
Two Examples of Parallel Programming
without Concurrency Constructs (PP-CC)

Chen Ding
University of Rochester
cding@cs.rochester.edu

Categories and Subject Descriptors D.1.3 [Concurrent program-
ming]: Parallel programming

General Terms Languages, Performance

1. Introduction
Speculative parallelization divides a program into possibly parallel
tasks. Parallel execution succeeds if it produces the same output as
the original program; otherwise, it is reverted to sequential execu-
tion. Previous studies have developed various programming primi-
tives [1, 3, 6, 8–11, 13]. Many of these new primitives are hints and
do not change program output even if they are wrong.

Consider the two hints below. In each case, a hint annotates a
code block and suggests the presence or absence of parallelism in
the execution of the code block. They are developed as part of the
BOP system and hence bear a common prefix [3].

• A possibly parallel region bop ppr suggests that run-time in-
stances of the code block are parallel. A PPR block is similar to
a safe future [11] or an ordered transaction [10].

• A likely serial region bop ordered suggests that run-time in-
stances of the code block should be executed sequentially in
program order. The meaning is similar to the ordered directive
in OpenMP except that bop ordered is a hint (implemented us-
ing speculative post-wait [4], which is an extension of Cytron’s
do-across construct [2]).

The two hints do not change the program output. They are more
appropriately called a parallelization interface rather than a parallel
programming interface. While a parallel language controls both
parallelism and its semantics, a parallelization interface affects only
parallelism but not the program result.

A parallelization interface cannot use concurrency constructs.
In this paper, a concurrency construct is defined as a synchroniza-
tion primitive that permits out-of-order access to shared data. Com-
mon examples are locks, barriers, critical and atomic sections, and
transactions. Concurrency constructs allow a program, when given
the same input, to produce one of several possible results that are
all correct. Parallelization hints are limited to producing a single
outcome—the sequential result—and have to enforce in-order up-

Copyright is held by the author/owner(s).
PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
ACM 978-1-4503-0119-0/11/02.

while (not converged)
 for i is 1 to N
 bop_ppr {
 r = compute(data[i])
 bop_ordered {
 s = s.add_result(r)
 }
 }
 end for

 bop_ppr {
 bop_ordered {
 if good_enough?(s)
C: converged = true
 end if
 }
 }
end while

for i in 1 ... n
 bop_ppr {
 bop_ordered(1) {
 // serial stage 1
 }

 // parallel stage 2

 bop_ordered(2) {
 // serial stage 3
 }
 }
end for

while q.has_work
 w = q.get_work
 bop_ppr {
 t = w.do_lots_work
 bop_ordered {
 result_tree.add(t)
 }
 }
end while

while q.has_work
 w = q.get_work

 t = w.do_lots_work

 result_tree.add(t)

end while

Figure 1. A work loop

dates of shared data in general (except when out-of-order access
does not change the result).

The benefit of hints is safe parallel programming. Many issues
affect safety. A program may call third-party code that is not thread
safe. It may not be completely parallel, and the degree of paral-
lelism may change from input to input. In addition, the granularity
may be unknown or input dependent. Some tasks may be so short
that sequential execution is fastest. Traditionally, a user should re-
solve all these issues in order to parallelize a program. With hints,
the parallelism can always be suggested. Furthermore, no parallel
debugging is needed. The parallel execution is correct if the se-
quential one is.

Concurrency constructs have been a mainstay of parallel pro-
gramming, a question naturally arises as to how expressive and
usable a parallelization interface can be without them. It is diffi-
cult to quantify usability. This short paper tries to answer the ques-
tion through two examples of parallel programming without con-
currency constructs.

2. A While Loop
Information processing is often implemented by a while loop, as
shown in Figure 1. The loop body has three steps: dequeue the
next work, process it, and insert the output into result tree. The
parallelized version encloses the last two steps in a PPR block,
suggesting that the work can be done in parallel once it is dequeued.

Consider the step of tree insertion. On the one hand, it is part
of the PPR block so it obtains the result of parallel processing. On
the other hand, the tree is shared, so the insertion is serialized by
the bop ordered hint. The resulting tree is identical to one from
sequential execution.

As a comparison, consider parallelizing the work loop using
OpenMP. The step of tree insertion is marked as a critical section.
As a concurrency construct, the critical section allows tree inser-
tions to happen in any order—a later iteration may insert first if
it finishes earlier. Out-of-order insertion improves parallelism—a
later task does not have to wait—but it leads to non-determinism—

the shape of the tree may differ from run to run. Non-determinism
complicates debugging. Suppose the implementation has an infre-
quent error that manifests once every hundred executions. A user
will have difficulty reproducing it in a debugger.

An ordered block requires in-order tree insertion and loses par-
allelism. However, the loss may be compensated by starting future
PPR tasks when processors are idle [14]. As a hint, a PPR block
does not have to finish before starting the subsequent PPR blocks
(if they exist). In comparison, it is unsafe for OpenMP to overlap
the execution of consecutive loops.

Next we show that hints may increase the amount of parallelism
without complex programming.

3. Time Skewing
Iterative solvers are widely used to compute fixed-point or equilib-
rium solutions. Figure 2 shows the structure of a typical solver as a
two-nested loop. The outer level is the time-step loop. In each time
step, the inner loop computes on some domain data. The inner loop
is usually data parallel. The time steps, however, have three types of
dependences: the convergence check, which depends on the entire
time step; the continuation check, which depends on the conver-
gence result of the last step; and the cross time-step data conflict,
since time steps use and modify the same domain data.

In manual parallelization, a barrier is inserted between succes-
sive time steps to preserve all three dependences. Although sim-
ple to implement, the solution precludes parallelism between time
steps. Previous literature shows that by overlapping time steps,
one may obtain large performance improvements for both sequen-
tial [7,12] and parallel [5] executions. Wonnacott termed the trans-
formation time skewing [12].

Parallelization hints can express time skewing with four annota-
tions shown in Figure 2. It uses two parallel blocks. The first block
allows each time step to be parallelized. The second allows consec-
utive time steps to overlap. In addition, it uses two ordered blocks.
The first serialize data updates in the inner loop. The second delays
the convergence check after all data updates are completed.

while (not converged)

 for i is 1 to N

 r = compute(data[i])

 s = s.add_result(r)

 end for

 if good_enough?(s)
C: converged = true
 end if

end while

while (not converged)
 for i is 1 to N
 bop_ppr {
 r = compute(data[i])
 bop_ordered {
 s = s.add_result(r)
 }
 }
 end for

 bop_ppr {
 bop_ordered {
 if good_enough?(s)
C: converged = true
 end if

 }
 }
end while

Figure 2. Time skewing—successive time steps may overlap

The hints ignore the continuation dependence and cross time-
step conflicts since they happen infrequently. The continuation
check fails only at the last iteration. Cross-iteration conflicts usu-
ally do not happen immediately if the inner loop processes domain
data in a fixed order. The BOP speculation support will detect and
correct these errors when they happen. In other times, the paral-
lelism between time steps is profitably exploited. We have tested a
case in which the BOP version was 18% faster than the OpenMP

version on 7 processors, thanks to time skewing. In this case, par-
allelization hints outperformed critical section and barrier synchro-
nization while still maintaining the sequential result.

4. Summary
The two examples show the limitation and benefits of parallel
programming without concurrency constructs:

• No concurrency constructs. No out-of-order updates as permit-
ted by locks, barriers, atomic sections, and transactions.

• Speculation support. The cost limits the efficiency and scalabil-
ity.

• Ease of parallel programming. Hints relieve a user from cor-
rectness considerations and may be inserted by hand or auto-
matically.

• Speculative parallelism. A user may parallel code that is often
but not always parallel.

The first two mean less parallelism and more overhead. The next
two, however, mean easier, safe parallelization. Ease of program-
ming may mean faster speed, as shown by the second example.

References
[1] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe

multithreaded programming for C/C++. In Proceedings of OOPSLA,
2009.

[2] R. Cytron. Doacross: Beyond vectorization for multiprocessors.
In Proceedings of the 1986 International Conference on Parallel
Processing, pages 836–844, St. Charles, IL, Aug. 1986.

[3] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In Proceedings of PLDI,
pages 223–234, 2007.

[4] B. Jacobs, T. Bai, and C. Ding. Distributive program parallelization
using a suggestion language. Technical Report URCS #952,
Department of Computer Science, University of Rochester, 2009.

[5] L. Liu and Z. Li. Improving parallelism and locality with asyn-
chronous algorithms. In Proceedings of PPOPP, pages 213–222,
2010.

[6] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Spec-
ulative parallelization using software multi-threaded transactions. In
Proceedings of ASPLOS, pages 65–76, 2010.

[7] Y. Song and Z. Li. New tiling techniques to improve cache temporal
locality. In Proceedings of PLDI, pages 215–228, Atlanta, Georgia,
May 1999.

[8] C. Tian, M. Feng, and R. Gupta. Supporting speculative paralleliza-
tion in the presence of dynamic data structures. In Proceedings of
PLDI, pages 62–73, 2010.

[9] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or Discard
execution model for speculative parallelization on multicores. In
Proceedings of ACM/IEEE MICRO, pages 330–341, 2008.

[10] C. von Praun, L. Ceze, and C. Cascaval. Implicit parallelism with
ordered transactions. In Proceedings of PPOPP, Mar. 2007.

[11] A. Welc, S. Jagannathan, and A. L. Hosking. Safe futures for Java. In
Proceedings of OOPSLA, pages 439–453, 2005.

[12] D. Wonnacott. Achieving scalable locality with time skewing.
International Journal of Parallel Programming, 30(3), June 2002.

[13] A. Zhai, J. G. Steffan, C. B. Colohan, and T. C. Mowry. Compiler
and hardware support for reducing the synchronization of speculative
threads. ACM Transactions on Architecture and Code Optimization,
5(1):1–33, 2008.

[14] C. Zhang, C. Ding, X. Gu, K. Kelsey, T. Bai, and X. Feng. Continuous
speculative program parallelization in software. In Proceedings of
PPOPP, pages 335–336, 2010.

