
All-Window Profiling of Concurrent Executions

Chen Ding†‡ and Trishul Chilimbi†
‡Computer Science Department, University of Rochester

†Microsoft Research

Categories and Subject Descriptors C.4 [performance of sys-
tems]; D.3.4 [programming languages]: processors

General Terms measurement, performance

Keywords data footprint, thread interleaving, concurrent systems

Abstract
This paper first demonstrates the need for all-window profiling in a
concurrent execution, then presents an approximate algorithm, and
finally discusses related work.

1. Footprints
For a window over an execution trace, the footprint is the amount
of data being accessed in the window. Footprint is a basic metric
of program locality and has been used to compute the life-time
of data blocks once they are loaded into cache [1] as well as the
effect of cache sharing by multiple programs [3, 7]. Figuratively,
the footprint determines how a program treads out its old data and
how multiple programs step over each other in cache.

We used a sampling method to collect the data for the paper.
At each memory access, with equal probability the method picks a
range r and a window size x within the range. The size x uniquely
determines the window, which includes the curent access and the
previous x − 1 accesses. Then the algorithm measures the volume
of data in the window. It ensures that all time ranges are sampled
equally. However, since the total number of windows for a trace
of length n is O(n), the sampling rate is only n

n2 = 1
n

. The
exceedingly low sampling rate raises the question whether we can
measure all O(n) windows to verify the accuracy of sampling.

Consider an execution trace of a commercial server application.
The execution consists of 22 concurrent threads for a total of 1.7
billion memory accesses. Figure 1 shows the instruction footprints
for thread 40, which accounts for 29% of instruction accesses.
Both axes use a fine-grained logarithmic scale we call 8-wide
histogram, where each bin of the (base 2) logarithmic scale is
divided into 8 equal-size sub-bins (when the bin size is no smaller
than 8). The x-axis shows 200 logarithmic ranges between 0 and
2(200/8+2) = 227 or 134 million instruction accesses. The y-
axis shows 90 logarithmic ranges for the footprint up to 9,750
instruction blocks.

The five curves show the cumulative distribution of footprints:
for each time window of size x, up to 0%, 5%, 50%, 95%, or 100%
of footprints have a size under the y value marked by these five
curves. The middle curve is labeled “expected” as it shows the

Copyright is held by the author/owner(s).
PPoPP’08, February 20–23, 2008, Salt Lake City, Utah, USA.
ACM 978-1-59593-960-9/08/0002.

All-Window Profiling of Concurrent Executions

Chen Ding†‡ and Trishul Chilimbi†
†Microsoft Research

‡Computer Science Department, University of Rochester

We first motivate all-window profiling by examining the effect of
footprint and interleaving in a concurrent execution, then present
the basic algorithm for approximate all-window profiling, and fi-
nally discuss related work.

1. FOOTPRINT WINDOWS
Given any window over an execution trace, the footprint is the

amount of data being accessed in the window. Footprint is a ba-
sic metric of program locality and has been used to compute the
life-time of data in cache, that is, how a program steps out its old
data [1], and to compute the effect of cache sharing by multiple
threads, that is, how they step over each other [3, 6].

Consider an execution trace of a commercial server application.
The execution consists of 22 concurrent threads for a total of 1.7
billion memory accesses. Figure 1 shows the instruction footprints
for thread 40, which accounts for 29% of instruction accesses.

Both axes use a fine-grained logarithmic scale we call 8-wide
histogram, where refines the logarithmic scale by dividing each
power-of-two size bin into 8 equal-size sub-bins (if the size of the
bin is no smaller than 8). In the figure, bins 50, 100, 150, and
200 represent ranges [288, 319], [22.5K, 24.6K], [1.7M, 1.8M],
and [126M, 134M] respectively.

We used a sampling method to collect the data shown in this and
other figures in the paper. At each memory access, with equal prob-
ability we picked a range rt and a window size within the range.
Then we measured the volume of data in the time window, using
the same algorithm for measuring the reuse distance. We ensured
that all time ranges are sampled equally. However, the sampling
rate was low, n

n(n−1)/2 = 2
n−1 . This motivated us to develop the

all-window profiling.
For a window of x instruction accesses by thread 40, shown on

the x-axis, its footprint or the volume of accessed instructions is
given by the y-axis. It shows the average lifetime. For example for
a cache size of 128 blocks or 8KB for 64-byte blocks, the average
time for thread 40 to access this much instruction is around 800 in-
struction accesses. In a machine with a shared cache, the footprint
from thread 40 has a significant effect on other threads. The faster
it cumulates its footprint, the more likely it causes eviction of other
threads’ instruction or data.

Submitted to a conference.

0 50 100 150 200

0
2
0

4
0

6
0

8
0

Server thread 40 instruction footprint

time
fo
o
tp
ri
n
t

100%
95%
expected
5%
0%

Figure 1: The 8-wide histogram for the instruction footprints of
server thread 40, measured by sampling at a rate O(1

n)

Many windows for a given window size were sampled. Figure 1
shows the distribution of sampled footprints in five curves. The top
and bottom curves show the largest and smallest footprints. The
second and fourth show the upper watermark for 95% and 5% foot-
prints. The middle curve shows the median footprint. The dis-
tribution contains a wealth of information. For example, the bot-
tom curve shows there existed long periods of time, 100K accesses,
where very few data, about 10 blocks, were accessed.

The median footprint is not smooth and has many bumps and
breaks. However, the range of the middle 90% of footprints fol-
low a smooth, consistent trend. The rate of increase slows down
when the window size reaches 25K accesses. The bi-linear shape is
common in the histogram of reuse distances, which shows the knee
or the working set of an application. The knee in the footprint,
however, represents not a change of locality but a change of inter-
ference. It shows that the rate of interference by the thread drops
down over longer periods of execution. This is intuitive but the im-
portant question is when and how the rate of interference changes,
and this can be measured accurately by all-window profiling.

2. THREAD INTERLEAVING
The threads in modern multi-threaded applications do not inter-

leave uniformly. This is generally the case for client applications
where one or few threads carry out most of the work while other
threads are invoked periodically. Even for server workloads, the
relative rate of execution of parallel threads may change from one

Figure 1. The 8-wide histogram for the instruction footprint of
server thread 40, measured by sampling at rate 1

n

median value. The other four curves show more extreme cases. For
example, the “expected” curve shows that half of the windows of
800 instruction accesses touched 128 instruction blocks (8KB) or
less, and the “0%” curve shows that there existed long periods of
time, 100K accesses, where very few data, about 10 blocks, were
accessed.

The median footprint is not smooth and has small bumps and
breaks. However, the area between “5%” and “95%” shows that
the middle 90% of footprints follow a smooth, consistent upward
trend. The rate of increase slows down and takes a shallower slope
as the window size reaches 25K instruction accesses. The bi-linear
shape is common in the histogram of reuse distances, where the
point of the knee gives the size of the working set and signals a
change of locality. The knee in the footprint curve represents not
a change of locality but a change of interference. It shows that the
rate of interference by the thread drops down over longer periods
of execution. This is expected but the question for each program is
where and how much the rate of interference changes. We will not
have an complete answer unless we can measure the footprint for
all windows.

2. Thread Interleaving
In modern concurrent applications, the execution of threads may
not interleave uniformly. This is generally the case for client appli-
cations with asymmetrical functions for each thread, where some
may execute ten times more instructions than others. Even for sym-
metric server workloads, the relative rate of execution of parallel
threads may change from one phase to another. The degree of in-
terleaving strongly affects the use of shared resources such as cache
and memory.

Using the same 1
n

sampling rate as in the case of footprint, we
have measured the interleaving between two threads, thread 40 and
thread 88, in the execution trace mentioned before. Since the two

0 50 100 150 200

0
5
0

1
0
0

1
5
0

2
0
0

Server threads 40 and 88 interleaving

thread 88 time

th
re

a
d
 4

0
 t
im

e

100%
95%
expected
5%
0%

Figure 2: The 8-wide histogram of the interleavings between
server threads 40 and 88, measured by sampling at a rate O(1

n)

phase to another. The degree of interleaving strongly affects the
use of shared resources such as cache and memory.

Using the same sampling rate as the in the previous case of
footprint, we have measured the interleaving between two threads,
thread 40 and thread 88, in the same execution trace. We thought
that since the two actively execute a server workload, their execu-
tions should be interleaved fairly uniformly. To our surprise, the
result, shown in Figure 2, suggests that the uniform interleaving
happens only for 5% of windows that are larger than 100 accesses.
In most cases, the median degree of interleaving is zero, meaning
that only one of the two threads was executing. However, this may
be a result of our measurement since we sample on average only
one in each n possible windows. Accurate knowledge of this is ex-
tremely important in modeling the effect of concurrent executions.

3. APPROX. ALL-WINDOW PROFILING
Given an n-element execution trace t1, t2, . . . , tn, the basic al-

gorithm traverses the trace from left to right. At each element ti, it
counts all the i windows ending at ti. The c-approximate analysis
guarantees that the measured result for a window be between c and
100% of the actual result, where c is between 0 and 1.

The trick of the analysis is to count multiple windows at each
step. This is done by building on the idea of an approximate pro-
filing algorithm by Ding and Zhong [4]. For each ti, the algorithm
maintains a division of the trace t1, . . . , ti that has O(log i) parti-
tions, r1, . . . , rk, where k is in O(log i), such that the information
in these ranges can be summarized by a constant number of values
without compromising the precision. It counts the i windows in
O(log i) instead of i steps.

To profiling all footprints, we build on the Ding-Zhong algorithm
directly. It represents the trace of the first ith element accessing j
distinct data in an approximate tree of O(log j) nodes, each repre-
senting a range of the partial trace. Each range stores the number
of last accesses happening during that time. For example, if an el-
ement a is accessed during the time in range r and has not been
accessed again by time ti, then its last access is in r. The idea of
storing last accesses dates back to Bennett and Kruskal [2].

For a window starting at an element in range rb and ending at
range rk (containing current element i), the footprint is computed
by the sum of the last-access counts of regions from rb+1 to rk.

The Ding-Zhong algorithm ensures that the sum is between c and
100% of the actual footprint. To measure the footprint, we just
use this sum for all windows starting in range rb. Since there are
O(log j) ranges, the counting of i windows takes O(log j) rather
than O(i) steps. Hence the overall cost is O(n log m) where m is
the number of distinct data accessed by the trace. This is also the
cost for maintaining the approximate tree [4], hence it is the total
cost for all-window profiling of footprints.

For thread interleaving, we guarantee the error to be less than
1−c of the window size of the interleaved execution. The algorithm
divides the trace up to i into O(log i) ranges. Each range stores the
execution counts, which have a counter for the number of executed
instructions for each thread up to the start of the range. For all
windows starting from range rb, the interleaving is estimated as
the difference between the current counts and the counts stored at
rb. The ranges need to be dynamically maintained based on the
precision c in a similar way as in the Ding-Zhong algorithm [4], so
the precision is guaranteed.

4. RELATED WORK
Agarwal et al. counted the number of cold-start misses for dif-

ferent size windows starting from the beginning of a trace [1]. For
time-sharing environments, Suh et al. used the footprints to evalu-
ate the effect of scheduling quantum on cache locality [6]. Chan-
dra et al. modeled the parallel execution where the locality of one
thread is affected by the footprint of another thread [3]. The last
two methods tried to approximate the average footprint with the
following recursive equation. Let E[wt] be the average footprint
for a window of size t, and M(f) be the average miss rate for
cache of size f (estimated from the reuse signature), then

E[wt+1] = E[wt](1−M(E[wt]) + (E[wt] + 1)M(E[wt])

Suh et al. simplified it into a differential equation that has a so-
lution [6]. Chandra et al. computed the recursive relation in a
bottom-up fashion. A third technique, recently developed by Shen
et al., estimated the footprint using statistical equations based only
on the distribution of reuse times [5].

The previous methods are limited because they do not guarantee
the accuracy nor provide the exact distribution (in addition to the
average). The average footprint summarizes basically O(n) values
with a single number. The average can be misled by few large
values. For example, one footprint of 10000 would have the effect
of 1000 footprints of 10. Second, since the previous methods do
not measure the footprint of all windows, they do not guarantee
the accuracy of the result. Our new algorithm, although not yet
implemented, would be able to overcome these limitations.

5. REFERENCES
[1] A. Agarwal, J. L. Hennessy, and M. Horowitz. Cache performance of

operating system and multiprogramming workloads. ACM TOCS,
6(4):393–431, 1988.

[2] B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM JRD,
pages 353–357, July 1975.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In
Proceedings of HPCA, 2005.

[4] C. Ding and Y. Zhong. Predicting whole-program locality with reuse
distance analysis. In Proceedings of PLDI, San Diego, CA, June 2003.

[5] X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality approximation
using time. In Proceedings of POPL, pages 55–61, 2007.

[6] G. E. Suh, S. Devadas, and L. Rudolph. Analytical cache models with
applications to cache partitioning. In Proceedings of ICS, pages 1–12,
2001.

Figure 2. The 8-wide histogram of the interleaving between server
threads 40 and 88, measured by sampling at rate 1

n

threads are active server threads, one may expect uniform inter-
leaving. However, the sampling result in Figure 2 shows that uni-
form interleaving is an exception rather than the norm. It happens
only for 5% of windows of a size larger than 100 accesses. In most
cases, the median degree of interleaving is zero, meaning that only
one thread is executing. However, without all-window statistics, we
cannot say for sure whether the interleaving is truly imbalanced in
all windows and whether the overall imbalance is the same as what
we observe from the samples.

3. Approximate All-Window Profiling
Given an n-element execution trace t1, t2, . . . , tn, the basic algo-
rithm traverses the trace from left to right. At each element ti, it
counts all the windows ending at ti. The c-approximate analysis
guarantees that the measured result for each window be between c
and 100% of the actual result, where c is between 0 and 1.

The trick of the analysis is to count multiple windows at each
step. This is done by building on the idea of an approximate profil-
ing algorithm by Ding and Zhong [4]. For each ti, the algorithm
maintains a division of the trace t1, t2, . . . , ti in O(log i) time
ranges, r1, . . . , rk. It keeps track of the total count, either the num-
ber of data blocks or instructions, for each time range. A backward
traversal of them from rk to r1 gives the cumulative count for win-
dows that begin in ri and end at ti. This cumulative count of each
ri is used for all windows starting in ri. Hence the algorithm counts
all i windows in O(log i) instead of i steps.

To profile all footprints, we build on the Ding-Zhong algorithm
directly. At each point in the trace ti, the algorithm keeps O(log i)
ranges organized in a search tree. Each range stores the number of
last accesses made during the time range. An element a has its last
access in time range r if a is accessed during time range r but not
again till time i. The idea of storing last accesses is due to Bennett
and Kruskal [2] and the use of search tree is due to Olken [5].

The algorithm maintains the partition of time ranges as follows.
As it goes through the trace, it creates a new time range for each
access. Periodically, it stops and compresses the time ranges. By
choosing the length of the period to be proportional to log i, it
bounds the cost of each compression in O(log i) and the amortized
cost for each access in O(1). The exact formula for the periodic
compression is the same as the one used by Ding and Zhong [4],
which depends on the desirable precision c.

For thread interleaving, the algorithm similarly divides the trace
into a logarithmic number of time ranges and maintains the division

using periodic compression. However, there is no need to organize
the time ranges in a search tree, unlike the case of footprint mea-
surement.

4. Related Work
Agarwal et al. counted the number of cold-start misses for different
size windows starting from the beginning of a trace [1]. For time-
sharing environments, Suh et la. used the footprints to evaluate the
effect of scheduling quantum on cache locality [7]. Chandra et al.
modeled the parallel execution where the locality of one thread
was affected by the footprint of another thread [3]. The last two
methods approximated the average footprint by solving a recursive
equation. Let E[wt] be the average footprint for a window of size
t, and M(f) be the average miss rate for cache of size f (estimated
from the reuse signature). For each memory access, the footprint
either increments by one or stays the same depending on whether
the accessed data is new or not. This is equivalent to checking
whether the access is a miss in an cache with infinite size. The
expected footprint at time t + 1 can then be computed from the
footprint at t as follows

E[wt+1] = E[wt](1−M(E[wt]) + (E[wt] + 1)M(E[wt])

Suh et al. simplified it into a differential equation [7]. Chandra et
al. computed the recursive relation bottom up. A third technique,
recently developed by Shen et al., estimated the footprint using
statistical equations based on the distribution of reuse times [6].

The previous methods compute or estimate the average but not
the complete distribution. A drawback is that the average can be
strongly influenced by a few large values. The problem is inherent
since the previous methods do not actually measure all windows.
Our new algorithm, though not yet implemented, would be able to
overcome this limitation.

Acknowledgments
The authors wish to thank Bao Bin at Rochester and the reviewers
of PPOPP 2008 for their comments, which helped to improve the
presentation.

References
[1] A. Agarwal, J. L. Hennessy, and M. Horowitz. Cache performance

of operating system and multiprogramming workloads. ACM
Transactions on Computer Systems, 6(4):393–431, 1988.

[2] B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM Journal
of Research and Development, pages 353–357, July 1975.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip multi-processor architecture. In
Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), 2005.

[4] C. Ding and Y. Zhong. Predicting whole-program locality with reuse
distance analysis. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, San Diego,
CA, June 2003.

[5] F. Olken. Efficient methods for calculating the success function of fixed
space replacement policies. Technical Report LBL-12370, Lawrence
Berkeley Laboratory, 1981.

[6] X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality approximation
using time. In Proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 55–61, 2007.

[7] G. E. Suh, S. Devadas, and L. Rudolph. Analytical cache models with
applications to cache partitioning. In International Conference on
Supercomputing, pages 1–12, 2001.

