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Abstract

Loop fusion combines corresponding iterations of differ-
ent loops. It is traditionally used to decrease program run
time, by reducing loop overhead and increasing data local-
ity. In this paper, however, we consider its effect on energy.

By merging program phases, fusion tends to increase
the uniformity, or balance of demand for system resources.
On a conventional superscalar processor, increased bal-
ance tends to increase IPC, and thus dynamic power, so
that fusion-induced improvements in program energy are
slightly smaller than improvements in program run time. If
IPC is held constant, however, by reducing frequency and
voltage—particularly on a processor with multiple clock
domains—then energy improvements may significantly ex-
ceed run time improvements.

We demonstrate the benefits of increased program bal-
ance under a theoretical model of processor energy con-
sumption. We then evaluate the benefits of fusion empiri-
cally on synthetic and real-world benchmarks, using our ex-
isting loop-fusing compiler and a heavily modified version
of the SimpleScalar/Wattch simulator. For the real-world
benchmarks, we demonstrate energy savings ranging from
7–40%, with run times ranging from 1% slowdown to 17%
speedup. In addition to validating our theoretical model,
the simulation results allow us to “tease apart” the factors
that contribute to fusion-induced time and energy savings.

1. Introduction

With increasing concern over energy consumption and
heat dissipation in densely-packed desktop and server sys-
tems, compiler optimizations that increase the energy ef-
ficiency of programs are becoming increasingly attractive.
Among the most aggressive program transformations is
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loop fusion, which brings together multiple loops and in-
terleaves their iterations. Two recent studies have shown
significant performance benefits with loop fusion for a wide
range of scientific programs [12, 24]. This paper studies the
energy impact of loop fusion.

Loop fusion has two main effects on a program’s de-
mand for processor and memory resources. The first effect
is to reduce demand, by reducing loop overhead and by in-
creasing data reuse in registers and cache, which in turn re-
duces the number of memory operations and address calcu-
lations. The second effect is to balance demand, by combin-
ing loops with different instruction mixes, cache miss rates,
branch misprediction rates, etc. Reduced demand naturally
tends to save both time and energy. Increased balance also
tends to save time and, to a lesser extent, energy, by increas-
ing instruction-level parallelism (ILP): even with aggressive
clock gating in inactive functional units, packing an opera-
tion into an unused slot in a superscalar schedule tends to
save energy compared to extending program run time in or-
der to execute the operation later. Beyond this obvious ef-
fect, however, we argue that increased balance has a special
benefit for processors with dynamic voltage scaling (DVS).

DVS allows CPU frequency and voltage to change dy-
namically at run time, in order to match demand. The Trans-
meta Crusoe TM5800 processor can scale its frequency
from 800MHz down to 367MHz and its voltage from 1.3V
down to 0.9V, thereby reducing power [13]. DVS is also
employed on Intel XScale processors [10]. Because re-
quired voltage scales roughly linearly with frequency within
typical operating ranges, and energy is proportional to the
square of the voltage, a modest reduction in frequency can
yield significant energy savings.

For rate-based (soft real-time) applications, and for ap-
plications that are I/O or memory bound, DVS allows the
processor to slow down to match the speed of the real world
or external bottleneck. Recently, researchers have proposed
globally asynchronous, locally synchronous DVS proces-
sors in which the frequency and voltage of various processor
components (“domains”) can be changed independently at



run time [18, 26, 27]. Such multiple clock domain (MCD)
processors allow domains that are not on the processor’s
critical path to slow down to match the speed of an internal
bottleneck.

On DVS processors, loop fusion can save energy even
when it does not reduce demand or improve performance,
as shown by the following example. The program in Fig-
ure 1(a) has two loops. Assume that memory is the per-
formance bottleneck. Having the same memory demand,
both loops take the same time t for each iteration. With
perfect frequency scaling, the two loops have CPU frequen-
cies 10/t and 20/t respectively. Using a simplified energy
model where power is a cubic function of frequency, the
average CPU power is ((10/t)3 + (20/t)3)/2 = 4500/t3

units. Let us assume that the loops can be fused and, for
illustration purposes, that loop fusion does not change the
number of operations. In the fused loop, the ratio of CPU
to memory operations is constant, as shown in Figure 1(b).
The CPU frequency is now 30/2t or 15/t, and the aver-
age power is 3375/t3, a 25% reduction, even though the re-
ordered program executes the same operations in the same
amount of time.

5 mem op

20 cpu op

 Loop 2:

(a) Two loops with 

different CPU and 

memory demand ratios

(b) Fused loop 

with a single 

demand ratio

  Loop 1:

  Fused loop:

10 mem op

30 cpu op

5 mem op

10 cpu op

Figure 1. Example of program reordering.

While it ignores a host of issues (cache behavior, com-
mon subexpressions, ILP, etc.—all of which we address in
section 4 by evaluating on real programs), this example
suggests the opportunities for energy optimization available
on DVS processors. While slowing down the processor to
match external constraints (e.g. memory bandwidth or real-
time deadlines) will almost always save energy, slowing the
processor down evenly over a long period of time will save
more energy than slowing it down a lot at some times and
only a little at other times. Energy savings are maximized
by good instruction balance—by even demand over time for
each scalable processor component.

In the following section we present a mathematical
model that captures the intuition of Figure 1, and describes
the relationships among program balance, performance, and
energy consumption in a perfect DVS processor. We prove
that energy efficiency is maximized in a program with a
constant ratio of demands for scalable processor compo-

nents. In Section 3 we briefly review our loop-fusing com-
piler and multiple clock domain (MCD) processor (both
of which are discussed in other papers), describe our ap-
plication suite, and present the methodology we use to
“tease apart” the various factors that lead to fusion-induced
changes in program time and energy.

Our experimental evaluation appears in Section 4. We
present run time and energy consumption, with and without
loop fusion, on conventional and MCD processors. For the
programs with fused loops, we also present a detailed break-
down of time and energy savings, attributing these savings
to changes in the number of instructions executed, the num-
ber of cache misses, the number of mispredicted branches,
the effectiveness of pipeline utilization, and the effective-
ness of dynamic voltage scaling. We consider related work
in more detail in Section 5, and conclude in Section 6.

2. Theory of program balance

We assume a processor/memory system consisting of q
components, each of which serves a different aspect of the
program’s resource needs (demand). We further assume that
each component supports dynamic frequency and voltage
scaling independent of other components. We divide the
program’s execution into a sequence of brief time intervals,
each of duration t. We assume that during each interval i the
processor somehow chooses for each component p an oper-
ating frequency fpi equal to wpi/t, where wpi is the pro-
gram’s demand for p—the number of cycles of service on p
required in interval i. As an example, consider a pipelined
integer unit p that can finish one integer operation every cy-
cle. If a program executes 100 integer operations in a one-
microsecond interval i, then fpi = 100/10−6 = 100MHz.

Finally, we assume that the power consumption of a
component p running at frequency fpi during interval i is
c(fpi)

k, where c is positive and k is greater than 1. The en-
ergy used in i is therefore Ei = ct(fpi)

k. Dynamic power
is proportional to V 2 ·f ·C where V is the supply voltage, f
is the frequency of the clock, and C is the effective switch-
ing capacitance [5]. We assume that voltage is scaled with
frequency. Therefore, the constant k can be as high as three.
Different components may have a different constant c.

We do not consider any overhead incurred by dynamic
scaling. Such overhead would not change our results: be-
cause demand is spread uniformly over time in the opti-
mal case, overhead would be zero. We also choose not to
consider dependences among components, or the fact that
an individual instruction may require service from multiple
components. We assume, rather, that components are com-
pletely independent, and that we can slide demand forward
and backward in time, to redistribute it among intervals. De-
pendences prevent loop fusion and similar techniques from
redistributing demand arbitrarily in real programs. Leaving



dependences out of the formal model allows us to evalu-
ate program balance as a goal toward which practical tech-
niques should aspire.

We define program balance in interval i on a ma-
chine with q components to be the vector vi =
< w1i, w2i, . . . , wqi >. We say that a program has con-
stant balance if all the balance vectors are the same: i.e.
(∀i, j)[vi = vj ]. A program has bounded balance if there
is a critical component p whose demand is always constant,
and at least as high as the demand for every other compo-
nent: i.e. (∃p, d)(∀i,m)[(wpi = d) ∧ (wmi ≤ d)]. The
critical component p is the one with the largest ratio of its
total demand to its highest frequency. Constant balance im-
plies a constant utilization of all components. Bounded bal-
ance guarantees only the full utilization of the critical com-
ponent. The utilization of other components may vary. The
difference will become significant when we compare the use
of reordering for performance and for energy.

The basic theorem of program balance. Assuming that
time is held constant, we argue that a program execution
consumes minimal energy if it has constant balance. Put an-
other way, a program with varied balance can be made more
energy efficient by smoothing out the variations. Since we
are assuming that components are independent, we simply
need to prove this statement for a single component. We
therefore drop the p subscripts on the variables in the fol-
lowing discussion.

An execution comprising M intervals clearly uses time
T = Mt. It has a total demand W =

∑M

i=1
wi =∑M

i=1
fit = t

∑M

i=1
fi, and consumes energy Eoriginal =∑M

i=1
c(fi)

kt = ct
∑M

i=1
(fi)

k. The balanced execution has
the same running time T and total demand W . It uses a con-
stant frequency f = W/T , however, and consumes energy
Ebalanced = cTfk.

Theorem 1 The following inequality holds.

Eoriginal = ct
M∑

i=1

(fi)
k ≥ cTfk = Ebalanced

where c, t, and fi are non-negative real numbers, and k and
M are greater than 1.

Proof. According to a special form of Jensen’s inequality
(Jensen’s theorem) [19],

∑M

i=1
h(fi)

M
≥ h(

M∑

i=1

fi

M
)

where h(fi) is a convex function for the range of fi. Let
h(fi) = fk

i , which is a convex function when fi ≥ 0 and
k ≥ 1. It follows that ct

∑M

i=1
(fi)

k ≥ ctMfk = cTfk.
2

The theorem assumes that the operating frequency of a
machine can be any real number. If a machine can choose
only from a set of predefined integral operating frequen-
cies, Jensen’s theorem is not directly applicable. Li and
Ding [22] used another calculus method and proved that
in the case of discrete operating frequencies, the optimal
program balance is achieved by a strategy that alternates
between the two closest valid frequencies above and below
W/T , where T is the running time and W is the total de-
mand.

Reordering for energy vs. performance. From a perfor-
mance perspective, the goal of reordering is to fully uti-
lize the critical resource, thereby requiring bounded bal-
ance. For example, if memory is the critical resource, we
can maximize performance by keeping the memory busy
at all times. The utilization of the CPU does not matter as
long as it does not delay the demand to memory. For energy,
however, we want not only full utilization of the critical re-
source but also a constant utilization of all other resources.
According to the theorem of program balance, a program
with varied CPU utilization consumes more energy than an
equivalent program with constant CPU utilization. This is
the reason for the energy improvement in the example given
in the introduction: execution time cannot be reduced but
energy can.

3. Experimental methodology

3.1. Loop fusion

We use the source-to-source locality-based fusion algo-
rithm devised by Ding and Kennedy to improve the effec-
tiveness of caching [12]. A similar approach was used in
the Intel Itanium compiler [24]. We chose this algorithm
because it is familiar to us, its implementation is available,
and it outperforms the commercial compiler for our target
platform (the Compaq Alpha) on our application suite.

Unlike most previous work, locality-based fusion is able
to fuse loops of differing shape, including single statements
(loops with zero dimension), loops with a different num-
ber of dimensions, and imperfectly nested loops. It uses
a heuristic called sequential greedy fusion: working from
the beginning of the program toward the end, the algorithm
fuses each statement or loop into the earliest possible data-
sharing statement or loop. For multi-level loops, the algo-
rithm first decides the order of loop levels and then applies
single-level fusion from the inside out. This heuristic serves
to minimize the number of fused loops at outer levels. Un-
like Ding and Kennedy, we fuse loops for the sake of pro-
gram balance even when doing so does not improve data
reuse—e.g. even when the loops share no data. Function
in-lining is used where possible to fuse loops across func-
tion boundaries.



Aggressive fusion may cause register spilling and in-
creased cache interference. The register spilling prob-
lem can be solved by constrained fusion for innermost
loops [11, 30]; the problem of cache interference can be
alleviated by data regrouping, which places simultaneously
accessed data into the same cache block to avoid cache con-
flicts [12].

Locality-based fusion follows the early work of vectoriz-
ing compilers [3], which applies maximal loop distribution
before fusion. It subsumes a transformation known as loop
fission, which splits a loop into smaller pieces to improve
register allocation.

3.2. MCD architecture and control

We use the multiple clock domain (MCD) processor de-
scribed by Semeraro et al. [27]. MCD divides the chip into
four domains: the fetch domain (front end), which fetches
instructions from the L1 I-cache, predicts branches, and
then dispatches instructions to the different issue queues;
the integer domain, which comprises the issue queue, reg-
ister file, and functional units for integer instructions; the
floating-point domain, which comprises the same compo-
nents for floating-point instructions; and the memory do-
main, which comprises the load-store queue, L1 D-cache,
and unified L2 cache. Each domain has its own clock and
voltage generators, and can tune its frequency and voltage
independent of the other domains. Architectural queues
serve as the interfaces between domains, and are augmented
with synchronization circuitry to ensure that signals on dif-
ferent time bases transfer correctly. This synchronization
circuitry imposes a baseline performance penalty of approx-
imately 1.3% on average.

Previous papers describe three control mechanisms to
choose when, and to what values, to change domain fre-
quencies and voltages. The off-line algorithm [27] post-
processes an application trace to find, for each interval, the
configuration parameters that would have minimized en-
ergy, subject to a user-selected acceptable slowdown thresh-
old. Though impractical, it provides a target against which
to compare more realistic alternatives. The on-line algo-
rithm [26] makes decisions by monitoring the utilization of
the issue queues, which also serve to communicate among
domains. The profile-based algorithm [23] uses statistics
gathered from one or more profiling runs to identify func-
tions or loop nests that should execute at particular frequen-
cies and voltages. The results in this paper were obtained
with the off-line algorithm, with a slowdown target of 2%.
The profile-based algorithm achieves equally good energy
savings, but would have made it significantly more cumber-
some to conduct our experiments.

Our simulation results were obtained with a heavily
modified version of the SimpleScalar/Wattch toolkit [4, 6].
Details can be found in other papers [23, 26, 27]. Archi-

tectural parameters were chosen, to the extent possible, to
match those of the Alpha 21264 processor. Main memory
was always run at full speed, and its energy was not in-
cluded in our results.

3.3. Application suite

Most existing compilers are unable to fuse loops of dif-
ferent shape. As a result, they tend to obtain little or no
benefit from loop fusion in real applications [9]. Our com-
piler does a bit better, successfully fusing large-scale loops
in five of fifty benchmarks from standard benchmark suites:
Livermore Loops LK14 and LK18, Swim and Tomcatv from
SPEC95, and SP from the NAS suite. For the other 45
benchmarks in these suites our compiler is a no-op. We also
report results for ADI, a kernel for alternating-direction inte-
gration, which has been widely used as a benchmark in the
locality optimization literature. Loop fusion significantly
improves the performance of all these applications.

Recent work by Ng et al. (to which we do not have ac-
cess) has extended locality-based fusion to cover additional
programs, via procedure inlining and array contraction [24].
The authors report an average speedup of 12% on the 14 ap-
plications of the SPECfp2K suite, running on an Intel Ita-
nium processor. With continued improvements in the state
of the art, it seems reasonable to expect that fusion will be-
come a widely used technique.

Our compiler fuses most programs into a single loop
nest. The exceptions are SP, in which over 100 original
loop nests are fused into a dozen new loops, and Tomcatv,
in which data dependences allow only the outermost loops
to be fused. As noted above, aggressive fusion may increase
register spilling and cache interference. In our test suite
spilling increases only in SP. The problem can be solved by
constrained fusion for innermost loops (equivalent to loop
distribution after fusion) [11, 30], but we did not implement
the transformation for this work; the modest potential ben-
efits in SP did not seem to warrant the effort. Increased
cache conflicts also appeared in only one of our applica-
tions, but here the impact was substantial: Swim was the
only application that ran slower after fusion. We used Ding
and Kennedy’s data regrouping algorithm [12] to eliminate
the new cache conflicts, at which point the fused version of
Swim ran 18% faster than the original.

We compiled all benchmark programs (with or with-
out prior source-to-source loop fusion) using the Digital
f77 compiler with the -O5 flag. The machine compiler
performed loop transformations and software pipelining.
We chose input sizes for our experiments so that the total
number of instructions simulated for each benchmark was
around 100 million.



3.4. Time and energy breakdown

Given differences in run time and energy consumption
between the original and fused versions of an application,
we would like to determine the extent to which these differ-
ences are the simple result of changes in instruction demand
(number of instructions executed) and, conversely, the ex-
tent to which they stem from differences in the effectiveness
of such architectural features as branch prediction, caching,
pipeline utilization, and voltage scaling.

Architectural effects, of course, may not be entirely in-
dependent. Memory accesses on mispredicted paths, for ex-
ample, may change the cache hit rate, while timing changes
due to hits and misses in the cache may change the distance
that the processor travels down mispredicted paths. Still,
we can gain a sense of the relative significance of different
factors by considering them in order, and can quantify their
contributions to run time and energy by running our appli-
cations on various idealized machines.

Suppose the original program runs in time T o
c and con-

sumes energy Eo
c , where the superscript “o” stands for

“original” and the subscript “c” stands for a conventional
simulated machine—not idealized in any way. Similarly,
suppose the fused program runs in time T f

c and consumes
energy E f

c. We would like to attribute the difference in run
time ∆Tc = T o

c − T f
c and energy ∆Ec = Eo

c −E f
c to differ-

ences in (a) the effectiveness of branch prediction, (b) the
effectiveness of caching, (c) the effectiveness of pipeline
utilization, (d) the level of instruction demand, and (e) the
effectiveness of DVS.

Synchronous case. Consider first the issues of branch
prediction and caching. We can simulate the original and
fused programs on a machine with perfect branch predic-
tion and, optionally, perfect caching. We use the subscript
c, pb to indicate execution on a conventional (synchronous)
machine with perfect branch prediction, c, pc to indicate ex-
ecution on a conventional machine with perfect caching (all
data accesses hit in the L1 D-cache), and c, pb, pc to indi-
cate execution on a conventional machine with both. The
differences T o

c −T o
c,pb and Eo

c −Eo
c,pb represent the time and

energy spent on mispredicted paths in the original program.
Similarly T f

c − T f
c,pb and E f

c − E f
c,pb represent the time and

energy spent on mispredicted paths in the fused program.
We thus define

∆Tprediction = (T o
c − T o

c,pb) − (T f
c − T f

c,pb)

∆Eprediction = (Eo
c − Eo

c,pb) − (E f
c − E f

c,pb)

These are the extra time and energy spent in the original
program executing useless instructions. In a similar vein,
T o

c-pb − T o
c-pb,pc and Eo

c-pb − Eo
c-pb,pc are the time and energy

spent servicing cache misses in the original program, in the
absence of mispredictions, and T f

c-pb − T f
c-pb,pc and E f

c-pb −

Ef
c-pb,pc are the analogous quantities for the fused program.

We thus define

∆Tcaching = (T o
c,pb − T o

c,pb,pc) − (T f
c,pb − T f

c,pb,pc)

∆Ecaching = (Eo
c,pb − Eo

c,pb,pc) − (E f
c,pb − E f

c,pb,pc)

These are the extra time and energy spent in the origi-
nal program servicing cache misses in the absence of mis-
predictions. They include, by design, misses due both to
poorer register reuse (i.e., extra loads) and to poorer hard-
ware cache locality.

After factoring out mispredictions and misses, we at-
tribute any remaining CPI and EPI differences between the
original and fused programs to the effectiveness of pipeline
packing. This gives us

∆Tpipeline = (CPIo
c,pb,pc − CPIf

c,pb,pc) × N f

∆Epipeline = (EPIo
c,pb,pc − EPIf

c,pb,pc) × N f

where N f is the number of instructions committed by the
fused program.1 These definitions are approximate, in
the sense that they do not reflect the fact that instructions
present in the original program but not in the fused program
may be disproportionately faster or slower than the average
across the whole program.

Remaining differences we attribute to instruction de-
mand:

∆Tinst dem = ∆Tc − ∆Tprediction − ∆Tcaching − ∆Tpipeline

∆Einst dem = ∆Ec − ∆Eprediction − ∆Ecaching − ∆Epipeline

MCD case. Now consider the case of an MCD processor
with dynamic frequency and voltage scaling. Because DVS
is an energy saving technique, not a performance enhanc-
ing technique, and because the off-line control algorithm
chooses frequencies with a deliberate eye toward bounding
execution slowdown, it makes no sense to attribute differ-
ences in run time to differences in the “effectiveness” of
DVS. We therefore focus here on energy alone.

By analogy to the synchronous case, let Eo
m and E f

m be
the energy consumed by the original and fused programs
running on an MCD processor with frequencies and volt-
ages chosen by the off-line algorithm. For the original pro-
gram, DVS reduces energy by the factor r = Eo

m/Eo
c . If

1We can (and, in our reported results, do) obtain a better estimate of
∆Epipeline by taking into account instruction mix and the energy con-
sumptions in separate hardware units. Given the instruction mix and that
our simulator reports energy numbers separately for the following units:
the front end (used by all instructions), the integer unit (used by all non-
floating point instructions), the branch predictor, the floating point unit,
and the memory unit, we can calculate separate EPI for each unit for the
original and fused programs, determine the ∆Epipeline contribution from
each unit by the equation shown in the text, and then add up all these con-
tributions to obtain the total ∆Epipeline. This refinement, of course, is not
possible for time.



the various other executions measured in the synchronous
case made equally good use of DVS, we would expect their
energies to scale down by this same factor r. We therefore
define

∆Em = Eo
m − E f

m

= r × (∆Einst dem + ∆Ecaching

+ ∆Eprediction + ∆Epipeline) + ∆Edvs

where ∆Einst dem, ∆Ecaching, ∆Eprediction, and ∆Epipeline are
all calculated as in the synchronous case. Equivalently:

∆Edvs = ∆Em − r∆Ec = (Eo
m−E f

m) − r (Eo
c −E f

c)

Under this definition, ∆Edvs is likely to be negative, be-
cause loop fusion tends to reduce cache misses and CPI,
thereby reducing opportunities to save energy by lowering
frequency and voltage. The balance theorem of section 2,
however, suggests that fusion should increase the effective-
ness of DVS when overall time is kept constant. To evaluate
this hypothesis, we will in Section 4.3 consider executions
in which we permit the off-line algorithm to slow down the
fused program so that it has the same run time it would have
had without fusion-induced improvements in pipeline uti-
lization and, optionally, caching.

4. Evaluation

In this section we first consider a contrived test program
in which improved instruction balance allows an MCD pro-
cessor to save energy even when it does not save time.
We then consider the impact of loop fusion on execution
time and energy for the benchmark applications described
in Section 3.3. For each of these benchmarks, we use the
methodology of Section 3.4 to attribute time and energy
savings to changes in instruction demand and in the effec-
tiveness of caching, branch prediction, pipeline utilization,
and (for energy) DVS.

4.1. Saving energy without saving time

Figure 2 shows a simple kernel program with two loops.
To balance this program, we can move the statement labeled
S from the second loop to the end of the first, thus giving
both loops the same mix of integer and floating-point op-
erations. The program is written in an assembly-like style
and compiled with minimal optimization (-O1) to make the
object code as straightforward and predictable as possible.

Since the two loops operate on different arrays, moving
statement S from the second loop to the first has little im-
pact on instruction count or cache performance. Indeed, as
shown in the Test column of Table 2, the original and mod-
ified versions of the program have nearly identical counts
for all types of instructions, and the same number of cache

/* N, U, V, and W are constants */
unsigned long long P[N], Q[N];
double c, d, e, f;
unsigned long long *base_p, *org_p, *end_p;
unsigned long long *base_q, *org_q, *end_q;

base_p = org_p = (unsigned long long *)P + 2;
base_q = org_q = (unsigned long long *)Q + 2;

end_p = (unsigned long long *)P + N;
end_q = (unsigned long long *)Q + N;

for( i = 0; i < 3; i++ )
{

/* the first loop */
L1: *base_p = *(base_p-1) * Y - *(base_p-2);

base_p++;
c = c + W;
if( base_p < end_p )

goto L1;

/* the second loop */
L2: *base_q = *(base_q-1) * Z - *(base_q-2);

base_q++;
d = d + W;
e = e + U;

S: f = f + V; /* to be moved
to the end of the first loop */

if( base_q < end_q )
goto L2;

base_p = org_p;
base_q = org_q;

}

Figure 2. A contrived Test program. As written, the
two loops have the same number of multiplications
and memory operations per iteration, but different
numbers of additions.

misses. Execution time on the MCD machine is also es-
sentially the same. Energy consumption, however, is re-
duced by almost 6%. Figure 3 shows the frequencies se-
lected over time by the off-line algorithm for the original
and balanced versions of Test on the MCD processor. In the
integer, floating-point, and memory domains, frequency is
much more stable and smooth after balancing. Frequency
in the fetch domain remains essentially constant.

Test baseline machine MCD
fetch domain 0.00% −0.73%

integer domain 0.13% 2.84%
floating point domain 0.16% 18.78%

memory domain 0.02% 3.77%
total energy reduction 0.08% 5.74%

Table 1. Energy benefit of balancing in Test, on the
baseline and MCD processors.
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Figure 3. Frequency curves for Test. In the fetch domain, the two curves lie on top of each other.

Table 1 shows the impact of moving statement S on the
energy consumption of the baseline (globally synchronous)
and MCD processors. Without DVS, the overall change in
energy is below one tenth of a percent, and no individual do-
main sees a change of more than 0.16%. On the MCD pro-
cessor, however, where DVS allows us to adjust frequency
and voltage to match the demands of the program, the more
balanced version of the program admits overall energy sav-
ings of over 5%, mostly by allowing the floating-point unit
to run more slowly in loop L1. This example demonstrates
clearly that with DVS, program balancing can save energy
even when it doesn’t change workload or execution time.

4.2. Program balance in realistic benchmarks

Table 2 shows statistics both for Test and for the six real
benchmarks, on the MCD processor. Reductions in energy
due to loop fusion range from −0.4% to 28%, a bit lower
than the reductions in run time, which range from 4.7% to
36.9%. The reductions in run time can be attributed to re-
ductions in the total number of instructions (four of the six
real benchmarks) and reductions in cycles per instruction
(CPI—five of the six real benchmarks).

Energy per cycle (average power) increases by amounts
ranging from 5.3% to 16.5% in five of the six real bench-
marks. The fused program incurs higher average power
when it runs faster due to the better loop-level parallelism
after loop fusion. LK14 shows a 0.3% decrease in average
power, consistent with its small increase in CPI. Test shows
a 6.7% decrease in power, due to better balance over con-
stant time. Energy per instruction (EPI) shows somewhat
smaller changes, increasing slightly in LK14 and SP, and
decreasing by modest amounts in the other programs.

Interestingly, while Tomcatv executes 1.6% more dy-
namic instructions after fusion, and suffers both a larger
number of memory operations and a larger number of
misses, it still runs 4.7% faster, mainly due, we believe, to
the elimination of misses on the critical path. These elim-
inated misses are reflected in a dramatic reduction in the
standard deviation of the frequency chosen by the off-line
algorithm for the floating-point domain. As noted in Sec-
tion 3.3, Tomcatv is the only benchmark for which our com-
piler was able to fuse outer but not inner loops.

In all benchmarks other than Tomcatv, fusion leads to
significant improvements in both L1D and L2 cache miss
rates. It also tends to reduce the fraction of integer and/or



Test ADI LK14 LK18 SP Swim Tomcatv
exe time1

−1.0% 36.9% 27.8% 7.5% 26.6% 17.1% 4.7%
energy1 5.7% 26.5% 28.0% 0.7% 18.1% 11.1% −0.4%

total inst1 0.0% 20.4% 29.8% −0.2% 18.6% 6.0% −1.6%
CPI2 2.05(−1%) 1.11(21%) 0.80(−3%) 1.26(8%) 0.50(10%) 0.89(12%) 1.08(6%)
EPI1 5.7% 7.7% −2.7% 0.9% −0.3% 5.5% 1.1%

avg power1 6.7% −16.5% 0.3% −7.4% −11.5% −7.3% −5.3%
inst mix org3 50/8/37/4 7/34/57/2 27/17/55/1 7/46/46/1 15/32/50/2 12/40/48/1 8/43/46/3

inst mix fused3 50/8/37/4 8/42/50/1 18/25/56/1 10/46/43/0 9/40/51/1 2/42/56/0 7/42/49/3
L1D miss4 3% (0%) 9% (32%) 5% (45%) 6% (25%) 7% (22%) 4% (15%) 7% (−1%)
L2 miss4 50% (0%) 43% (58%) 59% (45%) 57% (32%) 1% (65%) 63% (29%) 80% (−6%)

num reconfig2 2111 (87%) 10814 (48%) 3937 (71%) 18379 (19%) 4727 (37%) 8142 (33%) 23137 (-6%)
freq-stdev5 5.83/0.01 10.34/25.53 4.88/4.23 36.39/0.23 9.96/3.91 31.25/20.68 19.28/1.89

1 : percentage reduction after fusion/balancing
2 : value after fusion/balancing (and percentage reduction)
3 : percentage of integer/floating-point/memory-reference/branch instructions
4 : local miss rate after fusion/balancing (and percentage reduction in total number of misses)
5 : standard deviation of floating point frequency (MHz) before/after fusion/balancing

Table 2. Simulation results on MCD processor (with off-line frequency selection) before and after loop fusion
(six real benchmarks) or balancing (Test ).

memory instructions, leading to significant increases in
ADI, LK14, and SP in the fraction of the remaining instruc-
tions executed by the floating-point unit. In all benchmarks
other than ADI, fusion also leads to significant reductions in
the standard deviation of the frequency chosen by the off-
line algorithm for the floating-point domain. We believe the
difference in ADI stems from a mismatch between the size
of program loops and the 10,000 cycle window size used by
the off-line control algorithm [27]. In separate experiments
(not reported here), the on-line control algorithm of Semer-
aro et al. [26] enabled fusion in ADI to reduce the standard
deviation of the floating-point domain by a factor of 2.4. In
all benchmarks other than Tomcatv, fusion leads to a sig-
nificant reduction in the total number of frequency changes
(reconfigurations) requested by the off-line algorithm.

Figure 4 illustrates the synergy between loop fusion and
DVS. Without MCD scaling, loop fusion reduces program
energy by 3–32%, due entirely to reductions in run time of
6–36%. Without loop fusion, MCD scaling reduces pro-
gram energy by 12–23%, but increases program run time
by 2–11%. Together, MCD scaling and loop fusion achieve
energy savings of 12–43%, while simultaneously improving
run time by 2–34%. While it is certainly true that reductions
in frequency and voltage will save energy in almost any pro-
gram, the “bang for the buck” tends to be higher in a fused
program than it was in the original, because (as shown in
Table 2) the fused program’s power is higher. Please note
that, the bars in Figure 4 are not directly comparable to
the top two rows of Table 2: improvements in Figure 4 are
measured with respect to the globally synchronous proces-
sor, while those in Table 2 are measured with respect to the
MCD processor.

4.3. Breakdown of time and energy improvements

Using the methodology of Section 3.4, we can estimate
the extent to which fusion-induced reductions in run time
and energy can be attributed to reductions in instruction
count and to improvements in the effectiveness of caching,
branch prediction, pipeline utilization, and DVS. In some
cases, of course, the “reductions” or “improvements” may
be negative. In Tomcatv, for example, the fused program
executes more instructions than the original.

Figure 5 illustrates the breakdown of run time and en-
ergy improvements on a synchronous (non-DVS) proces-
sor. Total improvements are the same as the leftmost bars
in each group in Figure 4. Since all programs have regu-
lar loop structures, the branches are easy to predict before
and after loop fusion. We found ∆Tprediction and ∆Eprediction

to be essentially zero in all cases, so we have left them out
of the graphs. While reduction in instruction demand ac-
counts for about 50% of the run time savings in LK14 and
SP, it has almost no effect in LK18 and is negative in Tom-
catv. This is consistent with the fact that LK18 and Tomcatv
both have more instructions after fusion. Pipeline effective-
ness is the dominant factor in ADI and LK18, and is the
least important one in LK14 and SP. Swim is the only real
benchmark that does not benefit from pipeline effectiveness,
which is consistent with the fact that its IPC drops after fu-
sion in the execution with perfect caches and perfect branch
prediction. Better caching brings benefit to all the six real
benchmarks and particularly, it accounts for almost all the
run time savings in Swim. The Test program, as expected,
sees no change in run time due to fusion. Energy numbers
are similar though not identical, and the relative importance
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Figure 4. Effects on energy and performance from
fusion alone, from dynamic voltage scaling alone,
and from both together. The baseline for compar-
ison is the globally synchronous processor, with-
out inter-domain synchronization penalties.

of caching and pipeline effectiveness changes for several
applications.

Figure 6 illustrates the breakdown of energy improve-
ments on the MCD processor, where we have added a bar
to each application for ∆Edvs. In five of the six real bench-
marks, fusion reduces the effectiveness of DVS by elimi-
nating opportunities to slow down clock domains that are
off the critical path. As noted at the end of Section 3.4,
however, we have the opportunity on a machine with DVS
to save energy by slowing execution, and loop fusion en-
hances this opportunity by eliminating many of the cache
misses of the original program.

Figure 7 presents values of ∆Edvs for three different ex-
ecution models. The first bar in each group is the same as
in Figure 6: it represents the fused program running on an
MCD processor at frequencies and voltages chosen by the
off-line algorithm with a target slowdown of 2%. The sec-
ond bar represents the energy savings due to MCD scaling
when we slow execution just enough to “use up” the fusion-
induced savings in run time due to better pipeline packing.
The last bar shows the corresponding savings when we slow
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Figure 5. Breakdown of reduction in run time
(top) and energy (bottom) between original and
fused/balanced programs on synchronous proces-
sor.

execution enough to use up the benefits due both to better
pipeline packing and to better caching. More specifically,
for “dilated” and “double dilated” executions, we let

T f
d = T f

m + ∆Tpipeline

T f
dd = T f

d + ∆Tcaching

The definition of T f
d is based on the assumption that the

time spent waiting for cache misses is essentially unaf-
fected by MCD scaling. If we were to duplicate all of
Figure 6 for each of the time-dilated cases, the values of
∆Einst dem, ∆Ecaching, ∆Eprediction, and ∆Epipeline would re-
main unchanged; total energy savings would increase by the
same amount as ∆Edvs. For the six real benchmarks, ∆Edvs

ranges from −2–35% when we scale down processor fre-
quency to recoup the time saved by better pipeline packing.
It ranges from 7–40% when we also recoup the time saved
by better caching. Even in this extreme case, the fused ver-
sions of LK18 and Tomcatv run within 1% of the time of the
original program, and ADI, LK14, SP and Swim run from
3–17% faster. For Swim, there is less ∆Edvs savings in its
double-dilated execution than the dilated one. This is be-
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Figure 6. Breakdown of reduction in energy be-
tween original and fused/balanced programs with
MCD frequency/voltage scaling. DVS is less ef-
fective in the fused version of five out of six real
benchmarks.

cause its run time savings due to fusion-induced “better”
pipeline packing is negative, as shown in Figure 5.

5. Related work

Loop fusion. Many researchers have studied loop fusion.
Early work includes that of Wolfe [31] and of Allen and
Kennedy [2]. Combining loop fusion with distribution was
originally discussed by Allen et al [1]. Global loop fusion
was formulated as a graph problem by Allen et al. [1] for
parallelization, by Gao et al. [14] for register reuse, and
by Kennedy and McKinley [21] for locality and paralleliza-
tion. Loop fusion has been extended and evaluated in many
other studies that we do not have space to enumerate. Ding
and Kennedy used reuse-based fusion to fuse loops of dif-
ferent control structures [12]. Ng et al. enhanced reuse-
based loop fusion with locality-conscious procedural inlin-
ing and array contraction and implemented it in the Intel
Itanium compiler [24]. Pingali et al. generalized the idea
of loop fusion to computation regrouping and applied it
manually to a set of C programs commonly used in infor-
mation retrieval, computer animation, hardware verification
and scientific simulation [25]. Strout et al. developed sparse
tiling, which effectively fuses loops with indirect array ac-
cess [29]. Where these fusion studies were aimed at im-
proving performance on conventional machines, our work
is aimed at saving energy on DVS processors. As a result,
we fuse loops even when their data are disjoint.

Program balancing. Callahan et al. defined the concepts
of program and machine balance [7]. For single loop nests,
Carr and Kennedy used program transformations such as
scalar replacement and unroll-and-jam to change the pro-
gram balance to match the balance of resources available on
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Figure 7. Energy savings in loop-fused applica-
tion attributable to increased effectiveness of DVS,
with standard 2% MCD target slowdown (left), and
with additional slowdown sufficient to consume
∆Tpipeline (middle) and, optionally, ∆Tcaching as well
(right).

the machine [8]. So et al. used balance information to re-
strict the search to appropriate matches between hardware
design and loop optimization, consequently making hard-
ware and software co-design much faster [28]. Similar to
the work of So et al., we target adaptive hardware that has
no fixed machine balance. But unlike the work of So et
al. and all other previous work, we do not require separate
loop nests to have a particular balance; we only want them
to have the same balance.

Dynamic voltage and frequency scaling. Dynamic volt-
age and frequency scaling was studied by Burd and Broder-
sen [5]. Semeraro et al. designed a multiple clock do-
main (MCD) system to support fine-grained dynamic volt-
age scaling within a processor [27]. A similar design was
proposed by Iyer and Marculescu [18]. Various schemes
have been developed to control adaptive processors, includ-
ing compiler assisted methods by Hsu et al. [16], an on-line
method by Semeraro et al. [26], and methods using both
compiler and profiling analysis by Magklis et al. [23] and
by Hsu and Kremer [15].

Yao et al. [34] and Ishihara and Yasuura [17] studied
the optimal schedule for DVS processors in the context of
energy-efficient task scheduling. Both showed that it is
most energy efficient to use the lowest frequency that allows
an execution to finish before a given deadline. Ishihara also
showed that when only discrete frequencies are allowed, the
best schedule is to alternate between at most two frequen-
cies.

On a multi-domain DVS processor, optimal scheduling
is not possible if a program has varying demands for differ-
ent domains at different times. The theorem in our paper
shows that in this case, one needs to fully balance a pro-



gram to minimize its energy consumption. Li and Ding first
proved this theorem for DVS systems with continuous and
discrete operating frequencies [22]. This paper generalizes
the basic theorem for any power function P ∝ fk, where
f is frequency and k > 1. Ishihara and Yasuura assumed
a power function P ∝ v2, where v is the voltage. They
considered the circuit delay in their model. They demon-
strated the theorem with an example plot but did not show
the complete proof.

Energy-based compiler optimization. Loop fusion has
been long studied for improving locality and parallelism.
Both benefit energy because they reduce program demand
and improve resource utilization [20, 33]. The previous
energy studies used only traditional loop-fusion techniques
and did not observe a significant performance or energy im-
pact in real benchmarks. They did not consider the balanc-
ing effect of loop fusion nor DVS processors.

Compiler techniques have been studied for energy-
based code generation, instruction scheduling, and software
pipelining. In software pipelining, Yang et al. recently de-
fined balance to be the pair-wise power variation between
instructions [32], which is different from our concept of
overall variation. Most energy-specific transformations, in-
cluding that of Yang et al., are applied at the instruction
level for a single basic block or the innermost loop body and
are targeted toward a conventional processor. Our technique
transforms multiple loops at the source level and exploits a
unique opportunity made possible by DVS machines.

6. Summary

Loop fusion is an important optimization for scientific
applications. It has previously been studied as a means of
improving performance via reductions in dynamic instruc-
tion count and cache miss rate. In this paper we have recon-
sidered fusion from an energy point of view, and have ex-
plored its connection to the concept of program balance—
of smoothness in demand for processor and memory re-
sources.

By merging program phases, loop fusion tends to even
out fluctuations in the instruction mix, allowing the com-
piler and processor to do a better job of pipeline packing.
By moving uses of the same data closer together in time,
fusion also tends to reduce the total number of cache misses
and the cache miss rate. Improvements in pipeline pack-
ing and caching, in turn, tend to increase average processor
power, with the result that fusion tends to save more time
than it does energy on a conventional superscalar processor.
On a processor with dynamic voltage scaling (DVS), how-
ever, fusion increases opportunities to slow down the pro-
cessor in rate-based, soft real-time, memory-bound, or I/O-
bound computations, thereby saving extra energy. More-
over the energy savings per percentage of execution slow-

down is generally greater in the fused program than it would
be in the original, because the fused program’s power is
higher. As shown in theory in Section 2 and in practice in
Section 4.1, fusion can save energy even when it does not
save time: increases in program balance always save energy
on a DVS processor when time is held constant.

In a related contribution, we presented a methodology
in Section 3.4 that enables us to “tease apart” the various
factors that contribute to fusion-induced time and energy
savings, attributing them to changes in dynamic instruction
count and in the effectiveness of caching, branch prediction,
pipeline utilization, and DVS. This methodology could, we
believe, be used to understand the effect of a wide variety of
program transformations. Our current results confirm that
fusion tends to reduce the effectiveness of DVS when run
time is reduced to the maximum possible extent, but that
it introduces opportunities to save dramatic amounts of en-
ergy when some of the potential savings in run time is de-
voted to frequency reduction instead. For our six real-world
benchmarks, we demonstrated energy savings ranging from
7–40%, with run times no more than 1% slower—and as
much as 17% faster—than those of the original programs.
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