution time, the number of L1 and L2 cache misses, and the number of TLB
misses. The �rst bar of each pair is the normalized performance (normalized to
1) of the original program, and the second is the result after data regrouping.
Application Magi has one more bar in each cluster: the �rst and the third are
the performance before and after data regrouping, the middle bar shows the
performance of grouping all data arrays. The graphs also report the miss rate
of the base program, but the reduction is on the number of misses, not on the
miss rate. The miss rate here is computed as the number of misses divided by
the number of memory loads.

Data regrouping achieves signi�cant speedups on the two irregular applica-
tions, Moldyn and Magi, as shown by the upper two graphs in Figure 3. Since
both applications mainly perform non-contiguous data access, data regrouping
improves cache-block reuse by combining data from multiple arrays. For Moldyn

and Magi respectively, data regrouping reduces the number of L1 misses by 70%
and 38%, L2 misses by 75% and 17%, and TLB misses by 21% and 47%. As a
result, data regrouping achieves a speedup of 1.89 on Moldyn and 1.32 on Magi.

Application Magi has multiple computation phases, and not all arrays are
accessed in all phases. Data regrouping fuses 26 compatible arrays into 6 arrays.

Blindly grouping all 26 arrays does not perform as well, as shown by the second
bar in the upper-right graph: it improves performance by a much smaller factor
of 1.12 and reduces L1 misses by 35% and TLB misses by 44%, and as a side
e�ect, grouping-all increases L2 misses by 32%. Clearly, blindly grouping all data
is sub-optimal.

The lower two graphs in Figure 3 show the e�ect of data regrouping on the
two regular programs. The �rst is the ADI kernel. ADI performs contiguous
data access to three data arrays, and its page-table working set �ts in TLB.
Data regrouping fuses two arrays that are modi�ed and leaves the third, read-
only array unchanged. Since the program already enjoys full cache-block reuse
and incurs no capacity misses in TLB, we did not expect an improvement from
data regrouping. However, we did not expect a performance degradation. To our
surprise, we found the program ran 42% slower after regrouping. The problem
was due to the inadequate dependence analyzer of the SGI compiler in handling
interleaved arrays after regrouping. We adjusted level of data grouping so that
instead of changing X(j; i) and B(j; i) to T (1; j; i) and T (2; j; i), we let X(j; i)
and B(j; i) to be T (j; 1; i) and T (j; 2; i). The new version of regrouping caused
no performance slowdown and it in fact ran marginally faster than the base
program.

Sweep3D is a regular application where the computation repeatedly sweeps
through a three-dimensional object from six di�erent angles, three of which are
diagonal. A large portion of data access is non-contiguous. In addition, Sweep3D
is a real application with a large number of scalars and arrays and consequently,
its performance is seriously hindered by an excessive number of TLB misses (??%
of miss rate). The data layout seem to be highly hand-optimized because any
relocation of scalar and array declarations we tried ended up in an increase in
TLB misses.

Currently, we perform a limited regrouping, which combines eight arrays into
two new ones. The limited regrouping reduces the overall L2 misses by 38% and
TLB misses by 45%. The execution time is reduced by 13%. The signi�cant
speedup achieved by data grouping demonstrates its e�ectiveness for highly op-
timized regular programs.

In summary, our evaluation has shown that data regrouping is very e�ective
in improving cache spatial reuse and in reducing cache con
icts and TLB misses
for both regular and irregular programs, especially those with a large number
of data arrays and complex data access patterns. For the two real-world appli-
cations, data regrouping improves overall performance by factors of 1.32 and
1.15.

4 Related Work

Many data and computation transformations have been used to improve cache
spatial reuse, but inter-array data regrouping is the �rst to do so by selectively
combining multiple arrays. Previously existing techniques either do not combine

multiple arrays or do so in an indiscriminate manner that often reduces cache-
block reuse instead of increasing it.

Kremer[13] developed a framework for �nding the optimal static or dynamic
data layout for a program of multiple computation phases[13]. He did not con-
sider array regrouping explicitly, but his formulation is general enough to include
any such transformations, however, at the expense of being an NP-hard problem.
Data regrouping simpli�es the problem by allowing only those transformations
that always improve performance. This simpli�cation is desirable for a static
compiler, which cannot quantify the negative impact of a data transformation.
In particular, data regrouping takes a conservative approach that disallows any
possible side e�ects and at the same time maximizes the potential bene�t.

Several e�ective techniques have been developed for improving spatial reuse
within single data arrays. For regular applications, a compiler can rearrange
either the computation or data to employ stride-one access to memory. Compu-
tation reordering such as loop permutations was used by Gannon et al.[9], Wolf
and Lam[18], and McKinley et al[16]. Without changing the order of compu-
tation, Mace developed global optimization of data \shapes" on an operation
dag[15]. Leung studied a general class of data transformations|unimodular
transformations| for improving cache performance[14]. Beckman and Kelly
studied run-time data layout selection in a parallel library[2]. The combination
of both computation and data restructuring was explored by Cierniak and Li[5]
and then by Kandemir et al[11]. For irregular and dynamic programs, run-time
data packing was used to improve spatial reuse by Ding and Kennedy[6]. None
of these techniques addressed the selective grouping of multiple data arrays,
neither did they exploit inter-array cache reuse. However, these techniques are
orthogonal to data regrouping. In fact, they should be always preceded by data
regrouping to �rst maximize inter-array spatial reuse, as demonstrated by Ding
and Kennedy in [6] where they combined data regrouping with data packing.

Data placement transformations have long been used to reduce data inter-
ference in cache. Thabit packed simultaneously used data into non-con
icting
cache blocks[17]. To reduce cache interference among array segments, a com-
piler can make them either well separated by padding or fully contiguous by
copying. Data regrouping is di�erent because it reorganizes not scalars or array
segments but individual array elements. By regrouping elements into the same
cache block, data grouping guarantees no cache interference among them. An-
other important di�erence is that data regrouping is conservative, and it does
not incur any memory overhead like array copying and padding.

Data transformations have also been used to avoid false data sharing on
parallel machines with shared memory. The transformations group together data
that is local to each processor. Examples include those of Anderson et al.[1] and
of Eggers and Jeremiassen[10]. Anderson et al. transformed a single loop nest at
a time and did not fuse multiple arrays; Eggers and Jeremiassen transformed a
single parallel thread at a time and fused all data it accesses. However, blindly
grouping local data wastes bandwidth because not all local data is used in a
given computation phase. Therefore, both data transformations are sub-optimal

compared to data regrouping, which selectively fuses multiple arrays for maximal
cache spatial reuse and cache utilization.

Besides the work on arrays, data placement optimizations have been studied
for pointer-based data structures[3, 4]. The common approach is to �rst �nd data
objects that are frequently accessed through pro�ling and then place them close
to each other in memory. In contrast to data regrouping, they did not distinguish
between di�erent computation phases. As a result, these transformations are
equivalent to grouping all frequently accessed objects in the whole program. As
in the case of greedy regrouping by Eggers and Jeremiassen[10], the result is
sub-optimal.

5 Conclusions

In this work, we have developed inter-array data regrouping, a global data trans-
formation that maximizes overall inter-array spatial reuse in both regular and
dynamic applications. The regrouping algorithm is compile-time optimal be-
cause it regroups arrays when and only when it is always pro�table. When eval-
uated on both regular and irregular applications including programs involving a
large number of arrays and multiple computation phases, data regrouping com-
bines 8 to 26 arrays and improves overall performance by factors of 1.15 and
1.32. Similar regrouping optimization can also improve cache-block utilization
on shared-memory parallel machines and consequently improve their communi-
cation performance.

The signi�cant bene�t of this work is that the automatic and e�ective data
transformations enable a user to write machine-independent programs because
a compiler can derive optimal data layout regardless the initial data structure
speci�ed by the user. Since the choice of global regrouping depends on the com-
putation structure of a program, data regrouping is a perfect job for an automatic
compiler, and as shown in this work, a compiler can do it perfectly.

Acknowledgement

We'd like to thank anonymous referees of LCPC'99 and especially, Larry Carter,
who corrected a technical error of the paper and helped in improving the dis-
cussion of the optimality of data regrouping.

References

1. J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transformation
for multiprocessors. In Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Santa Barbara, CA, July 1995.

2. O. Beckmann and P.H.J. Kelly. E�cient interprocedural data placement optimi-
sation in a parallel library. In Proceedings of the Fourth Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers, May 1998.

3. B. Calder, K. Chandra, S. John, and T. Austin. Cache-conscious data placement.
In Proceedings of the Eighth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-VIII), San Jose, Oct
1998.

4. T.M. Chilimbi, B. Davidson, and J.R. Larus. Cache-conscious structure de�nition.
In Proceedings of SIGPLAN Conference on Programming Language Design and
Implementation, 1999.

5. M. Cierniak and W. Li. Unifying data and control transformations for distributed
shared-memory machines. In Proceedings of the SIGPLAN '95 Conference on Pro-
gramming Language Design and Implementation, La Jolla, 1995.

6. C. Ding and K. Kennedy. Improving cache performance in dynamic applications
through data and computation reorganization at run time. In Proceedings of the
SIGPLAN '99 Conference on Programming Language Design and Implementation,
Atlanta, GA, May 1999.

7. C. Ding and K. Kennedy. Memory bandwidth bottleneck and its amelioration by a
compiler. Technical report, Rice University, May 1999. Submitted for publication.

8. J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhancing cache e�ec-
tiveness. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Lan-
guages and Compilers for Parallel Computing, Fourth International Workshop,
Santa Clara, CA, August 1991. Springer-Verlag.

9. D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory
management by global program transformations. In Proceedings of the First In-
ternational Conference on Supercomputing. Springer-Verlag, Athens, Greece, June
1987.

10. Tor E. Jeremiassen and Susan J. Eggers. Reducing false sharing on shared mem-
ory multiprocessors through compile time data transformations. In Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 179{188, Santa Barbara, CA, July 1995.

11. M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A matrix-based
approach to the global locality optimization problem. In Proceedings of Interna-
tional Conference on Parallel Architectures and Compilation Techniques, 1998.

12. D. G. Kirkpatrick and P. Hell. On the completeness of a generalized matching
problem. In The Tenth Annual ACM Symposium on Theory of Computing, 1978.

13. U. Kremer. Automatic Data Layout for Distributed Memory Machines. PhD the-
sis, Dept. of Computer Science, Rice University, October 1995.

14. S. Leung. Array restructuring for cache locality. Technical Report UW-CSE-96-
08-01, University of Washington, 1996. PhD Thesis.

15. M.E. Mace. Memory storage patterns in parallel processing. Kluwer Academic,
Boston, 1987.

16. K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424{453, July 1996.

17. K. O. Thabit. Cache Management by the Compiler. PhD thesis, Dept. of Com-
puter Science, Rice University, 1981.

18. M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of
the SIGPLAN '91 Conference on Programming Language Design and Implemen-
tation, Toronto, Canada, June 1991.

This article was processed using the LATEX macro package with LLNCS style

