
Proceedings of the IASTED International Conference

Parallel and Distributed Computing and Systems
November 3-6, 1999 in Cambridge Massachusetts, USA

Bandwidth-Based Performance Tuning and Prediction

Chen Ding Ken Kennedy

{cding, ken}@cs.rice.edu
Computer Science Department

Rice University
Houston, TX

Abstract

As the speed gap widens between CPU and memory, mem-
ory hierarchy performance has become the bottleneck for
most applications. This is due in part to the difficulty of
fully utilizing the deep and complex memory hierarchies
found on most modern machines. In the past, various tools
on performance tuning and prediction have been developed
to improve machine utilization. However, these tools are
not effective in practice because they either do not consider
memory hierarchy or do so with expensive and machine-
specific program simulations. In this paper, we first demon-
strate that application performance is now primarily limited
by memory bandwidth. With this observation, we describe a
new approach based on estimating and monitoring memory
bandwidth consumption, which can achieve accurate and ef-
ficient performance tuning and prediction. When evaluated
on a 3000-linebenchmark program,NAS/SP, the bandwidth-
based method has enabled a user to obtain a speedup of
1.19 by inspecting and tuning only 5% of the source code.
Furthermore its compile-time prediction of overall execution
time was within 10% of the actual running time.

Key Words: memory bandwidth, performance tuning
prediction, compiler

1 Introduction

As modern single-chip processors improve the rate at which
they execute instructions, it has become increasingly the case
that the performance of applications depends on the perfor-
mance of the machine memory hierarchy. For some years,
there has been an intense focus in the compiler and archi-
tecture community on ameliorating the impact oflatencyon
performance. This work has led to extremely effective tech-
niques for reducing and tolerating memory latency, primar-
ily through loop-levelcache reuse and data prefetching.

As exposed memory latency is reduced, memory band-
width becomes the dominant constraint because the limited
memory bandwidth restricts the rate of data transfer between
memory and CPU regardless of the speed of processors or
the latency of memory access. Indeed, we found in an ear-

lier study that the bandwidth needed to achieve peak per-
formance levels on intensive scientific applications is up to
10 times greater than that provided by the memory system,
resulting in a serious memory bandwidth bottleneck[1].

At Rice University, we are developing a compiler strat-
egy for ameliorating the effect of memory-bandwidth bot-
tleneck. The first part is to minimize the overall amount of
memory transfer through automatic compiler enhancement
of global and dynamiccache reuse[1, 2, 3]. Although effec-
tive, automatic optimizations are not perfect both because
they may fail in some cases and because they do not esti-
mate program execution time, which is important for sub-
sequent task scheduling. To overcome these problems, this
paper presents the second part of this compiler strategy, a
bandwidth-based performance tool that assists user tuning
and provides performance prediction.

Since memory bandwidth has become the critical re-
source, program performance is largely determined by how
well memory bandwidth is utilized. This dependence sug-
gests that an accurate modeling of program performance can
be obtained by measuring memory bandwidth consumption.
On the one hand, when low performance is resulted from
low memory bandwidth utilization, a compiler can locate ill-
behaved program regions based on measuring memory band-
width consumption. Such automatic assistance can find for
a user performance problems that are not only hidden be-
hind immense program sources but are also often sensitive
to specific machines or compilers. On the other hand, when
bandwidth is fully or mostly utilized, a compiler can approx-
imate program running time by dividing the entire data size
of the application by the bandwidth of the machine. Such
static performance prediction enables balanced program par-
allelization and efficient run-time scheduling, without rely-
ing on extra hardware support or expensive simulations.

In this paper we present the design of a bandwidth-based
performance tool, along with an evaluation of its usefulness.
The core support is the compiler analysis that estimates the
amount of memory transfer of a program. Based on the same
design, the tool can model the bandwidth of all other levels
of memory hierarchy such as cache and register bandwidth.
Such a tool could be extremely useful in both uniprocessors
and parallel machines.

302-284 -1-



The rest of the paper is organized as follows. The next
section demonstrates memory bandwidth bottleneck on cur-
rent machines. The design of the bandwidth-based perfor-
mance tool is described in Section 3 and evaluated in Sec-
tion 4. Finally, Section 5 discusses related work and Section
6 concludes.

2 Memory Bandwidth Bottleneck

In an earlier study[1], we measured the fundamental bal-
ance between computation and data transfer and observed
a striking mismatch between the balance of applications and
those of modern machines. As a result, applications’ de-
mand on memory bandwidth far exceeds that provided by
the machines, leading to a serious performance bottleneck.

Both a program and a machine have a balance. The bal-
ance of a program (program balance) is the amount of data
transfer (including both memory reads and writebacks) that
the program needs for each computation operation; the bal-
ance of a machine (machine balance) is the amount of data
transfer that the machine can provide for each machine op-
eration. The comparison between a program balance and a
machine balance shows the relation between the resource de-
mand of the program and resource supply of the machine. In
the study reported in [1], we measured the balance of six rep-
resentative applications and compared them with the balance
of SGI Origin2000. Table 1 shows the ratios of demand over
supply for data bandwidth of all levels of memory hierarchy
including registers, two caches and main memory.

Applications Ratio: demand/supply
L1-Reg L2-L1 Mem-L2

convolution 1.6 1.3 6.5
dmxpy 2.1 2.1 10.5
mmjki (-O2) 6.0 2.1 7.4
FFT 2.1 0.8 3.4
NAS/SP 2.7 1.6 6.1
DOE/Sweep3D 3.8 2.3 9.8

Table 1: Ratios between bandwidth demand and supply

As the last column of Table 1 shows, programs require
memory bandwidth 3.4 to 10.5 times as much as that pro-
vided by Origin2000, making memory bandwidth the most
critical resource; The cache and register bandwidth is also
insufficient by factors up to 6.0, but the gap is not as large as
that of memory bandwidth.

Because of the limited memory bandwidth, other hard-
ware resources are under utilized on average. TakeNAS/SP
as an example, the ratios imply that the CPU utilization can
be no more than 16% on average; furthermore, the utiliza-
tion can be no more than 44% for register bandwidth and
26% for cache bandwidth.

In addition to measuring program and machine balance,
the study also compared the bandwidth constraint with the

constraint of memory latency. It found that the physical
memory latency is not a significant factor because current
latency-hiding techniques are effective enough for programs
to saturate the available memory bandwidth.

Memory bandwidth bottleneck happens on other ma-
chines as well. To fully utilize a processor of comparable
speed of Origin2000, a machine would require 3.4 to 10.5
times of the 300 MB/s memory bandwidth of Origin2000,
or to be exact, a machine needs 1.02 GB/s to 3.15GB/s of
memory bandwidth, far exceeding the memory bandwidth
on any current machines such as those from HP and Intel. As
the CPU speed rapidly increases, future systems will suffer
from a even worse balance and consequently a more serious
bottleneck on memory bandwidth.

3 Bandwidth-Based Tuning and Prediction

Since memory bandwidth has become the primary factor
limiting program performance, we can monitor and estimate
program performance based on its memory bandwidth con-
sumption. This section presents the design of a bandwidth-
based performance tool. It first describes the structure of the
tool and the analysis technique it employs. It then shows
how the tool is used to tune or predict program performance.

3.1 Performance Tool Structure

The bandwidth-based performance tool takes as input, a source
program along with its inputs and parameters for the target
machine. It first estimates the total amount of data transfer
between memory and cache. This figure can then be used
to either predict the performance of a given program com-
ponent without running the program or locate memory hier-
archy performance problems given the actual running time.
Figure 1 shows the structure of the tool, as well as its inputs
and outputs.

Data Analysis The core support of the tool is the data
analysis that estimates the total amount of data transfer be-
tween memory and cache. First, a compiler partitions the
program into a hierarchy of computation units. A compu-
tation unit is defined as a segment of the program that ac-
cesses data larger than cache. Given a loop structure, a com-
piler can automatically measure the bounds and stride of ar-
ray access through, for example, interprocedural bounded-
section analysis developed by Havlak and Kennedy[4]. The
bounded array sections is then used to calculate the total
amount of dataaccess and to determine whether the amount
is greater than the size of the cache. The additional amount
of memory transfer due to cache interferences can be ap-
proximated by the technique given by Ferrante et al[5]. Once
a program is partitioned into a hierarchy of computation units,
a bottom-up pass is needed to summarize the total amount of
memory access for each computation unit in the program hi-
erarchy until the root node—the whole program.

-2-



Application Runing
Time

Predict Performance

Estimate Total Amount of Data Transfer

Between Memory and Cache

Runtime Program
Input

Loop Counts
Data Sizes Source Program

Machine Parameters

Cache-line size
Cache size

Maximal available bandwidth

Optimizing Compiler
Program Restructuring Tools 

User Machine Scheduler

Performance Regions
Indentify Low

Figure 1: Structure of the Performance Tool

Since exact data analysis requires precise information
on the bounds of loops and coefficients of arrayaccess, the
analysis step needs to have run-time program input to make
the correct estimation, especially for programs with varying
input sizes. In certain cases, however, the number of itera-
tions is still unknown until the end of execution. An exam-
ple is an iterative refinement computation, whose termina-
tion point is determined by a convergence test at run time.
In these cases, the analysis can represent the total amount of
memory access as a symbolic formula with the number of
iterations as an unknown term. A compiler can still success-
fully identify the amount of dataaccess within each iteration
and provide performance tuning and prediction at the granu-
larity of one computation iteration.

Performance Tuning In bandwidth-based performance
tuning, a compiler searches for computation units that have
abnormally low memory bandwidth utilization for the user.
Because of memory bandwidth bottleneck, a low bandwidth
utilization implies a low utilization of all other hardware re-
sources, therefore signaling an opportunity for tuning. A
compiler can automatically identify all such tuning opportu-
nities in the following two steps.

1. The first step executes the program and collects the
running time of all its computation units. The achieved
memory bandwidth is calculated by dividing the data
transfer of each computation unit with its execution
time. The achieved memory bandwidth is then com-
pared with machine memory bandwidth to obtain the
bandwidth utilization.

2. Second, the tool singles out the computation units that
have low memory bandwidth utilization as candidates
for performance tuning. For each candidate, the tool
calculates the potential performance gain as the differ-
ence between the current execution time and the pre-
dicted execution time assuming full bandwidth utiliza-
tion. The tuning candidates are ordered by their poten-
tial performance gain and then presented to a user.

Bandwidth-based performance tuning requires no spe-
cial hardware support or software simulation. It is well-
suited for different machines and compilers because the use
of actual running time includes the effect of all levels of
compiler and hardware optimizations. Therefore, it is not
only automatic, but also accurate and widely applicable.

Bandwidth-based performance tuning does not neces-
sarily rely on compiler-directed data analysis when applied
on machines with hardware counters such as MIPS R10K
and Intel Pentium III. The hardware counters canaccurately
measure the number and the size of memory transfers. With
these counters, bandwidth-based tuning can be applied to
programs that are not amenable to static compiler analysis.
However, compiler analysis should be used whenever pos-
sible for three reasons. First, source-level analysis is neces-
sary to partition a program into computation units and help a
user to understand the performance at the source level. Sec-
ond, static analysis is moreaccurate for tuning because it
can identify the problem of excessive conflict misses, while
hardware counters cannot distinguishdifferent types of misses.
Third, the compiler-directed analysis is portable because it
can be applied to all machine architectures including those
with no hardware counters.

Performance Prediction When a program uses all or
most of machine memory bandwidth, its execution time can
be predicted by its estimated memory-transfer time, that is,
by dividing the total amount of memory transfer with the
available memory bandwidth. This bandwidth-based predic-
tion is simple, accurate and widely applicable to different
machines, applications and parallelization schemes.

The assumption that a program utilizes all available band-
width is not always true—some parts of the program may
have a low memory throughput even after performance tun-
ing. However, low memory throughput should happen very
infrequently and it should not seriously distort the overall
memory bandwidth utilization. The variations in the over-
all utilization should be small and should not introduce large
errors into performance prediction. Otherwise, the program
must have a performance bottleneck other than memory band-
width. Section?? discusses techniques for detecting other
resource bottlenecks such as loop recurrence or bandwidth
saturation between caches.

Integration with Compiler Since all data-analysis steps
are performed statically, the performance tool can be inte-
grated into the program compiler. In fact, an optimizing
compiler may already have these analyses built in. So in-
cluding this tool into the compiler is not only feasible but
also straight-forward. Although the tool requires additional
information about the run-time program inputs, the data anal-
ysis can proceed at compile time with symbolic program in-
puts and then re-evaluate the symbolic results before execu-
tion.

The integration of the tool into the compiler is not only

-3-



feasible but also profitable for both the tool and the compiler.
First, the tool should be aware of certain compiler transfor-
mations such as data-reuse optimizations because they may
change the actual amount of memory transfer. The most no-
table is the global transformations such as reuse-based loop
fusion[1] and global data regrouping[2], which can radically
change the structure of both the computation and data of
a program and can reduce the overall amount of memory
transfer by integral factors. The performance tool must know
these high-level transformations for it to obtain an accurate
estimate of memory transfer.

In addition to helping data analysis, the integration of
the tool helps the compiler to make better optimization de-
cisions. Since the tool has the additional knowledge on the
program inputs, it can supply this information into the com-
piler. The precise knowledge about run-time data and ma-
chine parameters is often necessary to certain compiler opti-
mizations such as cache blocking and array padding. There-
fore, the integration of the compiler and the performance
tool improves not only the accuracy of the performance tool
but also the effectiveness of the compiler.

3.2 Extensions to More Accurate Estimation

Although the latency of arithmetic operations on modern
machines is very small compared to the time of memory
transfer, it is still possible that computations in a loop re-
currence may involve so many operations that they become
the performance bottleneck. So the tool should identify such
cases with the computation-interlock analysis developed by
Callahan et al[6].

Excessive misses at other levels of memory hierarchy
can be more expensive than memory transfer. The exam-
ples are excessive register loads/stores, higher-level cache
misses, and TLB misses. To correctly detect these cases, the
performance tool needs to measure the resource consump-
tion on other levels of memory hierarchy. In fact, the tool
can extend its data analysis to measure the number of higher-
level cache misses and TLB misses, which are in fact special
cases of the existing data analysis.

On a machine with distributed memory modules, mem-
ory references may incur remote data access. When a re-
mote access is bandwidth limited, the tool can estimate its
access time with the same bandwidth-based method except
that it needs to consider the communication bandwidth in ad-
dition to memory bandwidth. The bandwidth-based method
also needs to model bandwidth contention either at a mem-
ory module or in the network. When a remoteaccess is not
bandwidth-constrained, we can train the performance esti-
mator to recognize cases of long memory latency using the
idea of training sets[7]. The bandwidth-based tuning tool
can automatically collect such cases from applications be-
cause they do not fully utilize bandwidth.

Coherence misses in parallel programs should also be
measured if they carry a significant cost. A compiler can
detect coherence misses, especially for compiler parallelized

Subroutines Achieved BW BW Utilization
computerhs 252MB/s 84%
x solve 266MB/s 89%
y solve 197MB/s 66%
z solve 262MB/s 87%
lhsx 321MB/s 107%1

lhsy 279MB/s 93%
lhsz 96MB/s 32%

Table 2: Memory bandwidth utilization ofSP

code[8].

3.3 Implementation Status

We are in the process of implementing the bandwidth-based
performance tool into a whole-program compiler. In addi-
tion to performance tuning and prediction, the compiler per-
forms global and dynamic computation and data transfor-
mations described in [1, 2, 3]. In fact, the partitioning of
computation units and the characterization of data access are
needed for both the compiler optimizations and the perfor-
mance tool. However, at the time of writing, the implemen-
tation of data analysis is not complete. Therefore, we have
to use hardware counters and manual analysis in the follow-
ing evaluation. Since the hardware counters can provide an
accurate estimation of data transfer, we use them whenever
possible. Furthermore, we manually simulate data analysis
in some representative parts of a program to verify the accu-
racy of compiler analysis.

4 Performance Tuning and Prediction on NAS/SP

This section evaluates bandwidth-based performance tuning
and prediction on a well-known benchmark application,SP
from NASA. It is a complete application with over 20 sub-
routines and 3000 lines of Fortran77 code. Since we did not
have an implementation of the tool, we analyzed the program
by hand and verified it with hardware counters on SGI Ori-
gin2000. Since the program consists of sequences of regular
loop nests, we partitioned it into mainly two levels of com-
putation units—loop nests and then subroutines. We used
the class-B input size and ran only three iterations to save
the experiment time.

4.1 Performance Tuning

To identify the tuning opportunities, we measured the band-
width utilization ofeach subroutine and each loop nest. In-
stead of using compiler analysis, we used hardware counters
to measure the total amount of memory transfer. Table 2 lists
the effective memory bandwidth of seven major subroutines,
which represents 95% of overall running time.

The last column of Table 2 shows that all subroutines
utilized 84% or higher memory bandwidth excepty solve

-4-



and lhsz. The low memory bandwidth utilization prompted
the need for user tuning. Subroutinelhszhad the largest po-
tential gain for performance tuning. The subroutinehas three
loop nests, all had normal bandwidth utilization except the
first one, which had an extremely low bandwidth utilization
of less than 11%. By simply looking at the loop, we found
that the problem was due to excessive TLB misses. By ap-
plying array expansion and loop permutation, we were able
to eliminate a large portion of the TLB misses and improve
the running time of the loop nest by a factor of 5 and the
overall execution time by over 15%.

We then applied tuning tocomputerhs. By examining
loop-level bandwidth utilization, we found two loops that
utilized 65% and 44% of memory bandwidth because of the
cache conflicts in L1. We distributed both loops and padded
one of the data arrays. The hand modifications improved
the two loops by 9% and 24% individually and overall run-
ning time by another 2.4%. With the tuning inlhszandcom-
pute rhs, the performance ofSP was improved from 45.1
MFlops/s to 55.5 MFlops/s, a speedup of 1.19.

Bandwidth-based tuning is more accurate in locating
performance problems than other tuning techniques because
it monitors the most critical resource—memory bandwidth.
For example, flop rates are not as effective. The flop rates of
the previously mentioned two loops incomputerhsare over
30 MFlop/s before tuning, which are not much lower than
other parts of the program. For example, all loops inlhsx
have a flop rate of under 18 MFlop/s. By comparing the flop
rates, a user may draw the wrong conclusion that the loops
in lhsxare better candidates for tuning. However, the loops
in lhsxcannot be improved because they already saturate the
available memory bandwidth. Their flop rates are low be-
cause they are data-copying loops with little computation.

The successful tuning ofSPshows that the automatic
tuning support is extremely effective for a user to correct
performance problems in large applications. Although there
were over 80 loop nests inSP, bandwidth-based tuning au-
tomatically located three loop nests for performance tuning.
As a result, we as programmers only needed to inspect these
three loops, and simple source-level changes improved over-
all performance by 19%. In other words, bandwidth-based
tuning tool allowed us to obtain 19% of overall improvement
by looking at and modifying less than 5% of the code.

4.2 Performance Prediction

Bandwidth-based performance prediction estimates program
performance with its memory-transfer time, that is, the total
amount of memory transfer divided by the memory band-
width of the machine. This section examines the accuracy
of this prediction technique on theSP benchmark. Since
the prediction requires accurate estimation of the amount
of memory transfer, we will first measure it with hardware
counters and then apply compiler analysis by hand to verify

1Pure data-copying loops withlittle computation can achieve a memory bandwidth
that is slightly higher than 300MB/s on SGI Origin2000.

the accuracy of the compiler-based estimation.

With the total amount of data transfer measured by the
hardware counters, we calculated the memory-transfer time
by dividing the amount of memory transfer by memory band-
width. Table 3 lists the actual running time, the predicted
time and the percent of error. The prediction is given both
with and without considering the effect of TLB misses in the
first loop of lhsz, discussed in the previous section. We list
two predictions, the first assumes full memory bandwidth
utilization for the whole program, and the other assumes an
average utilization of 90%.

The first row of Table 3 gives the estimation results for
one iteration of the computation without giving special con-
sideration to the extra overhead of TLB misses inlhsz. The
TLB overhead can be easily predicted by multiplying the
number of TLB misses with full memory latency (338ns ac-
cording to what is called restart latency in [9]), which adds
to a total of 7.1 seconds. The second row gives the perfor-
mance prediction including this TLB overhead. The third
row predicts performance for the program withoutlhsz(the
rest represents over 80% of the overall execution time).

The third and fifth column of Table 3 show the error
of prediction. When assuming full bandwidth utilization,
the prediction error is 26% for the whole computation with-
out considering the abnormal TLB overhead, 14% when the
TLB overhead is included, and 15% for the program with-
out lhsz. When we assume a utilization of 90%, the pre-
diction error is 18% when not considering TLB overhead,
5.6% when including the TLB cost, and 5.7% for computa-
tion without lhsz. These results show that, with the estima-
tion of the TLB cost and the assumption of 90% memory-
bandwidth utilization, bandwidth-based prediction is very
accurate, with an error of less that 6%. The similar errors
in the last two rows also suggest that our static estimation of
the TLB overhead is accurate.

In the above predictions, we measured the amount of
memory transfer through hardware counters. This was un-
desirable because we should predict program performance
without running the program. So the next question was how
accurate is the static estimation of a compiler. We hand ap-
plied the data analysis described in Section 3.1 to estimate
the amount of memory transfer. In fact, we only used the
bounded-section analysis, which counted only the number
of capacity misses in each loop nest. We did not expect to
see many conflict misses because the L2 cache on SGI Ori-
gin2000 is two-way set associative and 4MB in size.

We manually analyzed two subroutines:computerhs
andlhsx, which together consist of 40% of the total running
time. Subroutinecomputerhs had the largest code source
and the longest running time among all subroutines. It also
resembled the mixed access patterns in the whole program
because it iterated the cubic data structures through three di-
rections. The subroutinelhsx, however, accessed memory
contiguously in a single stride. The following table lists the
actual memory transfer measured by hardware counters, the
predicted memory transfer by the static analysis, and the er-

-5-



Computation Exe Pred. Time I Err. I Pred. Time II Err. II
Time Util=100% Util=90%

adi w/o TLB est. 59.0s 43.8s -26% 48.6s -18%
adi w TLB est. 59.0s 50.9s - 14% 55.7s - 5.6%
adi w/o lhsz 47.0s 40.0s - 15% 44.3s - 5.7%

Table 3: Actual and predicted execution time

Subroutine Actual Predicted Error
lhsx 396MB 406MB + 3%
computerhs 5308MB 5139MB - 3%

Table 4: Actual and predicted data transfer

ror of the static estimation.

The errors shown in the third column of Table 4 are
within 3%, indicating that the static estimation is indeed very
accurate. In other words, compiler analysis is very accurate
in estimating the total amount of data transfer between mem-
ory and cache. Assuming this accuracy holds for other parts
of SP, the bandwidth-based analysis tool could predict the
overall performance within an error of less than 10%, as-
suming 90% of average memory bandwidth utilization.

5 Related Work

Bandwidth-based performance tuning and prediction is dif-
ferent from previous techniques because of its focus on mem-
ory bandwidth consumption at the source level. Previous
techniques either do not consider the effect of memory hi-
erarchy or they use low-level performance models such as
program traces or machine simulators. Compared to these
techniques, the bandwidth-based method is simpler, more
accurate, and more widely applicable to different machines
and applications.

In the past, the modeling of memory hierarchy perfor-
mance relied on measuring memory latency through ma-
chine simulation. Callahan et al.[10] first used compiler-
based approach to analyze and visualize memory hierarchy
performance with a memory simulator. Another approach is
taken by Goldberg and Hennessy[11], who simulated pro-
gram execution and measured memory stall time by com-
paring actual running time with simulation result of running
the same program on a perfect memory. Machine simula-
tion is not always convenient because it is expensive when
measuring hardware events at high frequency or in great de-
tail. So it has to sacrifice either simulation accuracy or use
small program inputs. Simulation programs are architectural
dependent and therefore not easily portable across different
machines. Finally, simulation can not be used for predicting
memory hierarchy performance because they have to run the
program before collecting any performance data. Since most
simulation methods impose the machine-level view of pro-
grams, it is not clear how to relate the results back to the

program source and to the programmer.

Static or semi-static methods can be used to approxi-
mate run-time program behavior and thus predict program
performance. Gallivan et al.[12] documented the memory
performance of programs with different load/store patterns
and predicted memory performance by pattern-matching the
load/store structure of a program. Their work was on a vec-
tor machine with no cache-based memory hierarchy. To model
communication performance in data-parallel programs, Bala
et al. used training sets, which are a database for the cost
of various communication operations[7]. They did not con-
sider cache performance, although the idea of training can
be applied to cache, for example, to predict effective band-
width of memory access of different strides. Clements and
Quinn predicted cache performance by multiplying the num-
ber of cache-misses with memory latency[13]. Their method
is no longeraccurate on modern machines, where memory
accesses proceed in parallel with each other as well as with
CPU computations. Moreover, they did not extend their
work to support performance tuning.

Recently, researchers began to use bandwidth to mea-
sure machine memory performance. Examples are the STREAM
benchmark programs by McCalpin[14] and the CacheBench
programs by Mucci and London [15]. Both used simple
program kernels to measure the available memory or cache
bandwidth on machines. None of the previous work has ex-
plored the direction of tuning and predicting performance of
full applications based on their bandwidth consumption.

Another large class of work we do not directly compare
is the modeling of communication performance on message-
passing machines or communication/synchronizationcost on
share-memory systems. Our goal is different, which is to
predict computation cost on a uniprocessor. Since efficient
parallel programs have coarse-grained parallelism and infre-
quent communication and synchronization, accurately pre-
dicting their computation cost is critical in predicting their
overall performance. Furthermore, the bandwidth-based
method presented in this paper can be extended to estimate
communication performance on shared-memory machines,
where communication bandwidth is frequently saturated as
in the case of memory bandwidth.

6 Conclusions

This paper has presented the design of a compiler-directed
tool for performance tuning and prediction. The tool sup-

-6-



ports user tuning by automatically locating program frag-
ments with low memory hierarchy performance; it predicts
performance statically by approximating it with the amount
of memory-transfer time. Both methods are simple to imple-
ment but are very accurate and widely applicable to different
machines and applications. When evaluated on the 3000-
line NAS SPbenchmark, the tool enabled a user to obtain
an overall speedup of 1.19 by inspecting and tuning merely
5% of program source. It predicted the whole-program exe-
cution time at compile time to within 10% of the measured
execution time.

Bandwidth-based performance tuning and prediction
should be an integral part of any compiler strategy that seeks
to maximize memory hierarchy performance. It comple-
ments the automatic compiler optimizations by enabling effi-
cient manual tuning. It assists task or data parallelization by
providing accurate performance estimation. Since the tool
is part of an optimizing compiler, its estimation is accurate
because the tool considers the effect of compiler transforma-
tions, and furthermore, it helps the compiler to make better
optimization decisions.

References

[1] C. Ding and K. Kennedy. Memory bandwidth bottle-
neck and its amelioration by a compiler. Technical re-
port, Rice University, May 1999. Submitted for publi-
cation.

[2] C. Ding and K. Kennedy. Inter-array data regrouping.
In Proceedings of The 12th International Workshop on
Languages and Compilers for Parallel Computing, Au-
gust 1999.

[3] C. Ding and K. Kennedy. Improving cache perfor-
mance in dynamic applications through data and com-
putation reorganization at run time. InProceedings of
the SIGPLAN ’99 Conference on Programming Lan-
guage Design and Implementation, Atlanta, GA, May
1999.

[4] P. Havlak and K. Kennedy. An implementation of in-
terprocedural bounded regular section analysis.IEEE
Transactions on Parallel and Distributed Systems,
2(3):350–360, July 1991.

[5] J. Ferrante, V. Sarkar, and W. Thrash. On estimat-
ing and enhancing cache effectiveness. In U. Baner-
jee, D. Gelernter, A. Nicolau, and D. Padua, edi-
tors, Languages and Compilers for Parallel Comput-
ing, Fourth International Workshop, Santa Clara, CA,
August 1991. Springer-Verlag.

[6] D. Callahan, J. Cocke, and K. Kennedy. Estimat-
ing interlock and improving balance for pipelined ma-
chines.Journal of Parallel and Distributed Computing,
5(4):334–358, August 1988.

[7] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer.
A static performance estimator to guide data partition-
ing decisions. InProceedings of the Third ACM SIG-
PLAN Symposium on Principles and Practice of Paral-
lel Programming, Williamsburg, VA, April 1991.

[8] Nathaniel McIntosh. Compiler Support for Software
Prefetching. PhD thesis, Rice University, Houston, TX,
July 1997.

[9] Cristina Hristea and Daniel Lenoski. Measuring mem-
ory hierarchy performance of cache-coherent multipro-
cessors using micro benchmarks. InProceedings of
SC97: High Performance Networking and Computing,
1997.

[10] D. Callahan, K. Kennedy, and A. Porterfield. Ana-
lyzing and visualizing performance of memory hierar-
chies. InPerformance Instrumentation and Visualiza-
tion, pages 1–26. ACM Press, 1990.

[11] Aaron J. Goldberg and John L Hennessy. Mtool: An
Integrated System for Performance Debugging Shared
Memory Multiprocessor Applications.IEEE Transac-
tions on Parallel and Distributed Systems, 4(1), 1993.

[12] K. Gallivan, W. Jalby, A. Maloney, and H. Wijshoff.
Performance Prediction for Parallel Numerical Algo-
rithms. International Journal of High Speed Comput-
ing, 3(1), 1991.

[13] Mark J. Clement and Michael J. Quinn. Analytical Per-
formance Prediction on Multicomputers. InProceed-
ings of Supercomputing’93, November 1993.

[14] John D. McCalpin. Sustainable memory band-
width in current high performance computers.
http://reality.sgi.com/mccalpinasd/papers/bandwidth.ps,
1995.

[15] Philips J. Mucci and Kevin London. Thecachebench
report. Technical Report ut-cs-98-394, University of
Tennessee, 1998.

-7-


