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ABSTRACT
While the memory of most machines is organized as a hierarchy,
program data are laid out in a uniform address space. This paper
defines a model of reference affinity, which measures how close a
group of data are accessed together in a reference trace. It proves
that the model gives a hierarchical partition of program data. At the
top is the set of all data with the weakest affinity. At the bottom
is each data element with the strongest affinity. Based on the the-
oretical model, the paper presents k-distance analysis, a practical
test for the hierarchical affinity of source-level data. When used for
array regrouping and structure splitting, k-distance analysis con-
sistently outperforms data organizations given by the programmer,
compiler analysis, frequency profiling, statistical clustering, and all
other methods we have tried.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—optimization,
compilers

General Terms
Algorithms, Languages, Performance

Keywords
Program locality, program transformation, reference affinity, vol-
ume distance, reuse signature, array regrouping, structure splitting

1. INTRODUCTION
All current PCs and workstations use cache blocks of at least 64

bytes, making the utilization an important problem. If only one
word is useful in each cache block, a cache miss will not serve as
a prefetch for other useful data. Furthermore, the program would
waste up to 93% of memory transfer bandwidth and 93% of cache
space, causing even more memory access.
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To improve cache utilization we need to group related data into
the same cache block. The question is how to define the relation.
We believe that it should meet three requirements. First, it should
be solely based on how data are accessed. For example in an ac-
cess sequence “abab..ab”, a and b are related and should be put
in the same cache block, regardless how they are allocated and
whether they are linked by pointers. Second, the relation must
give a unique partition of data. Consider for example the access
sequence “abab..ab...bcbc..bc”. Since data a and c are not related,
b cannot relate to both of them because it cannot stay in two loca-
tions in memory. Finally, the relation should be a scale. Different
memory levels have blocks of increasing sizes, from a cache block
to a memory page. The grouping of “most related” data into the
smallest block should precede the grouping of “next related” data
into larger blocks. In summary, the relation should give a unique
and hierarchical organization of all program data.

In this paper, we define such a relation we call reference affinity,
which measures how close a group of data are accessed together in
an execution. Unlike most other program analysis, we measure the
“togetherness” using the LRU stack distance, defined as the amount
of data accessed between two memory references in an execution
trace [28]. As a notion of locality, stack distance is bounded, even
for long-running programs. The long stack distance often reveals
long-range data access patterns that may otherwise hide behind
complex control flows, indirect data access, or variations in cod-
ing and data allocation. We prove that the new definition gives a
unique partition of program data for each distance k. When we
decrease the value of k, the reference affinity gives a hierarchical
decomposition and finds data sub-groups with closer affinity, much
in the same way we sharpen the focus by reducing the radius of a
circle.

Two earlier studies defined a reuse signature as a histogram of
the reuse distance of all program data access [17, 36]. They showed
that the reuse signature has a consistent pattern across all data in-
puts even for complex programs or regular programs after complex
compiler optimizations. This suggests that we can analyze the refer-
ence affinity of the whole program by looking at its reuse signatures
from training runs.

We present k-distance analysis, which simplifies the require-
ments of reference affinity into a set of necessary conditions about
reuse signatures. The simplified conditions can then be checked
efficiently for large, complex programs. The parameter k has an
intuitive meaning—elements in the same group are almost always
used within a distance of k data elements. The analysis handles se-
quential programs with arbitrarily complex control flows, indirect
data access, and dynamic memory allocation. The analysis uses



multiple training runs to take into account the variation caused by
program inputs. In addition, we will use the analysis to find the
worst reference affinity and measure the range of the impact from
different data layouts.

Although reference affinity and k-distance analysis have strong
properties, they are not optimal. We will formulate the problems
in terms of partial and dynamic reference affinity and discuss their
complexity. Our analysis checks the necessary rather than the suf-
ficient conditions of reference affinity, so it may include data with
false affinity. We will show that the probability of error is small and
can be further reduced by strengthening the conditions.

The rest of the paper is organized as follows. Section 2 de-
fines the formal model of reference affinity and proves its proper-
ties. Section 3 presents k-distance analysis and a comparison with a
number of other methods. Section 4 describes the compiler support
for array regrouping and structure splitting. The last three sections
present the experimental evaluation, related work, and conclusions.

2. MODEL OF REFERENCE AFFINITY
This section first defines three preliminary concepts and gives

two examples of the reference affinity model. Then it presents the
formal definition and proves the properties including the unique and
hierarchical partition of program data.

An address trace or reference string is a sequence of accesses to
a set of data elements. If we assign a logical time to each access, the
address trace is a vector indexed by the logical time. We use letters
such as x, y, z to represent data elements, subscripted symbols such
as ax, a′

x to represent accesses to a particular data element x, and
the array index T [ax] to represent the logical time of the access ax

on a trace T .
The LRU stack distance between two accesses, ax and ay (T [ax]

< T [ay]), in a trace T is the number of distinct data elements ac-
cessed in times T [ax], T [ax] + 1, . . . , T [ay] − 1. We write it as
dis(ax, ay). If T [ax] > T [ay], we let dis(ax, ay) = dis(ay, ax).
If T [ax] = T [ay], dis(ax, ay) = 0. The distance is the volume
of data accessed between two points of a trace, so we also call it
the volume distance. In comparison, the time distance is the differ-
ence between the logical time of two accesses. For example, the
volume distance between the accesses to a and c in the trace abbbc

is 2, while the time distance is 4. The volume distance is Euclidean.
Given any three accesses in the time order, ax, ay , and az , we have
dis(ax, az) ≤ dis(ax, ay) + dis(ay, az), because the cardinality
of the union of two sets is no greater than the sum of the cardinality
of each set.

Based on the volume distance, we define a linked path in a trace.
It is parameterized by a distance bound k. There is a linked path
from ax to ay (x 6= y) if and only if there exist t accesses, ax1

,
ax2

, . . ., axt
, such that (1) dis(ax, ax1

) ≤ k∧ dis(ax1
, ax2

) ≤
k ∧ . . . ∧ dis(axt

, ay) ≤ k and (2) x1, x2, . . . , xt, x and y are
different data elements. In other words, a linked path is a sequence
of accesses to different data elements, and each link (between two
consecutive members of the sequence) has a volume distance no
greater than k. We call k the link length. We will later restrict
x1, x2, . . . , xt to be members of some set S. If so, we say that
there is a linked path from ax to ay with link length k for the set S.

We now explain reference affinity with two example address traces
in Figure 1. The “...” represents accesses to data other than w, x, y,
and z. In the first example, accesses to x, y, and z are in three sec-
tions. The three elements belong to the same affinity group because
they are always accessed together. The consistency is important for
data placement. For example, x and w are not always used together,

so putting them into the same cache block would waste cache space
when only one of the two is accessed. The example shows that
finding this consistency is not trivial. The accesses to the three data
elements appear in different orders, with a different frequency, and
mixed with accesses to other data. However, one property holds in
all three sections — the accesses to the three elements are connected
by a linked path with the link length 2.

xyz ... xwzzy ... yzvvvvvx ...

(1) The affinity group {x,y,z} with link length k = 2

wxwxuyzyz ... zyzyvwxwx ...

(2) The affinity group {w,x,y,z} at k=2 becomes 

      two groups {w,x} and {y,z} at k=1

Figure 1: Examples of reference affinity model and properties

As we will prove later, affinity groups are parameterized by the
link length k, and they form a partition of the program data for each
k. The second example in Figure 1 shows that this group partition
has a hierarchical structure. The affinity group with the link length
of 2 is {w, x, y, z}. If we reduce the link length to 1, the two new
groups will be {w, x} and {y, z}. The groups at a smaller link
length are subsets of the groups at a greater link length. The hier-
archical structure is useful in data placement because it can match
different-size affinity groups to a multi-level cache hierarchy.

We now present the formal definition of the reference affinity.

DEFINITION 1. Strict Reference Affinity. Given an address
trace, a set G of data elements is a strict affinity group (i.e. they
have the reference affinity) with the link length k if and only if

1. for any x ∈ G, all its accesses ax must have a linked path
from ax to some ay for each other member y ∈ G, that is,
there exist different elements x1, x2, . . . , xt ∈ G such that
dis(ax, ax1

) ≤ k∧dis(ax1
, ax2

) ≤ k∧. . .∧dis(axt
, ay) ≤

k

2. adding any other element to G will make Condition (1) im-
possible to hold

The following theorem proves that strict affinity groups are con-
sistent because they form a partition of program data. In other
words, each data element belongs to one and only one affinity group.

THEOREM 1. Given an address trace and a link length k, the
affinity groups defined by Definition 1 form a unique partition of
program data.

PROOF. We show that any element x of the program data be-
longs to one and only one affinity group at a link length k. For the
“one” part, observe that Condition (1) in Definition 1 holds trivially
when x is the only member of a group. Therefore any element must
belong to some affinity group.

We prove the “only-one” part by contradiction. Suppose x be-
longs to G1 and G2 (G1 6= G2). Then we can show that G3 =
G1 ∪ G2 satisfies Condition (1).

For any two elements y, z ∈ G3, if both belong to G1 and G2,
then Condition (1) holds. Without loss of generality, assume y ∈



G1 ∧ y 6∈ G2 and z ∈ G2 ∧ z 6∈ G1. Because y, x ∈ G1, any ay ,
must have a linked path to an ax, that is, there exist y1, . . . , yt ∈ G1

and an access ax such that dis(ay, ay1
) ≤ k∧ . . .∧dis(ayt

, ax) ≤
k. Similarly, there is a linked path for this ax to an az because
x, z ∈ G2, that is, there exist z1, . . . , zm ∈ G2 and an access az

such that dis(ax, az1
) ≤ k ∧ . . . ∧ dis(azm

, az) ≤ k.
If y1, . . . , yt 6∈ {z1, . . . , zm}, then there is a linked path from

ay to some az . Suppose y1, . . . , yi−1 6∈ {z1, . . . , zm} but yi =
zp. Then we have a linked path from ay to ayi

. Since yi =
zp ∈ G2, there is a linked path from yi to z, that is, there exist
z′

1, z
′

2, . . . , z
′

n ∈ G2 such that dis(ay, ay1
) ≤ k∧. . .∧ dis(ayi1

, ayi
)

≤ k ∧ dis(ayi
, az′

1
) ∧ . . . ∧ dis(a′

zn
, az) ≤ k. Now yi belongs to

G1 ∩ G2, just like x. We have come back to the same situation ex-
cept that the linked path from ay to ayi

is shorter than the path from
ay to ax. We repeat this process. If y1, . . . , yi−1 6∈ {z′

1, . . . , z
′

n},
then we have a linked path from ay to az . Otherwise, there must be
yj ∈ {z′

1, . . . , z
′

n} for some j < i. The process cannot repeat for-
ever because each step shortens the path from y to the access chosen
next by this process. It must terminate in a finite number of steps.
We then have a linked path from ay to az in G3. Therefore, Con-
dition (1) always holds for G3. Since G1, G2 ⊂ G3, they are not
the largest sets that satisfy Condition (1). Therefore, Condition (2)
does not hold for G1 or G2. A contradiction. Therefore, x belongs
to only one affinity group, and affinity groups form a partition.

For a fixed link length, the partition is unique. Suppose more
than one type of partition can result from Definition 1, then some
x belongs to G1 in one partition and G2 in another partition. As
we have just shown, this is not possible because G3 = G1 ∪ G2

satisfies Condition (1) and therefore neither G1 nor G2 is an affinity
group.

As we just proved, reference affinity is consistent because all
members will always be accessed together (i.e. linked by some
linked path with the link length k). The consistency means that
packing data in an affinity group will always improve cache utiliza-
tion. In addition, the group partition is unique because each data
element belongs to one and only one group for a fixed k.

Next we prove that the strict reference affinity has a hierarchical
structure — an affinity group with a shorter link length is a subset
of an affinity group with a greater link length.

THEOREM 2. Given an address trace and two distances k and
k′ (k < k′), the affinity groups at k form a finer partition of the
affinity groups at k′.

PROOF. We show that any affinity group at k is a subset of some
affinity group at k′. Let G be an affinity group at k and G′ be the
affinity group at k′ that overlaps with G (G ∩ G′ 6= ∅). Since
any x, y ∈ G are connected by a linked path with the link length
k, they are connected by a linked path with the larger link length
k′. According to the proof of Theorem 1, G ∪ G′ is an affinity
group at k′. G must be a subset of G′; otherwise G′ is not an
affinity group because it can be expanded while still guaranteeing
Condition (1).

Finally, we show that elements of the same affinity group are
always accessed together. When one element is accessed, all other
elements will be accessed within a bounded volume distance.

THEOREM 3. Given an address trace with an affinity group G

at the link length k, any time an element x of G is accessed at ax,
there exists a section of the trace that includes ax and at least one
access to all other members of G. The volume distance between the

two sides of the section is no greater than 2k|G| + 1, where |G| is
the number of elements in the affinity group.

PROOF. According to Definition 1, for any y in G, there is a
linked path from ax to some ay . Sort these accesses in time order.
Let aw be the earliest and av be the latest in the trace. There is a
linked path from aw to ax. Let the sequence be ax1

, ax2
, . . . , axt

.
The volume distance from aw to ax is dis(aw, ax). It is no greater
than dis(aw, ax1

) + dis(ax1
, ax2

) + . . . + dis(axt
, ax), which is

(t + 1)k ≤ |G|k. The bound of the volume distance from ax to av

is the same. Considering that av is included in the section, the total
volume distance is at most 2k|G| + 1.

The strict affinity requires that members of an affinity group be
always accessed together. Ding and Kennedy showed that it gives
the best data layout when no side effect (i.e. increased cache misses)
is allowed [14]. On most machines, it is still profitable to group
data that are almost always accessed together because the side effect
would not outweigh the benefit. For programs with different behav-
ior phases, it may be profitable to exploit reference affinity in each
phase and change data layout between phases. We call these exten-
sions the partial reference affinity and the dynamic reference affin-
ity. Ding and Kennedy showed that the optimal data layout in these
two cases is machine dependent and finding the optimal layout is
an NP-hard problem [14]. Next we present a method that measures
the “almost strict” reference affinity in complex programs. The link
length k will play a critical role as it did in this section.

3. WHOLE-PROGRAM AFFINITY
We now study the reference affinity among the source-level data.

We specifically target data arrays and instances of structure fields
because they account for major portions of global and heap data in
most programs. Since an array or a field represents a set of data, we
need to extend the affinity definition. The affinity exists among data
sets if the sets have the same number of elements, and one element
in one set has the reference affinity with one and only one element
in every other set. In particular, reference affinity exists for two
arrays, A and B, if the reference affinity exists for A[i] and B[i] for
all i. The affinity exists for structure fields, f1 and f2, if it exists
for o.f1 and o.f2 for all instance o. Next, we introduce the reuse
signature as the basis for whole-program affinity analysis. We then
present k-distance analysis and a comparison with other methods.

3.1 Reuse signature
The reuse signature of a set of data is the histogram of the reuse

distance of their accesses. Ding and Zhong showed that the whole-
program reuse signature exhibits a consistent pattern across data in-
puts for large, complex integer and floating-point benchmarks [17].
The result suggests that we can use the reuse signature from one
profiling run to infer the reuse signatures in other executions. There-
fore, reuse signature allows not just the whole-trace analysis but
also the whole-program analysis of reference affinity.

We illustrate the use of reuse signature through an example pro-
gram, Cheetah, a fully associative LRU cache simulator that is part
of the SimpleScalar 3.0 tool set. The main data structure is a splay
tree, and each tree node has a number of fields, of which we con-
cern three in this example. Based on a profile from a simple input,
we draw the accesses to the three fields on time-space graphs shown
in Figure 2. Each access is a point whose x-axis value is the log-
ical time (in memory references) and y-axis the memory address.
The similarity of the graphs suggests that the two fields rtwt (the
sub-tree weight) and lft (left-child pointer) have the reference affin-
ity because they seem to be always accessed together. The third



Figure 2: The time-space graphs of the accesses to the three tree-node fields

field, addr, is accessed only occasionally together with the other
two fields. A manual inspection of the splay-tree algorithm con-
firms these conjectures. The program uses the first two fields to-
gether for the tree rotation at every step of a tree search, while it
uses the third field only at the end of a tree search (the tree is in-
dexed by time not the address).

Figure 3 shows the reuse signature of the three fields. Each is a
histogram of the reuse distance for all accesses to a structure field.
The reuse distance of an access is the volume distance between this
and the previous access to the same data element. The x-axis is a
sequence of bins representing different ranges of a reuse distance.
The bins may be of the same size (linear scale), exponential size
(log scale as in this example), or their combinations. The y-axis
gives the number of memory accesses whose reuse distance falls
into each bin. The figure shows reuse signatures for reuse distances
greater than 1024. The short-distance reuses (that are not shown)
account for about 70% of accesses to addr and over 85% to lft and
rtwt.
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Figure 3: The reuse signatures of the three tree-node fields

We now compare the reuse signature of rtwt and lft. The latter has
more reuses at the first bin because it is repeatedly accessed during
initialization. However, the additional reuses have a short distance
and do not affect reference affinity. The number of reuses in the
second and third bins also differ. This is because many reuses with
a distance close to 4K are separated by the arbitrary bin boundary.
The total number of reuses with a distance more than 2K is very
similar. In the last two (larger) bins, rtwt and lft have the same
number of accesses, but the number is different for addr.

We use the reuse signature for affinity analysis as follows. We
treat reuse signatures as vectors, remove the first few elements
(reuse distances shorter than 2048), and find affinity groups by com-
paring the reuse signatures. The comparison method is key to the

affinity analysis, as described next. Reuse signatures are measured
through profiling, so a remaining question is whether other inputs
to Cheetah have the same affinity. As a cache simulator, the ac-
cess pattern in Cheetah depends on the input. After checking a few
other inputs, we found that the consistency remains: the time-space
graph and the upper portion of the reuse signature remain similar
between rtwt and lft but different from addr. In fact, we can con-
sider multiple training runs by combining their reuse signatures and
therefore rule out false affinity relations that appear in one input but
not others. As shown by this example, we may identify similar
access patterns even if they are hidden behind branches, recursive
functions, and pointer indirections.

We have converted the problem from checking reference affinity
in a trace, to checking patterns in time-space graphs, and finally
to checking the similarity of reuse signatures. The compression of
the information is dramatic: from billions of memory accesses and
trillions of time-space points to vectors of logM elements, where
M is the size of program data (the maximal volume distance). Next
we inject rigor into the use of the reuse signature by formulating it
in terms of the necessary conditions of the reference affinity.

3.2 K-distance analysis
To measure the reference affinity, we check a necessary but not

sufficient condition on the reuse signature. We first derive the nec-
essary condition for two data elements, then extend it to two or
more data sets, and discuss the improvements to the condition. K-
distance analysis checks an improved version of the necessary con-
dition. The derivation of the necessary condition is complex. The
following description is terse for lack of space. A reader may skip
to Equation 1 for the formula used by the k-distance analysis.

As a basic case, let an affinity group have two elements, x and y,
always accessed within a link length k. For any access a to one of
the two elements, there must be an access a′ to the other element,
within the volume distance k. We call the smallest section of the
trace that contains a and a′ an affinity window. We merge two
windows by taking their union whenever they overlap in time, so
the resulting windows are disjoint. By now all accesses to x and
y are within one of the windows. We further divide these accesses
into two groups. An access is a local reuse if the previous access
is inside the same window. Otherwise, it is a remote reuse. We
visualize a reuse distance by an edge connecting the two accesses
in the trace. The edges are either local (inside a window) or remote
(between two closest windows).

We can now pick the threshold for removing the short reuse dis-
tances. For reasons we do not elaborate, the necessary condition
would be too weak to be useful if we are not careful in setting the
threshold. The threshold must be such that after the removal, the



ending points of the remaining long distances (accesses to x and y)
still have the reference affinity among themselves. The threshold,
h, must meet two conditions. It must be no less than 2k, so that
we remove all local edges. In addition, no reuse distance should
be close to h. To be exact, for an integer range w that is at least
2k in size and contains h inside the range, we require that no reuse
distance be within the range. The second condition ensures that the
remote edges between two windows are either both below h or both
over h. Then the ending points of the remaining reuse distances
have the reference affinity among themselves. Since the threshold
should be lower than the length of long reuse distances, the range
w may not always exist. However, as Ding and Zhong observed in
most programs they tested, a reuse distance either stays constant or
lengthens as the program input size increases [17]. In these pro-
grams, we can always find the range by using a large enough input
in the analysis.

After removing short reuse distances, x and y have the same
number of remaining long reuse distances. They are paired. If there
is a long reuse distance of one element between two windows, there
is a long reuse distance of the other element between the same two
windows. The maximal length difference between each pair is 2k.
We do not include the proof, but the key observation in the proof
is as follows. The ending point of a long reuse distance is the first
access of the element in the window, while the starting point of the
long distance is the last access of the element in the preceding win-
dow. Since the maximal difference between each pair is 2k, a nec-
essary condition for the reference affinity relation between x and y

is that after removing short reuse distances, the average length of
their long reuse distances is no more than 2k.

For two sets of data, X and Y , to have the reference affinity,
the necessary condition holds between the affinity pairs. Therefore,
a necessary condition is that the average length of the long reuse
distances from the two sets differ by no more than 2k. In addition,
we use a similar process to find the necessary condition for affinity
groups of more than two elements. The average distance between
any two elements in a g-element group is at most 2gk. The same
condition holds for affinity groups of g data sets.

The condition is necessary, as shown by the derivation. It is not
sufficient. Using the case of two-element groups again, the bound
2k is for the worst case. In the best case, the difference between
the average reuse distance is 0. An improvement is to check for
the middle point, the bound of k. Another source of inaccuracy is
that we do not check the reuse distance of each access but only the
average distance calculated from the total distance. It is possible
that the total distance is the same but individual reuses differ by
more than k in distance. An improvement is to check the sum of
each sub-set of memory accesses instead of the set of all accesses.
The difficulty is to partition in the same way for accesses of the
two data sets. We use the bins of the reuse signature and check the
condition in each bin separately. Considering partition variations at
the bin boundaries (as shown by the example in Figure 3), we apply
the necessary condition to the sum of the average of all bins rather
than the average of each bin. The improved condition is as follows.

Let the reuse signature have B bins after removing short-distance
bins. Let X and Y be the two sets of data, and AvgX

i and AvgY
i

be the average reuse distance of the two data sets in the ith bin.

d =

B∑

i=1

|Avg
X
i − Avg

Y
i | ≤ k · B (1)

The equation ensures that the average reuse distance per bin differs
by no more than k. The left-hand side of the inequality is the dif-

ference between X and Y known as the Manhattan distance of the
two vectors. For two-dimensional vectors, it is the driving distance
of a taxi going from one place to another in downtown New York
City (no relation to the driving time, however).

In addition, a reuse distance does not include the exact time of
the data access. It is possible that two elements are accessed in
the same reuse distance, but one in the first half of the execution,
and the other in the second half. An improvement is to divide the
execution trace into sub-parts and check the condition for each part.

The maximal difference between any two members of a g-element
affinity group is no more than 2gk. The condition is recursive be-
cause knowing group members requires knowing the group size
first. The recursive equation can be solved iteratively. For each
data set X , we find all other sets whose average distance differs
no more than bk and let b range from 1 to 2g. The solution is the
largest b such that exactly b− 1 data sets satisfy the condition. The
process must terminate with the correct result.

In practice, we use a stricter condition to build a group incremen-
tally. Initially each data set is a group. Then we traverse the groups
and merge two groups if a member in one group and another mem-
ber in the other group satisfy Equation 1. The process terminates if
no more groups can be merged. We need to calculate the distance
difference between any two data sets in O(g2) time. The iterative
solutions takes at most O(g2). The incremental solution takes lin-
ear time if implemented using a work-list.

rtwt inum rt
0

55

k

19

693

69

lftaddr

Figure 4: Dendrogram from k-distance analysis for the five tree
node fields in Cheetah

The reference affinity forms a hierarchy for different k values.
Figure 4 shows the hierarchy in a dendrogram. The reference affin-
ity between lft and rtwt is strongest—their accesses are within a
distance of 19 data elements. Other two fields, inum and rt, are
used together within a distance of 55. These two groups are reused
within k = 69. The last field, addr, has the least reference affinity,
not accessed with other fields within hundreds of data.

3.3 Comparison with other methods
This section discusses other locality analysis and shows the three

unique features of the k-distance analysis—the use of affinity groups,
the comparison based on reuse signatures, and the use of the con-
stant bound k. An experimental comparison follows in Section 5.

3.3.1 Compiler analysis
For programs written in regular loops and array access, a com-

piler can determine the exact access pattern and the best compu-
tation and data organization. However, for programs with com-
plex control flows and indirect data access, a compiler must make
conservative assumptions to ensure the benefit of a transformation.
While profiling analysis is more generally applicable, results from



one profile may not reflect the access pattern in other executions.
K-distance analysis alleviates this problem by relying on long reuse
distances and the reuse signature, which often have consistent pat-
terns across data inputs. In addition, the analysis considers the ac-
cess pattern in multiple inputs (by merging reuse signatures) and
further reduces the chance of a false positive. The negative con-
clusion from the analysis, i.e. two data do not have close reference
affinity, is always true for the program as a whole: an execution
violates the necessary condition in some program path.

3.3.2 Frequency profiling
Often in programs some data are more frequently used than oth-

ers. Grouping the high frequency data often reduces the working set
of a program. However, a question remains on how to place data
that have the same access frequency, including the (larger) infre-
quently accessed data. Frequency is not the same as affinity. Data
having the same frequency may not be accessed together at all. In
comparison, the reference affinity gives a data partition based on
the pattern of data reuse. It is important to measure distance by
volume not time. An execution may nibble small data bits or de-
vour huge data sets in the same amount of time. Reuse signature
allows us to remove short-distance reuses as noises, regardless of
their frequency or time distance.

An extension to frequency is the pair-wise affinity—the frequency
that a pair of data are used together. The pair-wise affinity forms
a complete graph where each datum is a node and the pair-wise
frequency is the edge weight. However, the reference affinity is
not transitive in a (pair-wise) graph. Consider the access sequence
abab..ab ... bcbc..bc: the pair-wise affinity exists for a and b, for b

and c, but not for a and c. Hence the pair-wise affinity is indeed
pair wise and cannot guarantee the affinity relation for data groups
with more than two elements. Furthermore, the criterion for two
data “accessed together” is based on preselected “cut-off” radii. In
comparison, k-distance analysis defines affinity in data groups and
measures the “togetherness” with a scale—the data volume between
accesses.

3.3.3 Statistical clustering
Since the reuse signature is a vector, a natural impulse is to apply

the sophisticated and readily available clustering techniques based
on the well-grounded multivariate statistical theory. First proposed
by MacQueen in 1967, k-means groups high-dimensional vectors
by minimizing the within-group sum of distances to the group cen-
troid [27]. It iteratively regroups points until a local minimum is
reached [21]. It requires k, the number of groups, be part of the
input. Affinity analysis, however, cannot pre-determine the number
of affinity groups. An extension, x-means, finds the best k using the
Bayesian Information Criterion (BIC). It compares different groups
formed for different k’s and chooses the one with the highest prob-
ability [32].

In our earlier study, k-means and x-means proposed many can-
didates, and a few showed good improvements [42]. However, we
could not explain the results in any sensible way because little con-
sistency existed between the best grouping of t clusters, t + 1, and
t − 1 clusters. To us, the groups seemed to come out randomly,
likely because we could not penetrate the two complex algorithms,
each of which has a number of tunable parameters. For the same
number of clusters, k-means produced entirely different groups than
x-means did. The primary problem, as we learned, is that statistical
clustering uses relative closeness. The grouping of any two points is
determined, not by their position but by the position of other points.
Figure 5 shows two vector spaces each containing three points. The

points X and Y have a fixed position, but their grouping completely
depends on the position of the third point Z. We can and we did al-
leviate the problem by introducing anchor points into the space, but
we also realized that the right measure is the absolute closeness,
not the relative closeness. For example, the benefit of grouping two
data should be determined by how they are accessed, not by other
data, which may not even be used at all in the same part of the exe-
cution. By using the absolute closeness, we simplified the problem
and (happily) retired the somewhat unwieldy statistical tools.

X

Y Z

X

Z

Y

Figure 5: An example of statistical clustering. The points X and
Y have a fixed position, but their grouping completely depends
on the position of the third point Z.

3.3.4 K%-distance
K%-distance groups two reuse signatures X and Y (of length B)

if the difference p, shown below, is less than k%. The difference in
each bin, |xi − yi|, can be in the number of reuses, the sum of the
reuse distance, or a combination of the two.

p<X,Y > =

∑B

i=1 |xi − yi|∑B

i=1 xi +
∑B

i=1 yi

× 100%

K%-distance is an improvement over statistical clustering. It mea-
sures the absolute closeness between reuse signatures. Compared to
x-means or k-means, the result is tangible—the difference in each
group is no more than k%. The partitions are hierarchical. The
groups resulted from a lower k must be a finer partition of those
from a higher k.

Despite being intuitive and hierarchical, k%-distance analysis
has a problem. It does not really measure the absolute closeness.
For example, 1% of one thousand is much smaller than 1% of one
million. While the first case indicates close access, the latter does
not, at least not to the same degree. We need a measure that is not
relative to the length of reuse distances, the length of the execution,
or the size of program data. The answer, as it turned out, is in our
definition of the reference affinity: the link length k. It is a constant.

We describe k%-distance analysis as it was in our study—a half-
way solution. By comparing k-distance and k%-distance, we show
the importance of the constant bound, which plays the central role
in both the affinity definition and the affinity testing. This connec-
tion is the most important discovery from this work. It unites the
theory and the use of reference affinity.

4. DATA REORGANIZATION
Programs often have a large number of homogeneous data ob-

jects such as molecules in a simulated space or nodes in a search
tree. Each object has a set of attributes. In Fortran 77 programs, at-
tributes of an object are stored separately in arrays. In C programs,
the attributes are stored together in a structure. Neither scheme is
sensitive to the access pattern of a program. A better way is to group



attributes based on their reference affinity. For arrays, the transfor-
mation is array regrouping [14, 15]. For structures, it is structure
splitting [9, 8, 34]. This section describes the two transformations
and their compiler support.

4.1 Array regrouping
Figure 6 shows an example. Initially the three coordinates of M

molecules are stored in three arrays X , Y , and Z. They can be
grouped into a single array whose first dimension has 3 elements,
equivalent to an array of M structures. Fortran 90 and C allows
grouping arrays of different types by using structures. Ding and
Kennedy showed that array regrouping can be automatically ap-
plied in Fortran programs by a compiler [15]. We use the same
compiler support in this work.

real*8 X(M), Y(M), Z(M)

(a) before grouping

real*8 XYZ(3,M)

(b) after grouping

Figure 6: Array regrouping example in Fortran 77

4.2 Structure splitting
To reduce the programming effort and ensure the correctness of

the transformed programs, we have built a compiler that handles
static type-safe C programs. The compiler support is just enough to
evaluate reference affinity in experiments. It is not our purpose in
this paper to develop a general technique for structure splitting or
to argue that a general solution exists.

In static type-safe C programs, a compiler knows the type of ev-
ery memory access. Given a program and a structure type targeted
for splitting (we call it a split type), the compiler changes the allo-
cation and the access of all objects of the split type (we call them
split objects). It first pre-allocates space in field arrays. A split ob-
ject is allocated from available entries in field arrays. A split object
is no longer identified by a pointer but by an index. Figure 7 shows
an example where the three fields of a structure type in Part (a) are
split into two groups. Two field arrays are pre-allocated in Part (b)
as arrays of structures. The pointers to a split object are changed to
integer indices in the new program.

struct N {
int val;
struct N* left;
struct N* right;

};

(a) before splitting

struct N fragm0 {
int val;
unsigned int left;

};
struct N fragm1 {

unsigned int right;
};
struct N fragm0 f0 store[RESERVED];
struct N fragm1 f1 store[RESERVED];

(b) after splitting

Figure 7: Structure splitting example in C

As object pointers become array indices, object access becomes
array access (and structure access if the array contains multiple
fields). Through type analysis, the compiler knows all the places
where a split object is accessed and makes conversion in those and

only those places. Taking the pointer of a field in a split object is
allowed, which returns a pointer to an element in a field array.

Three problems immediately arise with this scheme. First, a split
object can be local to a function and should not permanently stay
in field arrays. The compiler solves this problem by managing the
upper-end of the field array as a stack and inserting allocation and
free calls at the entry and the exit of the function. A field array is
then shared by global and stack allocated objects in the same way
as virtual memory is shared by heap and stack data, except that we
manage a set of stacks for each split type.

The second problem happens when a split object is nested as a
child inside a parent object. Three cases may happen. When the
parent is split but the child is not, we support it by not splitting
inside a field if it is a structure. When the parent and the child both
split, we convert the child field into a pointer, which points to an
independent object allocated when the parent object is allocated.
We do not support the third case when the child is split but the
parent is not.

Another major problem is the size of pre-allocation. The con-
version of pointers to indices actually enables a solution through
dynamic re-allocation. During an execution when the pre-allocated
space is full, an allocator doubles the field arrays by allocating twice
the space, copying the old array to the new space, changing the base
of the field arrays, and reclaiming the space from the old array. The
object access is unimpeded after the re-allocation. To support the
array re-allocation, the compiler can no longer let pointers be taken
from a field of a split object. In our test programs, pre-allocation
is not an obstacle because the programmer specifies a bounded size
for the main data structure, as done in all performance-critical pro-
grams. For example, Cheetah sets the maximal size of the splay
tree by a compile-time constant. None of our programs needs re-
allocation at run time. We note that our scheme ignores a host of
issues such as union types, non-local jumps, exceptions, and con-
currency because they do not arise in our test programs.

One type of splitting is no splitting, where the compiler does not
change the layout of object fields, but it converts split objects from
the pointer form to the array form. In the evaluation section, we
will measure the effect of reference affinity using the array allo-
cated version as the base case. We will also compare the (faster)
performance of array version with that of the pointer version.

Chilimbi et al. first used structure splitting to improve data local-
ity [9]. For type safe programs, they split an object into two parts,
one storing frequently accessed fields and the other storing the rest.
A pointer is inserted into the first part to link to the second part.
Rabbah and Palem split structured data in C programs by allocating
objects in large chunks where structure fields were stored in sep-
arate arrays [34]. Their method uses the address of the first field
to identify the object and calculates the address of other fields at
run time. It uses point-to analysis and dynamic checks to ensure
correctness. It avoids the space and time cost of additional pointers
as in the method of Chilimbi et al., but run-time (access) checks
are needed for correctness even for static type-safe programs. In
comparison, our array allocation relies on static type safety not run-
time checking. It does not support as many types of programs or as
efficient dynamic allocation as the other two methods do, but our
method incurs least overhead when accessing the transformed data.

Previous work did not explore all choices of structure splitting.
Chilimbi split structure fields into at most two parts [9]. Rabbah and
Palem split structure fields completely [34]. Our compiler permits
arbitrary structure splitting, which is needed for using and evaluat-
ing reference affinity.



5. EVALUATION
This section evaluates k-distance analysis and compares it with

the alternative data layouts given by the programmer and four other
methods described in Section 3.3.

5.1 Methodology

Test programs. Table 1 lists a set of 9 programs. The first four are
array-based programs, including two from Spec95 suite and two
dynamic programs originally from the Chaos group [12] for un-
structured mesh and N-body simulation. The rest five programs use
different tree structures including a splay tree for cache simulation,
a quad-tree for image processing, and binary search trees for sort-
ing and various other purposes. The cache simulator is part of the
SimpleScalar tool set. The other four programs come from Olden
benchmark set. We use different inputs for training and testing, as
listed in the table. For a fair comparison, we only use one training
input for each benchmark, despite that k-distance analysis can use
multiple training runs.

We do not test more programs in part because our current com-
piler cannot safely split structures in all Olden programs, but also
because the current set is statistically significant. All programs have
at least 3 fields or arrays, five have 7 or more, and one program,
Swim, has 14 arrays. A program with n arrays or structure fields
has an exponential number (at least 2n−2 and

∑n

i=0 i(n−i) to be
exact) of possible data layouts. The possible layouts is 4 for n = 3,
210 for n = 7, and over 6 million for n = 14. Therefore, the prob-
ability for a single method to consistently pick the best layout for
all programs among all tested choices and on all tested machines is
effectively zero, unless the method is indeed the best.

Platforms. The experiments use two machines, a 1.3GHz IBM
Power4 processor with the AIX compiler, and a 2GHz Intel Pen-
tium IV processor with the Linux gcc compiler. All testing pro-
grams are compiled at the optimization level -O5 -qstrict with AIX
and -O3 with Linux gcc respectively. The time is for complete ex-
ecutions on unloaded processors. We take the shortest time in 5
runs. The programs run 10% to 60% faster on IBM than on PC
due to a faster processor and a better compiler. The only excep-
tion is TSP, which runs twice slower on IBM possibly because of
the highly frequent floating-point square-root operations (used by
TSP to calculate the Euclidean distance). We also tested the pro-
grams on a 250 MHz MIPS R10K processor on SGI Origin2000
using the MIPSpro compiler and a 336 MHz UltraSparc processor
using the Sun compiler at the highest optimization level. The qual-
itative results are similar. The best layout on IBM is also the best
on SGI or Sun. The programs run up to five times slower on SGI
and many more times slower on Sun. The improvement is less dra-
matic because the memory problem is less severe on the two slower
processors. We do not report SGI and Sun results for lack of space.

Tools. We use the source-level instrumentation and a run-time mon-
itor to profile accesses for individual arrays and structure fields [16,
40]. They are accurate and efficient. For example in one execution
of Cheetah, the monitor tracks the distinct access to 1.2 million
data elements using a hashtable of less than 18 thousand entries.
We use a 99%-accurate analyzer for reuse-distance analysis [17]. It
measures reuse distance in long traces in effectively linear time and
guarantees that the measured distance is between 99% and 100% of
the actual distance. The two tools give the reuse signature for each
array and structure field. The k-means and x-means tools come

from Pelleg and Moore [32]. Compiler-based array regrouping is
due to Ding and Kennedy [13, 15]. We implement k-distance, k%-
distance, and frequency methods in MATLAB and array regrouping
and structure splitting in our compilers as described in Section 4.

Analysis Time. The trace and affinity analysis takes a time pro-
portional to the length of the execution and the number of data el-
ements to be clustered. The profiling is more time consuming than
the clustering. For all the tested programs, the profiling time is less
than ten minutes. The k-distance analysis on reuse signatures takes
less than one second.

5.2 Performance Comparison
We compare nine methods. The results are shown in Table 2 for

the PC and Table 3 for the IBM machine. All execution times are
in seconds. The last row is the arithmetic mean of the speedup.
The first is the original layout coded by the programmer. The next
two are k-distance for k = 256 and 64, followed by two k%-
distance methods for 1% and 0.1%. Then it is x-means. We do
not include k-means because it cannot pre-determine the number of
affinity groups. The seventh method uses the access frequency to
divide data into groups. It clusters the smallest set that accounts for
at least 50% of all accesses into one group and stores the others in
single arrays. The eighth method uses the compiler implementation
from Ding and Kennedy [13, 15]. An interesting use of k-distance
analysis is to find the worst data layout by reversing the reference
affinity. It has no practical use other than showing the range of
the effect from the data layout. The last column gives the execution
time of data layout obtained by this reverse k-distance(RK) method.
With the parameter 2048, it groups data whose average reuse dis-
tance is greater than 2K. For all methods, the same data layout is
tested on both machines.

The k-distance method for k = 256 should be the best method.
It groups data that are almost always used within one to two kilo-
bytes of data access, which fits comfortably in the L1 cache of all
machines we use. For large cache, k should be greater. We stick
to a single value because all other methods use a single parameter.
Indeed, the analysis picks the best data layout for all programs on
the two machines. Swim has 14 arrays and over 6 million possi-
ble choices, the analysis singles out a layout, which outperforms all
others by a wide margin. The affinity hierarchy of Swim is a very
impressive, large tree, as shown by Figure 8. On the PC, the layout
from k-distance is 4% faster than the fastest alternative layout and
38% faster than the original layout. The improvement is smaller on
IBM, 8% faster than the original. The margin is indisputable—no
other known layout on both machines comes within 90% perfor-
mance of this seemingly singular choice by the analysis.

For other programs, 256-distance improves Tomcatv and Perime-
ter by 25% and TSP by 20% on the PC. The average improvement
is 12% on the PC and 4.5% on IBM. The improvement is more
significant for programs that have many arrays or fields. The anal-
ysis does not blindly transform a program. The structure in Bisort
given by the programmer has the best performance. The analysis
recommends no change.

256-distance analysis runs slower in five places, TreeAdd against
the original on the PC, Tomcatv against x-means on IBM, Perimeter
against 64-distance and Moldyn against x-means and the reverse k-
distance on the PC. However, the loss is extremely small (no more
than 1% or 0.004 seconds) and happens on only one machine. For
TreeAdd against the original, it loses by 0.7% on the PC but wins
by 13% on IBM. Except for them, 256-distance always picks the



Table 1: Benchmark characteristics

Benchmark Source Description Main data structure Training input Testing input
Swim Spec95 shallow water equation 14 real arrays test(1282) ref(5122)

Tomcatv Spec95 vectorized mesh generation 9 real arrays test(5132) ref(5132)
Mesh Chaos Group mesh structure simulation 7 float arrays 10k 10k

MolDyn Chaos Group molecular dynamics simulation 3 double arrays 13500 molecules 62500 molecules

Cheetah SimpleScalar fully associative LRU cache simulator splay tree, 5 fields jpeg encode jpeg encode
21.8K image 940K image

Bisort Olden forward & backward integer sorting binary tree, 3 fields 217 nodes 221 nodes
Perimeter Olden perimeters of regions in images quad-tree, 7 fields 12 levels 12 levels
TreeAdd Olden recursive sum of values in a balanced-tree binary tree, 3 fields 218 nodes 222 nodes

TSP Olden traveling salesman problem solver binary tree, 7 fields 105 nodes 4 ∗ 106 nodes

Table 2: Execution time (sec) on Intel Pentium IV

Benchmark Orig K=256 K=64 K=1% K=0.1% X-means Freq=50% Static Worst
Swim 52.34 37.90 53.15 46.99 53.15 39.28 45.84 45.37 38.36

Tomcatv 45.37 36.43 36.43 36.43 36.43 37.65 37.35 36.85 38.15
MolDyn 69.78 69.78 69.78 69.78 69.78 69.68 69.78 69.78 69.55

Mesh 4.31 4.25 4.31 4.25 4.31 5.29 5.69 4.31 15.80

Cheetah 263.96 263.64 263.64 263.64 263.64 293.23 306.76 compiler 330.93
Bisort 12.16 12.16 12.16 12.16 12.16 14.38 14.22 analysis 15.98

Perimeter 0.035 0.028 0.026 0.028 0.028 0.028 0.029 not 0.039
TreeAdd 0.262 0.264 0.264 0.264 0.264 0.264 0.264 applicable 0.272

TSP 17.79 14.86 14.86 16.95 14.92 16.91 14.86 17.19
Average Speedup 1.000 1.120 1.085 1.074 1.074 1.044 1.025 1.096 0.920
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Figure 8: Dendrogram from k-distance for Swim

best data layout when competing against all 8 other methods for all
9 programs and 2 machines. It ties or wins in 97% of all contests.
When measured by the average speed on the two machines, among
the 72 alternative layouts, 256-distances loses to only x-means on
MolDyn by less than one tenth of a percent.

The layout by k-distance with k = 64 is overly conservative
because it does not exploit the affinity at a distance greater than
64. It picks the same data layout as k = 256 for all but three
programs, suggesting that the affinity groups have a short distance
in the majority of the programs.

The two k%-clustering methods give competitive results, im-
proving average performance by 7% on the PC and 3% on IBM.
The two k values of 1% and 0.1% yield the same layout in all but
three programs; k = 1% wins in two on the PC, but loses on two

on IBM. This verifies that no single k% is the best, because k%
does not have an absolute meaning and may be too small in one
program but too large in another. In contrast, the k in k-distance
has an absolute meaning—the volume distance.

X-means, using the relative closeness, performs worse than all
methods using the absolute closeness. On average, the performance
is improved by 4% on the PC but slightly impaired on IBM. X-
means features bewilderingly different quality on the two machines.
It gives the third best data layout for Swim on the PC, but the same
layout is the third slowest on IBM. The three fields of Bisort have al-
most identical reuse signatures. Based on the relative closeness, x-
means stubbornly splits them into two groups, losing performance
by 17% on PC and 30% on IBM.

The frequency splitting using a single parameter performs worse
on average than all other methods, showing that grouping on fre-
quency is not as good as grouping on reuse signatures. The com-
piler analysis is conservative. It causes no slowdown except for
Swim on IBM but has less benefit than k-distance analysis. It can-
not yet analyze structure access in C programs.

Reference affinity has a very different effect on the two machines
for the first two Fortran programs. The improvement for Swim is
8% on IBM but 38% on the PC. The reason is the compiler. The
IBM compiler performs sophisticated loop transformations to im-
prove the spatial locality, while the Gcc compiler does little, leaving
amble room for improvement. The IBM compiler outperforms the
static data regrouping of Ding and Kennedy for Swim but not for
Tomcatv [15]. In both cases, reference affinity outperforms the best
static compiler optimization.

On IBM, the reverse k-distance gives the slowest running time
for all benchmarks except for Perimeter. The average loss is 12%.
The results on the PC are mixed, likely for factors other than the



Table 3: Execution time (sec) on IBM Power 4

Benchmark Orig K=256 K=64 K=1% K=0.1% X-means Freq=50% Static Worst
Swim 25.32 23.46 26.01 27.87 26.01 26.48 27.29 26.85 29.80

Tomcatv 21.74 20.70 20.70 20.70 20.70 20.60 23.74 20.90 23.80
MolDyn 52.22 52.22 52.22 52.22 52.22 52.25 52.22 52.22 52.79

Mesh 3.29 3.26 3.29 3.26 3.29 3.32 3.42 3.29 5.09

Cheetah 195.08 190.60 190.60 190.60 190.60 204.45 208.65 compiler 218.76
Bisort 8.07 8.07 8.07 8.07 8.07 10.44 10.25 analysis 11.16

Perimeter 0.025 0.021 0.022 0.021 0.021 0.021 0.024 not 0.024
TreeAdd 0.230 0.226 0.226 0.226 0.226 0.226 0.226 applicable 0.258

TSP 41.69 40.34 40.34 40.47 40.37 41.15 40.34 41.73
Average Speedup 1.000 1.045 1.026 1.026 1.032 0.995 0.958 0.996 0.883

data layout. However, it still gives the worst slowdown of 8% on
average. By comparing the best (k=256) and the worst (rk = 2048)
data layout, we observe that reference affinity affects performance
differently, from almost no effect in MolDyn on both machines to
74% for Mesh on the PC and 36% for the same program on IBM.
The average effect is 20% on the PC and 16% on the IBM machine.

Table 4 shows the effect of converting the five C programs from
using pointer-based data to using array allocation. On average, the
array version improves the original pointer version by 30% on the
PC and 44% on the IBM machine. The only degration occurs for
TSP on the PC. But k-distance splitting eventually improves the
performance by 10%. The benefit of array allocation becomes more
significant when a program deals with the inputs with a larger mem-
ory working set. An example is Cheetah. The input to the cache
simulator is the access trace of the ijpeg encoding program from
MediaBench. The original, pointer-based version outperforms the
best array version when simulating the encoding of an image line by
line with a memory footprint of thousands of kilobytes. When we
change the encoding option to interlaced GIF files and enlarge the
footprint to tens of megabytes, the encoding takes much longer, and
the array version runs consistently faster than the pointer version.
The Cheetah results in this section are for one of the larger inputs.
We found a similar trend in other programs. The improvement from
the reference affinity becomes greater when a program uses a larger
input and takes longer to run. Next we quantify the improvement
across all program inputs for one of our test programs.

Miss-rate improvement across all inputs. The effect of data trans-
formation may change with program inputs. Our past work showed
that Tomcatv had a predictable miss rate across all inputs [41]. Us-
ing that tool on a DEC Alpha machine, we draw the miss rate of
96KB cache (the L2 on-chip cache size size of Alpha) for the origi-
nal and k-distance analysis with k = 256 as two curves in Figure 9.
The data input is measured by the data size in cache blocks. Array
regrouping reduces the miss rate by little to over 5% depending on
the input. The vertical bar marks the data input used in our exper-
iments. The difference is about 0.7% in the absolute miss rate. On
the DEC machine, the corresponding speed improvement is 7.24%.

6. RELATED WORK
This section discusses mainly the past work on data transforma-

tion. The discussion is more bibliographical than technical. The
reader should refer Section 3.3 for a technical comparison.

Early compiler analysis identifies groups of data that are used to-
gether in loop nests. Thabit used the concept of pair-wise affinity

Tomcatv reuse miss rate for 96K cache
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Figure 9: Reuse miss rate changes for Tomcatv

he called reference proximity [38]. Wolf and Lam [29] and McKin-
ley et al. [39] used reference groups. Thabit showed that the op-
timal data placement using the pair-wise affinity is NP-hard [38].
Kennedy and Kremer gave a general model that considered, among
others, run-time data transformation. They showed that the problem
is also NP-hard [24]. Ding and Kennedy used the results of Thabit
and of Kennedy and Kremer to prove the complexity of the par-
tial and dynamic reference affinity [14]. To reduce false sharing in
multi-treaded programs, Anderson et al. [4] and Eggers and Jeremi-
assen [22] grouped data accessed by the same thread. Anderson et
al. optimized a program for computation as well as data locality,
but they did not combine different arrays. Eggers and Jeremiassen
combined multiple arrays for thread locality, but their scheme may
hurt cache locality if not all thread data are used at the same time.

For improving the cache performance, Ding and Kennedy grouped
arrays that are always used together in a program [14]. They gave
the optimal array layout for strict affinity. They later grouped ar-
rays at multiple granularity [15]. An earlier version of this work
defined hierarchical reference affinity and tested two programs us-
ing x-means and k-means clustering [42].

Program profiling has long been used to measure the frequency
of data access [25]. Seidl and Zorn grouped frequently accessed
objects to improve virtual memory performance [35]. Using pair-
wise affinity, Calder et al. [7] and Chilimbi et al. [10] developed
algorithms for hierarchical data placement in dynamic memory al-



Table 4: Execution time(sec) comparison between array-based and pointer-based versions

Intel Pentium IV IBM Power 4
Benchmark Pointer- Array- K=256 Pointer- Array- K=256

based based based based
Cheetah 290.78 263.96 263.64 209.39 195.08 190.60
Bisort 13.79 12.16 12.16 9.57 8.07 8.07

Perimeter 0.039 0.035 0.028 0.033 0.025 0.021
TreeAdd 0.584 0.262 0.264 0.598 0.230 0.226

TSP 16.32 17.79 14.86 42.10 41.69 40.34
Average Speedup 1.000 1.300 1.388 1.000 1.438 1.509

location. The locality model of Calder et al. was an extension of the
temporal relation graph of Gloy and Smith, who considered reuse
distance in estimating the affinity relation [19]. Chilimbi et al. split
structure data in C and Java programs using pair-wise affinity [9].
Chilimbi later improved structure splitting using the frequency of
data sub-streams called hot-streams [8]. Hot-streams combines dy-
namic affinity with frequency but does not yet give whole-program
reference affinity.

Access frequency and pair-wise affinity do not distinguish the
time or the distance of data reuses. Petrank and Rawitz formalized
this observation and proved a harsh bound: with only frequency
or pair-wise information, no algorithm can guarantee a static data
layout within a factor of k − 3 from the optimal solution, where k

is proportional to the size of cache [33].
Rabbah and Palem gave another method for structure splitting. It

finds opportunities for complete splitting by calculating the neigh-
bor affinity probability without constructing an explicit affinity
graph [34]. The probability shows the quality of a given layout
but does not suggest the best reorganization. Their splitting method
is fully automatic as discussed in Section 4.

Reference affinity may change during a dynamic execution. Re-
searchers have examined various methods for dynamic data reor-
ganization [11, 13, 20, 30, 31, 37]. Ding and Kennedy found that
consecutive packing (first-touch data ordering) best exploits refer-
ence affinity for programs with good temporal locality [13], an ob-
servation later confirmed by Mellor-Crummey et al. [30] and Strout
et al [37]. Ding and Kennedy considered the time distance of data
reuses and used the information in group packing. They also gave
a unified model in which consecutive packing and group packing
became special cases. In principle, the model of reference affinity
can be used at run time to analyze sub-parts of an execution. How-
ever, it must be very efficient to be cost effective. On-line affinity
analysis is a subject of our on-going study.

Matson et al. first used reuse distance to measure the perfor-
mance of virtual memory systems [28]. The recent uses include
those of Zhou et al. [43] and Jiang and Zhang [23], who studied file
caching and showed a significant improvement for program, server,
and database traces. At least five compiler groups have used reuse
distance to analyze program locality [3, 5, 15, 26, 40]. Beyls and
D’Hollander used per-reference distance pattern to annotate pro-
grams with cache hints and improved SPEC95 FP program perfor-
mance by 7% on an Itanium processor [6]. Ding and Zhong ana-
lyzed large traces by reducing the analysis cost to near linear time.
They found that reuse-distance histograms change in predictable
patterns in many programs [17]. Zhong et al. used this result to
predict cache miss rates across program inputs and cache configu-
rations [41].

Loop transformations have long been used to arrange stride-one

access to maximize spatial reuse (see examples in [1, 18, 29] or a
comprehensive text [2]). Computation reodering is preferable be-
cause it makes no (negative) impact in other parts of a program.
Still, this paper shows that using reference affinity, data transforma-
tion is beneficial for programs where loop transformations or other
types of static techniques are inadequate because of the complex
control flow and indirect data access.

7. CONCLUSIONS
Reference affinity gives a unique and hierarchical partition of

program data. The reference affinity among the source-level data
can be tested by k-distance analysis. The result of k-distance analy-
sis has an intuitive meaning. The elements of an affinity group must
be accessed within a volume distance of at most k. Experiments
show that the new method uncovers rich affinity relations among
the data in complex programs. When used in array and structure
reorganization, k-distance analysis outperforms all other methods
with remarkable consistency. The close agreement between theo-
retical properties and experimental observations suggests that ref-
erence affinity is an effective way to bridge the gap between the
memory hierarchy of a machine and the linear data layout of a pro-
gram.
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