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On modern computer systems, the memory performance of an application depends on its locality. For
a single execution, locality-correlated measures like average miss rate or working-set size have long
been analyzed using reuse distance—the number of distinct locations accessed between consecutive
accesses to a given location. This article addresses the analysis problem at the program level, where
the size of data and the locality of execution may change significantly depending on the input.

The article presents two techniques that predict how the locality of a program changes with
its input. The first is approximate reuse-distance measurement, which is asymptotically faster
than exact methods while providing a guaranteed precision. The second is statistical prediction of
locality in all executions of a program based on the analysis of a few executions. The prediction
process has three steps: dividing data accesses into groups, finding the access patterns in each
group, and building parameterized models. The resulting prediction may be used on-line with
the help of distance-based sampling. When evaluated on fifteen benchmark applications, the new
techniques predicted program locality with good accuracy, even for test executions that are orders
of magnitude larger than the training executions.

The two techniques are among the first to enable quantitative analysis of whole-program local-
ity in general sequential code. These findings form the basis for a unified understanding of program
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locality and its many facets. Concluding sections of the article present a taxonomy of related lit-
erature along five dimensions of locality and discuss the role of reuse distance in performance
modeling, program optimization, cache and virtual memory management, and network traffic
analysis.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimiza-
tion, compilers

General Terms: Measurement, Languages, Algorithms

Additional Key Words and Phrases: Program locality, reuse distance, stack distance, training-based
analysis

ACM Reference Format:

Zhong, Y., Shen, X., and Ding, C. 2009. Program locality analysis using reuse distance. ACM Trans.
Program. Lang. Syst. 31, 6, Article 20 (August 2009), 39 pages.

DOI = 10.1145/1552309.1552310 http://doi.acm.org/10.1145/1552309.1552310

1. INTRODUCTION

Today’s computer systems must manage a vast amount of memory to meet the
data requirements of modern applications. Because of fundamental physical
limits—transistors cannot be infinitely small and signals cannot travel faster
than the speed of light—practically all memory systems are organized as a
hierarchy with multiple layers of fast cache memory. On the software side, the
notion of locality arises from the observation that a program uses only part of
its data at each moment of execution. A program can be said to conform to the
80-20 rule if 80% of its execution requires only 20% of its data. In the general
case, we need to measure the active data usage of a program to understand and
improve its use of cache memory.

Whole-program locality describes how well the data demand of a program can
be satisfied by data caching. Although a basic question in program understand-
ing, it has eluded systematic analysis in the past due to two main obstacles:
the complexity of program code and the effect of program input. In this article,
we address these two difficulties using training-based locality analysis. This
analysis examines the execution of a program rather than analyzing its code.
It profiles a few runs of the program and uses the result to build a statistical
model to predict how the locality changes in other runs. Conceptually, training-
based analysis is analogous to observation and prediction in the physical and
biological sciences.

The basic runtime metric we measure is reuse distance. For each data access
in a sequential execution, the reuse distance is the number of distinct data ele-
ments accessed between the current and previous accesses to the same datum
(the distance is infinite if no prior access exists). It is the same as the LRU stack
distance defined by Mattson et al. [1970]. As an illustration, Figure 1(a) shows
an example access trace and its reuse distances. If we take the histogram of
all (finite) reuse distances, we have the locality signature, which is shown in
Figure 1(b) for the example trace. For a fully-associative LRU cache, an access
misses in the cache if and only if its reuse distance is greater than the cache
size. Figure 1(c) shows all nonzero miss rates of the example execution on all
cache sizes. In general, a locality signature captures the average locality of an
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Fig. 1. Example reuse distances, locality signature, and miss rate curve.

execution from the view of the hardware as the miss rate in caches of all sizes
and all levels of associativity [Mattson et al. 1970; Smith 1976; Hill and Smith
1989] and from the view of the operating system as the size of the working
sets [Denning 1980].

At the program level, locality analysis is hampered by complex control flows
and data indirection. For example, pointer usage obscures the location of the
datum being accessed. With reuse distance, we can avoid the difficulty of code
analysis by directly examining the execution or, more accurately, the locality
aspect of the execution. Compilers may make local changes to a program, for
example, by unrolling a loop. Modern processors, likewise, may reorder instruc-
tions within a limited execution window. These transformations affect paral-
lelism but not cache locality. The unchanging locality cannot be seen in the
reuse distance since the number and the length of long reuse distances stay
the same with and without the transformations. As a direct measure, reuse
distance is unaffected by coding and execution variations that do not affect
locality.

Furthermore, reuse distance makes it possible to correlate data usage
across training executions. Since a program may allocate different data (or
the same data in different locations) between runs, we cannot directly compare
data addresses, but we may find correlations in their reuse distances. More
importantly, we can partition memory accesses by decomposing the locality
signature into subcomponents with only short- or long-distance reuses. As we
shall see, programs often exhibit consistent patterns across inputs, at least in
some components. As a result, we can characterize whole-program locality by
defining common patterns and identifying program components that have these
patterns.

A major difficulty of training-based analysis is the immense size of execution
traces. A small program may produce a long execution, in which a modern
processor may execute billions of operations a second. Section 2 addresses the
problem of measuring reuse distance. We present two approximate algorithms:
one guarantees a relative precision and the other an absolute precision. Since
data may span the entire execution between uses, a solution must maintain
some representation of the trace history. The approximate solutions use a data
structure called a scale tree, in which each node represents a time range of
the trace. By properly adjusting these time ranges, an analyzer can examine
the trace and compute approximate reuse distance in effectively constant time
regardless of the length of the trace. Over the past four decades, there has been a
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steady stream of solutions developed for the measurement problem. We review
the other solutions in Section 2.3 and present a a new lower-bound result in
Section 2.4.

The key to modeling whole-program locality is prediction across program
inputs. Section 3 describes the prediction process, which first divides data ac-
cesses into groups, then identifies statistical patterns in each group, and finally
computes parameterized models that yield the least error. Pattern analysis is
assisted by the fact that reuse distance is always bounded and can change at
most as a linear function of the size of the data. We present five prediction meth-
ods assembled from different division schemes, pattern types, and statistical
equations. Two methods are single-model, which means that a locality compo-
nent, that is, a partition of memory accesses, has only one pattern. The other
three are multimodel, which means that multiple patterns may appear in the
same component. These offline models can be used in online prediction using a
technique called distance-based sampling.

The new techniques of approximate measurement and statistical prediction
are evaluated in Section 4 using real and artificial benchmarks. Section 4.1
compares eight analyzers and shows that approximate analysis is substantially
faster than previous techniques in measuring long reuse distances. Section 4.2
compares five prediction techniques and shows that most programs have pre-
dictable components, and the accuracy and efficiency of prediction increase with
additional training inputs and with multimodel prediction. On average, the lo-
cality in fifteen test programs can be predicted with 94% accuracy. Programs
that are difficult to predict include interpreters and scientific code with high-
dimension data. Interestingly, because reuse distance is execution-based, our
analyses can reveal similarities in inherent data usage among applications that
do not share code.

Our locality prediction techniques are examples of a broader approach we
call behavior-based program analysis. Conventional program analysis identi-
fies invariant properties by examining program code. Behavior analysis infers
common patterns by examining program executions. Section 5 discusses re-
lated work in locality analysis using program code and behavior metrics in-
cluding reuse distance, access frequency and data streams. Locality analysis
has numerous uses in performance modeling, program improvement, cache and
virtual memory management, and network caching. Section 6 presents a tax-
onomy that classifies the uses of reuse distance into five dimensions—program
code, data, input, time, and environment. Many of these uses may benefit from
the fast analysis and predictive modeling described in this article.

2. APPROXIMATE REUSE-DISTANCE MEASUREMENT

In our problem setup, a trace is a sequence of T' accesses to N distinct data
items. A reuse-distance analyzer traverses the trace and measures the reuse
distance for each access. At each access, the analyzer finds the previous time the
data was accessed and counts the number of different data elements accessed in
between. To find the previous access, the analyzer assigns each access a logical
time and stores the last access time of each datum in a hash table. In the worst
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a tree search as the number of tree nodes whose last access time, and weight is the total size of the subtree.
last access time is greater than 4. The approximate distance is 3 or 60% of the actual.

Fig. 2. An example illustrating the reuse-distance measurement. Part (a) shows a reuse distance.
Parts (b) and (c) show its measurement by the Bennett-Kruskal algorithm and the Olken algorithm.
Part (d) shows our approximate measurement with a guaranteed precision of 33%.

case, the previous access may occur at the beginning of the trace, the difference
in access time is up to 7' — 1, and the reuse distance is up to N — 1. In large
applications, T' can be over 100 billion, and N is often in the tens of millions.

We use the example in Figure 2 to introduce two previous solutions and
then describe the basic idea for our solution. Part (a) shows an example trace.
Suppose we want to find the reuse distance between the two accesses of b at time
4 and 12. A solution has to store enough information about the trace history
before time 12. Bennett and Kruskal [1975] discovered that it is sufficient to
store only the last access of each datum, as shown in Part (b) for the example
trace. The reuse distance is measured by counting the number of last accesses,
stored in a bit vector rather than using the original trace.

The efficiency was improved by Olken [1981], who organized the last accesses
as nodes in a search tree keyed by their access time. The Olken-style tree for
the example trace has 7 nodes, one for the last access of each datum, as shown
in Figure 2(c). The reuse distance is measured by counting the number of nodes
whose key values are between 4 and 12. The counting can be done in a single
tree search, first finding the node with key value 4 and then backing up to the
root accumulating the subtree weights [Olken 1981]. Since the algorithm needs
one tree node for each data location, the search tree can grow to a significant
size when analyzing programs with a large amount of data.

While it is costly to measure long reuse distances, we rarely need the exact
length. Often the first few digits suffice. For example, if a reuse distance is
about one million, it rarely matters whether the exact value is one million or
one million and one. Next we describe two approximate algorithms that extend
the Olken algorithm by adapting and trimming the search tree.

The new algorithms guarantee two types of precision for the approximate
distance, dgpproximate, compared to the actual distance, dqcuq. In both types, the
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approximate distance is no greater than the actual distance. Relative precision
means that the maximal error is no more than a constant fraction e of the actual
distance. Absolute precision means that the maximal error b is a constant. Here
the term “precision” means the portion of a value that can be reliably measured.
We also use the term “accuracy” interchangeably. The formal definition of the
two guarantees is as follows:

. .. d —d .
(1) Relative precision w/ max errore: 0 <e < 1and 0 < actual” approximate

<e.
actual

(2) Absolute precision w/ max error b: b > 0 and 0 < dyctual — dapproximate < b.

Instead of using a tree node to store the last access of one data element as
in the Olken algorithm, the approximate analysis uses a tree node to store a
time range that may include the last accesses of multiple data elements. We
call the new tree a scale tree and define the size of each node as the number of
data elements last accessed in its time range. An example scale tree is shown
in Figure 2(d), which stores the last accesses of 7 variables approximately in
3 tree nodes with sizes 2, 4, and 1, respectively (in comparison, the precise
representation in Figure 2(c) requires 7 tree nodes). The size of the scale tree,
measured by the number of tree nodes, equals N divided by the average node
size. The error in approximation can be as large as the maximal node size. The
Olken algorithm uses unit-size nodes and has full precision. The problem for
the approximation algorithms is how to inflate the node size so the tree size is
minimized while the measurement error is bounded.

In the following discussion, we do not consider the cost of finding the last
access time. This can be performed by looking it up in a hash table, which has
an O(1) expected cost per access. The space cost is O(N), although it can be
reduced to a constant using multipass analysis [Bennett and Kruskal 1975].

2.1 Approximation with a Relative Precision

We describe the scale tree and its two types of operations. The first happens at
every access to compute the reuse distance. The second happens periodically
to compress the tree by coalescing the time ranges and reducing the number of
tree nodes.

A node in a scale tree has 7 attributes, as defined in Figure 3. The time at-
tribute is the end of its time range and also the search key. The size attribute
is the number of data last accessed in the time range. The weight attribute is
the total size of all the tree node’s children. We assume the tree is a binary
tree, so each node has left and right children. For the purpose of compres-
sion, we link tree nodes in a linear order using the prev attribute, by which
each node is tied to the node of the immediately earlier time range. For ex-
ample, the time range of node x is from x.prev.time + 1 to x.time. The last
and most important attribute is capacity, which sets the upper bound of the
node size and in turn determines the size of the tree and the precision of the
approximation.

Let the current access be to datum d . The main routine, ReuseDistance shown
in Figure 3, is called given as input the last and current access time. As the
first step, it calls the subroutine TreeSearchDelete, which finds the host node
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data declarations
TreeNode = structure(time, weight, capacity, size, left, right, prev)
root: the root of the tree
e: the bound of the relative error

algorithm ReuseDistance(last, current)
// inputs are the last and current access times
TreeSearchDelete(last, distance)
latest = new TreeNode(current,1,1,1, 1,1, 1)
Treelnsert(latest)
if (tree_size > 4 log_1_root.weight + 4)

TreeCompress(latest) // removes at least half of the nodes
end if

return distance

end algorithm

subroutine TraceSearchDelete(last, distance)
node = root
distance = 0
while true
node.weight = node.weight — 1
if (last < node.time and node.prev exists and last < node.prev.time)
if (node.right exists)
distance = distance + node.right.weight
if (node.left not exists) break
distance = distance + node.size
node = node.le ft
elseif (last > node.time)
if (node.right not exists) break
node = node.right
else exit loop
end if
end while
node.size = node.size — 1
end subroutine T'reeSearchDelete

Fig. 3. Approximate analysis with a relative precision 1 —e. Part I.

containing the last access of d and traverses the search path backward to cal-
culate the approximate reuse distance using the sum of the subtree weights as
in the Olken algorithm.

Since the last access of d is changed, TreeSearchDelete removes the last
record by decrementing the size attribute of the host node and the weight at-
tribute of all parent nodes. Subroutine Treelnsert is then called to add a new
node into the tree representing the new last access, the current access. It rebal-
ances the tree as needed. The insertion procedure is not shown since it depends
on the type of search tree being used.

The loss of precision occurs at the host node. It contains a group of last
accesses but we cannot know which is the last access of d . To prevent overesti-
mating, we assume it is the last one in the group. The error is at most size — 1,
which is at most capacity — 1, since size < capacity.

The initial capacity of a new node is 1. As tree nodes become dated, their
capacity is adjusted by the subroutine TreeCompression, shown in Figure 4.
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subroutine TreeCompress(n)
// Initially n is the latest node in the tree
distance =0
n.capacity = 1
while (n.prev exists)
if (n.prev.size + n.size < n.capacity)
// merge n.prev into n
n.size = n.size + n.prev.size
N.prev = n.prev.prev
deallocate n.prev
else
distance = distance + n.size
n = n.prev
n.capacity = | di
end if
end while
Build a balanced tree from the list and update the root
end subroutine TreeCompress

Fig. 4. Approximate analysis with a relative precision 1 —e. Part II.

It uses the prev link to traverse tree nodes in reverse chronological order and
assigns the capacity of each node x to distance * 1% + 1, where e is the error
bound (0 <e < 1), and distance is the number of distinct data accessed after x’s
time range. Since the maximal error at node x is x.capacity — 1, the maximal

. . ) ity—1 . . .
relative erroris ——capacity—1 = e. TreeCompression will also merge adjacent
distance+x.capacity—1

time ranges as long as the combined size does not exceeds the capacity. The size
of the tree is minimized for the error bound.

In the main routine, ReuseDistance, tree compression is triggered when the
number of tree nodes exceeds the threshold 4 log N + 4, where N is the

number of distinct elements that have been accessed The following theorem
shows that the compression always removes at least half of the tree nodes.

TurEOREM 1. For a trace of T accesses to N data elements, the approximate
reuse distance measurement with a bounded relative error e (0 < e < 1) takes
o(T log2 N) time and O(log N) space, assuming it uses a balanced tree.

Proor. Since the tree is compressed whenever it grows to 4 * log L N +4
nodes, the number of tree nodes cannot exceed O(log N). We next show that
every time it is invoked, TreeCompress removes at least half of the tree nodes.

Since the compression routine marches backward in time, we number the

compressed nodes in reverse chronological order as ng, n1, ... , and n,, with ng
being the latest node. Assume r is an odd number (if r were even, we could add
a zero-size node). Consider each pair ng; and ng;4 1,2 =0, ..., % Let size; be

the combined size of ny; and ng;+1 and sum; =} ;_, _;size; be the total size of
nodes up to and including ng; 1.

Since the capacity of the node ny; is set to [sum;_1 * 1% ] +1 by the algorithm,
the combined size of the node pair, size;, must be at least [sum; 1 * ;% | +2;
otherwise the ith node pair should have been merged into a single node. We
now have sizey > 1 and size; > sum;_1 * =% Since sum; = size; + sum;_1, by
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induction we have sum; > (1+ 1% )‘ ori < log L sum;. Let M compressea be the size

of the tree after compression. Slnce M comp,essed =r+1<2i+2andsum; =N,
M compressed < 2 * log L N + 2. Comparing to the starting size, we see that each

compression must cut out half of the tree nodes.

Now we consider the time cost. Assume that the tree is balanced and has
M tree nodes (M < 4log S N + 4). The time for the tree search, deletion,
and insertion is O(log M) per access. Tree compression happens periodically
after a tree growth of at least 2 logl_le N + 2 or M /2 tree nodes. Since one tree

node is added for each access, the number of accesses between successive tree
compressions is at least M /2 accesses. Each compression takes O(M) time
because it examines each node in a constant time, and the tree construction
from an ordered list takes O(M) time. Hence the amortized compression cost
is O(1) for each access. The total time is therefore O(log M + 1), or O(log2 N)
per access. 0O

2.2 Approximation with Absolute Precision

For a cut-off distance ¢ and a constant error bound b, the absolute-precision
algorithm divides the access trace into two parts: the precise trace records the
last ¢ elements accessed, and the approximate trace stores older accesses in
a tree where the capacity of each tree node is set to b + 1. As a result, the
measurement is accurate for reuse distances up to ¢ and approximate for larger
distances with an error no more than b. Periodically, the algorithm transfers
data from the precise trace to the approximate trace.

We have described a detailed algorithm and its implementation using a
B-Tree for both the precise and approximate trace [Zhong et al. 2002]. Here
we generalize it to a class of algorithms. The precise trace can use a list, a vec-
tor, or any type of tree, and the approximate trace can use any type of tree, with
two requirements. First, the size of the precise trace is bounded by a constant.
Second, a minimal occupancy of each tree node is guaranteed. To satisfy the
first requirement, we transfer the last accesses of ¢ data elements from the pre-
cise trace to the approximate trace when the size of the precise trace exceeds
2c. To ensure minimal occupancy, we merge two consecutive tree nodes if their
total size falls below the capacity of the succeeding node. The merge operation
guarantees at least half utilization of the capacity & at each node. Therefore,
the number of nodes in the approximate tree is at most %.

We have implemented a splay tree [Sleator and Tarjan 1985] version of the
algorithm and will use only the approximate trace (¢ = 0) in the analyzer for
runtime locality analysis (i.e., distance-based sampling in Section 3.5) because
the analyzer has the fastest speed, as shown later in Section 4.1.

2.3 Comparison with Related Concepts and Algorithms

Mattson et al. [1970] showed that buffer memory could be modeled as a stack,
if the method of buffer management satisfied the inclusion property in that a
smaller buffer would hold a subset of data held by a larger buffer. They showed
that the inclusion property is satisfied when a buffer is managed by common
replacement policies including least recently used (LRU), least frequently used
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Table I. The Asymptotic Complexity of Reuse-Distance Measurement

Measurement Algorithms Time Space
trace as a stack (or list) [Mattson et al. 1970] O(TN) O(N)
trace as a vector (interval tree) O(TlogT) o)
[Bennett and Kruskal 1975; Almasi et al. 2002]

trace as a search tree [Olken 1981] O(T logN) O(N)
[Sugumar and Abraham 1993; Almasi et al. 2002]

aggregate counting [Kim et al. 1991] O(T's) O(N)
approximation using time o(T) 0()
[Berg and Hagersten 2004; Shen et al. 2007]

approx. w/ relative precision O(Tlog? N) | O(logN)
approx. w/ absolute precision O(T log %) O(%)

T is the length of execution, N is the size of program data, s is the number of (measured)
cache sizes, b is the error bound.

(LFU), optimum (OPT), and a variant of random replacement. They defined a
collection of stack distances. These concepts formed the basis of storage system
evaluation and enabled much of the experimental research in virtual memory
management in the subsequent decades.

Stack distance is also used extensively in studies of cache memory. But it is
not a favorable metric in low-level cache design because it does not model is-
sues such as write-backs, cache-line prefetch, and queuing delays. Some of the
drawbacks have been remedied by techniques that modeling the effect of set as-
sociativity [Smith 1976; Hill and Smith 1989] and write-backs and subblocks for
fully associative [Thompson and Smith 1989] and set-associative caches [Wang
and Baer 1991].

Reuse distance is the same as the LRU stack distance. It is informative to
use the shorter name here because our primary purpose is program analysis.
Locality as a program property exists without the presence of buffer memory
or caches, so the notion of the stack is immaterial. In addition, reuse distance
can be measured directly and much more quickly using a tree (or a bit vector)
instead of a stack.

Since 1970, there have been steady improvements in reuse distance mea-
surement. We categorize previous methods by their organization of the trace.
The first three rows of Table I show methods using a stack, a bit vector, and a
tree. Mattson et al. [1970] gave the first algorithm, which used a stack. Bennett
and Kruskal [1975] observed that a stack was too slow to measure long reuse
distances in database traces. They used a bit vector and built an m-ary interval
tree on it. They also showed how to make the hash table smaller using multi-
pass analysis. Olken [1981] gave the first tree-based algorithm. He also showed
how to compress the bit vector and improve the Bennett-Kruskal algorithm to
the efficiency level of his tree-based algorithm. Sugumar and Abraham [1993]
showed that a splay tree [Sleator and Tarjan 1985] had better memory per-
formance and developed a widely used cache simulator, Cheetah. Almasi et al.
[2002] showed that by recording the empty regions instead of the last accesses
in the trace, they could improve the efficiency of vector and tree based methods
by 20% to 40%. They found that the modified Bennett-Kruskal algorithm was
faster than the Olken algorithm with AVL or red-black trees.
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Kim et al. [1991] gave an algorithm that stores the last accesses in a list and
embeds markers for cache sizes. It measures the miss rate precisely but not the
reuse distance. The space cost is proportional to the largest cache size, which
is N if we measure for caches of all sizes. Instead of reuse distance, the access
distance, that is, the logical time between the two consecutive accesses to the
same datum, has been used to estimate the miss rate for caches of all sizes
in StatCache [Berg and Hagersten 2004, 2005] and to statistically infer the
reuse distance in time-based prediction [Shen et al. 2007]. The two statistical
techniques have a linear time cost but do not guarantee the precision of the
result. In addition, Zhong and Chang [2008] used sampling analysis to reduce
the constant factor in the cost of reuse-distance measurement.

The literature on algorithm design has two related problems: finding the
number of distinct elements in a sequence of m elements each of which is be-
tween 0 and n, and finding the number of 1’s in a window of m binary digits. The
goal of streaming algorithms is to solve these problems incrementally without
storing the entire sequence. Alon et al. [1996] gave a simple proof (Proposi-
tion 3.7) of the previously known result that any such algorithm must use Q(n)
memory bits. For counting the number of 1’s over a sliding window of size m,
Datar et al. [2002] gave a deterministic algorithm with optimal space complex-
ity O(log? m) bits. They extended it to count the number of distinct values in a
sliding window “with an expected relative accuracy of O(ﬁ) using O(nlog®m)
bits of memory”, based on probabilistic counting [Flajolet and Martin 1983]. The
relative precision algorithm in this paper can solve the same sliding-window
problem deterministically with constant relative precision using O(n log m) bits
in the hash table and O(lognlogm) bits in the scale tree.

The approximate measurement is asymptotically faster than exact algo-
rithms. The space cost of the search tree is reduced from linear to logarithmic.
The time cost per access, O(log2 N), is effectively constant for any practical
data size N. The improvement is important when analyzing a program at the
data-element granularity like we do in program locality analysis. Next we show
a lower bound result for the space cost, which suggests that approximation is
necessary to obtain this level of efficiency.

2.4 A Lower Bound Result

The following theorem gives the minimal space needed by an exact algorithm.

THEOREM 2. The space cost for accurately measuring reuse distance is
Q(N log N) bits, where N is the largest reuse distance.

Proor. The trace may contain accesses to N distinct data elements. Assum-
ing prior to a logical time %, all N elements have been accessed, the reuse dis-
tance at £ depends on the relative order of the last accesses of N elements. The
number of possible orders is the number of permutations of N elements or N!.

An accurate method must be able to distinguish between any two different
permutations. Otherwise, let us assume that there exists an accurate measure-
ment that does not distinguish between two permutations @ and R, and datum
x is last accessed at a different point in @ than in R. If given the two traces Qx
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and Rx, the method would not be able to show that the reuse distance of the
last access (of x) is different in the two traces. This contradicts the assumption
that the method is accurate. Since an exact method must distinguish between
all N'! permutations, it must store Q(log N!) or Q(N log N) bits. O

The lower bound result has two significant implications. First, the
Q(N log N) lower bound differs from the Q(IV) lower bound of counting the
number of 1’s in a sliding window [Alon et al. 1996], so the problem of reuse
distance measurement is inherently harder than the sliding window problem
in streaming. Second, we observe that in the method of Olken [1981], both the
hash table and the search tree have O(NN) entries of O(log T') bits per entry, so
the space cost, O(N log T') bits, is close to optimal. To match the time efficiency
of the approximate algorithm, an exact algorithm must process O(N) items of
information in O(log? N) steps for each access, which seems improbable. Hence
the lower bound result suggests that we may not improve exact measurement
much beyond Olken’s result. For a greater efficiency we may have to resort to
approximation, as we have done using the scale tree.

3. LOCALITY PREDICTION

Locality prediction has three steps: dividing reuse distances into groups, ana-
lyzing their length in training executions, and constructing a statistical model
to predict their length in all executions. The only parameter of the model
is the input size. In Section 3.5, we define the input size computationally using
a technique called distance-based sampling. In most cases it is equivalent to N,
the size of the data touched by an execution. We therefore use the terms input
size and program data size interchangeably.

3.1 Decomposing the Locality Signature

As we divide reuse distances into groups, it is desirable to control the range of
reuse distances in a group and the size of the group. Metaphorically speaking,
the range and the size can be considered the two dimensions that control an
inspection lens’s resolution. The range should not be too large because it may
include reuse distances representing different locality. The size should not be
too small because it would increase the computational cost without improving
accuracy.

We represent the locality signature using two types of histograms. In a reuse-
distance histogram (or distance histogram), the x-axis gives the length of reuse
distance in consecutive ranges or bins, and the y-axis shows the percentage of
all reuse distances that fall in each range. For each bin in the histogram, we
call the range of reuse distances its width and the frequency of reuse distances
its size. The width may grow in a linear scale, for example, [0, 2k), [2k, 4k),
[4k, 6k), - - -; a logarithmic scale, for example, [0, 1),[1, 2),[2,4),[4,8),---; or a
log-linear scale, for example, the ranges below 2048 are logarithmic and the
rest are linear. Figure 5(a) shows the logarithmic scale histogram of a fluid
dynamics simulation program.

Alternatively, we can sort all reuse distances, divide them into equal-size
partitions, line the groups up along the x-axis, and show the average reuse
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Fig. 5. Example histograms for program SP with input size 28°. (a) The log-scale distance his-
togram shows the percentage of reuse distances (the y-axis) that fall into ranges of base-2 logarith-
mic scale (the x-axis). (b) The reference histogram shows the average reuse distance (the y-axis)
for each 1% of reuse distances sorted by increasing length (the x-axis).

distance of each group on the y-axis. We call this a reference histogram and
each bin a reference partition. Figure 5(b) shows the reference histogram in 100
partitions for the same example program. The first bin shows that the average
length is 0 for the shortest 1% of reuse distances. The two histograms can be
explained using nomenclature from probability theory. If we view reuse dis-
tance as a random variable, the distance histogram, for example, Figure 5(a), is
the density function, and the reference histogram, for example, Figure 5(b), is
the transpose of the cumulative density function.

The two types of histograms have complementary properties for behavior
decomposition. With distance histograms, we can easily control the range of
the reuse distances in each group but not the size of the group. With reference
histograms, all groups have the same size but the range of reuse distances in a
group can be arbitrarily large.

For locality prediction, the reference histogram has two important advan-
tages over the distance histogram. First, it isolates the effect of nonrecurrent
computations such as the initialization code before the main computation loop.
When the input size is sufficiently large, the effect of the nonrecurrent computa-
tion diminishes into a single partition in the reference histogram. The second is
to balance between information loss and modeling efficiency. When many reuse
distances have a similar length, the reference histogram may divide them to
increase precision. When a few reuse distances cover a wide spread in length,
the reference histogram uses large ranges to reduce the number of groups. The
size of the group determines the granularity and the cost of prediction. A group
size of 1% means that we analyze only 100 bins, and the error in a bin does not
affect more than 1% of the overall accuracy.

In our implementation, we generated the distance histogram using a log-
linear scale. The bins’ sizes were powers-of-2 up to 2048 and each remaining
bin had a size of 2048. We compute the average distance of each bin and use
it to convert the log-linear distance histogram to the reference histogram. Our
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reference histogram has 1000 bins. We will evaluate prediction accuracy using
the three types of histograms: the reference histogram, the log-linear distance
histogram, and the logarithmic distance histogram. The last type is usually one
or two orders of magnitude more compact than the first two types.

3.2 Constant, Linear, and Sublinear Patterns

Patterns are defined for each group of reuse distances. Let the groups be
(g1, 89, ...,gB) for one execution and (g1, 2,..., 8p) for another, where B
is the number of groups. Let the average reuse distances of g; and g; be d; and
d;. Let s and § be the input size of the two executions. We find the closest linear
function that maps the input size to the reuse distance. Specifically, we find the
two coefficients, ¢; and e;, that satisfy the following two equations.

d; =c; +e; * fi(s) (1
d; =c; +e;* fi(3), (2)

where f; is the pattern function. Once we define common patterns f;, the prob-
lem becomes one of linear regression.

Since the largest reuse distance cannot exceed the size of program data, the
pattern function f; can be at most linear and cannot be a general polynomial
function. We consider the following five choices of f;:

1/2. .1/3

, ST 82/3.

0; s; s
We call the first, 0, the constant pattern. A group of reuse distances has a
constant pattern if their average length does not change with the input. We
call the second, s, the linear pattern. A bin i has a linear pattern if the average
distance changes linearly with the program input size, i.e. 32%2 = e;;, where
c¢; and e; are constants. Constant and linear patterns are the lower and upper
bound of the reuse distance changes. Between them are three sub-linear pat-
terns. The pattern s'/2 happens in two-dimensional problems such as matrix
computations. The other two happen in three-dimensional problems such as
ocean simulation. We could consider higher dimensional problems in the same
way, although we did not find a need in our test programs.

3.3 Single-Model Prediction

In single-model prediction, each group has a single pattern. For a group of reuse
distances, we calculate the ratio of their average distance in two executions,
d;/d;, and pick f; to be the pattern function that is closest to d;/d;. We take
care not to mix sublinear patterns from a different number of dimensions. In
our experiments, the dimensionality was given as an input to the analyzer. This
can be automated by trying all choices and using the best fit.

Using more than two training inputs may produce a better prediction, be-
cause more data may reduce the noise from imprecise reuse distance measure-
ment and histogram construction. We consider more inputs as follows. For each
bin, instead of two linear equations, we have as many equations as the number
of training runs. We use least square regression to determine the best values
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Fig. 6. Anexample of multimodel prediction. Part (a) is the standard histogram of input s;. Part (b)
and (c) show the composition of the constant and linear patterns in the standard histogram. Given
a new input 8 * s, the constant part remains unchanged, shown in (d). The distance of the linear
part increases by a factor of eight, shown in (e). The prediction combines (d) and (e) to produce (f).

for the two unknowns. We will evaluate the relation between the number of
training inputs and the prediction accuracy.

3.4 Multimodel Prediction

Modelmodel prediction allows a group of reuse distances to have mixed pat-
terns. For example, some fraction of a group has one pattern, and the rest has
a different pattern. In multimodel prediction, the size of the i*" group, A;(s), is
as follows.

hi(s) = @m,(8,0) + @y (8,0) + -+ - + @y, (5, 0), (3)

where s is the size of the input, and ¢, - - - ¢n; are all possible pattern functions.

To ground the calculation on a single basis, we arbitrarily pick the result of
one of the training runs as the standard histogram. In single-model prediction,
one group in one histogram corresponds to one group in another histogram. In
multimodel prediction, one group in one histogram may correspond to a piece
in every group in another histogram.

We illustrate the process of multimodel prediction through an example in
Figure 6. The standard histogram is shown in Part (a). The size of its input
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is sg. Other histograms are not shown, although they are used by the analysis
to compute the mixing of patterns in the standard histogram. The standard
histogram has 12 bins, and each bin has two models—the constant and the
linear pattern. The two patterns are separated into two pieces shown in Part
(b) and (c). Given another input size, 8 * sy, we predict the reuse distance
according to the patterns. The constant pattern remains unchanged, shown in
Part (d). The distance in the linear pattern is octupled by moving the bars right
by 3 units along the x-axis, shown in Part (e). Finally, the prediction process
combines the constant and linear pieces and produces the predicted histogram
for input size 8 * s in Part (f).

We show how to derive the composition of patterns in the standard histogram,
again through an example. Let s be the size of the standard input, and s; = 3sg
be the size of another training input. Let ¢(s, r) be the portion of reuse distances
in range r at input s. For this example we again assume only two patterns and
use ¢, for the constant pattern and ¢, for the linear pattern. We use logarithmic
scale ranges. The first four are [0, 1), [1, 2),[2, 4), [4, 8). The analysis assumes
that reuse distances are distributed over a range continuously.

We compute the composition of the range [4, 8) in the histogram of s; = 3sp
from the standard sy histogram as follows. The size of the bin [4, 8) in histogram
s1 consists of constant and linear parts. The size of the constant part is the same
in s; as in sy. The size of the linear part comes from the range [%, %) in sg. The
relations are shown in the next three equations.

@(31, [4’ 8)) = (pc(sla [4$ 8)) + ¢Z(slg [4, 8))
pc(s1,[4,8)) = @c(so,[4,8)

4 8 4 8
go(i(sly [45 8)) = @¢ <SOa |:§’ §>) = gp(i(s()’ |:§1 2> + Pe (‘90) |:21 §>> .

We assume the reuse distance has uniform distribution in each bin. Hence,

4 2—-4/3 2
o <So, [—,2>) _ ( / )fpz(so,[l, 2)= Sgulso, [1,2)

3 2—-1
8 8/3 -2 1
e (SO, [2, §>> = < 4/1— D) > wi(s0,[2,4)) = gfﬂz(so, (2, 4)).
Therefore,

2 1
(P(Sla [41 8)) == 900(80, [4’ 8>) + 5%(30, [15 2)) + g‘Pl(SOa [2} 4>)

After processing each bin of all training inputs in a similar manner, we obtain
an equation group. The unknown variables are the size of the patterns in the
standard histogram. Regression techniques are used to find the mixing that fits
training results with the least error.

3.5 Distance-Based Sampling

Distance-based sampling is a heuristic for quickly estimating the input size by
analyzing only the beginning of an execution. It takes samples of long reuse
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distances and selects one to represent the input size. The rationale behind this
scheme is the assumption that the change in input size is often proportional to
the change in long reuse distances.

The sampling analysis uses a reuse-distance analyzer to monitor long-
distance reuses. When a reuse distance is above a qualification threshold, the
accessed memory location is taken as a data sample. Subsequent accesses to
a data sample are recorded as access samples if the reuse distance is over a
temporal threshold. To avoid picking too many data samples, it requires that
a new data sample be at least a certain spatial distance away in memory from
existing data samples. This is the spatial threshold. The sampling scheme re-
quires certain manual effort to select the three thresholds for each program,
although the threshold selection can be automated [Shen et al. 2007].

In a sequence of access samples, we define a peak as a time sample whose
value is greater than that of its preceding and succeeding time samples. The
analysis records the first £ peaks of the first m data samples. A user evaluates
these peaks in locality prediction and chooses the best one to represent the
input size. The choice is program dependent but identical for all executions of
the same program.

For most programs we have tested, it is sufficient to take the first peak of
either the first or the second data sample. In one program, Apsi, all executions
initialize the same amount of data but use a different amount in computation.
We use the second peak as the input size. In some other programs, early peaks do
not show a consistent relation with the input size, or the best peak appears near
the end of an execution. We identify these cases during training and instruct
the predictor to predict only the constant pattern.

Distance-based sampling can enable online prediction for an unknown input
as follows. It first builds the offline model parameterized by the input size.
When the execution of the test input starts, the sampling tool creates a twin
copy of the program to collect the reuse distances. The sampled version runs in
parallel with the original version until it detects the input size. For sampling
to work, it requires that the input of the program be replicated, and that the
sampled version not produce side effects.

3.6 Limitations

Although the analysis can handle any sequential program, this generality
comes with several limitations. For programs with high-dimensional data, cur-
rent pattern prediction requires that the shape of the data be similar in train-
ing and prediction. It should be possible to combine the pattern analyzer with
a compiler and incorporate the shape of the data as parameters in the locality
model. Note that locality prediction is useful only if the program is too complex
for compiler analysis; otherwise, compiler analysis should be used or combined
with locality prediction (see Section 5 for a review of related techniques). An
important assumption in locality prediction is that the percentage size of a
group of reuse distances is the same in all executions of a program. For exam-
ple, the group of the 1% shortest reuse distances in one execution corresponds
to the group of the 1% shortest reuse distances in other executions of the same
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Fig. 7. A comparison of eight reuse-distance analyzers.

program. There is no logical reason that this relation has to hold in a program.
We will use empirical validation by examining the accuracy of the prediction for
a wide range of test programs. Finally, predicting locality does not mean pre-
dicting execution speed or execution time. The prediction gives the percentage
of cache misses but not the effect on overall performance nor the total number
of cache misses.

4. EVALUATION

For program analysis, we measure and predict reuse distance at the granular-
ity of data elements. Analyzing data access at the finest granularity requires
the highest efficiency and precision. The result shows the temporal locality in-
dependent of data layout. The same methods can be used to analyze temporal
and spatial locality at larger data granularity such as cache blocks and memory
pages (see Section 6 for a review of such studies).

4.1 Reuse Distance Measurement

Figure 7 compares the speed and accuracy of eight analyzers based on the al-
gorithms described in Section 2. Cheetah [Sugumar and Abraham 1993] imple-
ments the Olken algorithm using a splay-tree. BK-2, BK-16, and BK-256 are the
bit-vector algorithm by Bennett and Kruskal [1975], implemented using k-ary
trees with £ = 2, 16, 256. These four measure reuse distance accurately. KHW
is our implementation of Kim et al. [1991] with three markers at distances of
32, 16K, and the size of analyzed data. It classifies each reuse distance in three
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bins. We test three approximate analyzers. 99% is the relative-precision ap-
proximation with 99% accuracy. Sampling and ZDK-2k are absolute-precision
approximations with maximal error b = 2048. Sampling uses a splay tree and
only an approximate trace. ZDK-2k uses a B-tree and a mixed trace [Zhong
et al. 2002]. The test program traverses N data elements twice with reuse dis-
tance equal to N /100. To measure only the cost of reuse-distance analysis, the
hashing step is bypassed by pre-computing the last access time in all analyz-
ers (except for KHW, which does not need the access time). The programs are
compiled using gec with full optimization (flag -O3) and tested on a 1.7 GHz
Pentium 4 PC with 800 MB main memory.

Among the five accurate analyzers, the bit-vector methods are the slowest,
Cheetah achieves an initial speed of 4 million memory references per second,
and KHW with three markers is fastest (7.4 million memory references per sec-
ond) for small data sizes. The accurate analyzers start to run out of the physical
memory at 100 million data elements, so the three approximate analyzers be-
come the fastest, with Sampling at 7 million references per second, ZDK-2k
over 3 million references per second, and 99% over 1 million references per
second. Sampling and ZDK-2k do not analyze beyond 4 billion data elements
since their implementation uses 32-bit integers.

Among the eight, the 99% precise approximate analyzer shows the most
scalable performance. We use 64-bit integers in the program and test it for up
to 1 trillion data elements. The asymptotic cost, O(log? N) per access, should be
effectively linear in practice. We tested data sizes up to the 1 trillion because it
isin the order of the length of a light year measured in miles. In the experiment,
the analyzer ran at a near constant speed of 1.2 million references per second
from 100 thousand data elements to 1 trillion data elements. The consistent
high speed is remarkable considering that the data size and reuse distance
differ by eight orders of magnitude. The speed was so stable that we could
predict how much time our tests would take.

The lower graph of Figure 7 compares the accuracy of the approximation
on a partial histogram of FFT. The y-axis shows the percentage of memory
references, and the x-axis shows the distance on a linear scale between 55K
and 66K with an increment of 2048. The 99.9% and 99% analyzers produce
histograms that closely match the accurate histogram. The overall error is about
0.2% and 2% respectively. The analyzer with the constant error bound 2048,
shown by the histogram marked ZDK-2k, misclassifies under 4% of the memory
references at the far end of the histogram. If we compare the space overhead,
accurate analyzers need 67 thousand tree or list nodes, ZDK-2k needs 2080
tree nodes (of which 32 nodes are in the approximate tree), 99.9% needs 5869,
and 99% needs 823. The results show that approximate analyzers can greatly
reduce the space cost without a significant loss of precision, and the cost and
the accuracy are adjustable.

4.2 Locality Prediction

We begin by testing program locality prediction using reference histograms
with 1000 bins, first for one benchmark program and then for all 15 programs.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 6, Article 20, Pub. date: August 2009.



20:20 . Y. Zhong et al.

35

30 __l Otest Mirain Sprediction Mref |

25
20
(]
Q
g 15
St -
i) .
210 :
ES H [|F "
() ol coa. (N ) [IF D--[l. . | : ]

&

Q
& D

Q ™ o © x o $

reuse distance

Fig. 8. Program locality prediction for Spec2K/Lucas.

Then we compare our full set of prediction methods and finally discuss a few
notable features of whole-program locality analysis.

4.2.1 Single-Model Prediction Based on Reference Histograms. An illus-
trative example is the program Lucas from the SPEC 2000 benchmark suite.
Based on the Lucas-Lehmer lemma, it tests the primality of very large
numbers—numbers up to 21, The program performs many large-number
multiplications through specialized fast Fourier transforms coded using the
C language. The program is difficult for a compiler to analyze.

The SPEC 2000 benchmark suite provides three inputs for the program. The
smaller two are “test” and “train” inputs. Respectively they make 5 million
reuses of 6 thousand data elements and 40 million reuses of 41 thousand data
elements. The first two sets of bars in Figure 8 show their locality signatures
in logarithmic scale distance histograms. The bars in the left half of their sig-
natures show a similar distribution of short reuse distances. The bars in the
right half show much longer reuse distances in “train” than in “test.”

Single-model locality prediction measures the log-linear distance histogram
for the two inputs, partitions the reuse distances into 1000 reference partitions,
identifies constant and linear patterns, and builds a locality model parameter-
ized by the input size measured using distance-based sampling. To test on-line
prediction, we ran the third “ref” input. The execution has 644 billion accesses
to 21 million data elements. After 0.4% of the execution time, distance-based
sampling detected the input size. Substituting this in the model, we predicted
the locality signature shown by the third group of bars in Figure 8. To compare,
we measured the locality signature for the entire “ref” run, shown by the fourth
set of bars.

Comparing the last two sets of bars in Figure 8, we see that the prediction
largely agrees with the measurement. The two signatures match. The right
half of the “ref” signature has no overlap with “test” and “train” signatures,
yet the predicted signature is correct in shape and height, demonstrating the
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ability by our method to predict large-scale behavior changes across the input
of this program. The “ref” execution is four orders of magnitude longer and
uses three orders of magnitude more data than “train” and “test” combined.
The accurate prediction shows that the model is successful in characterizing
the locality property at the program level, not just in a few executions.

We define prediction accuracy as follows. Let x; and y; be the size of ith bar
in predicted and measured histograms. The accuracy is

accuracy =1 — W
It measures the overlap between the two signatures, which ranges from 0% for
no match to 100% for a complete match. For example, the prediction of Lucas
in Figure 8 is 95% accurate.

Tables II and III list all the programs in our test set and summarize the
accuracy and coverage of the single-model prediction. The test set consists of
15 benchmarks, including 9 floating-point programs and 6 integer programs. All
programs came from SPEC 1995 and SPEC 2000 benchmark suites except for
SP from the NAS benchmark suite and a textbook version of a two-dimensional
FFT kernel. In experiments, we reduced the number of iterations in a program
if it did not affect the overall pattern. Most experiments used DEC Alpha sys-
tems. We compiled the test programs with the DEC compiler using the default
optimization (-O3). We used Atom [Srivastava and Eustace 1994] to instrument
the binary code to collect the addresses of all loads and stores and fed them to
our analyzer. The tool treated each distinct memory address as a data element.

The two tables have the same format, reporting each program in one row. The
first two columns give the name and a short description of the program. The
next column lists its reuse distance patterns, which can be constant, linear, or
sublinear. Floating-point programs generally have more patterns than integer
programs do. The fourth column shows the inputs used. They are all different
as shown in the next three columns in terms of the number of distinct data
elements, the number of data reuses per element, and the average reuse dis-
tance. The programs are listed in decreasing order of the average reuse distance.

Most inputs we used were standard test, train, and reference inputs from
SPEC, with the following exceptions. For GCC, we picked the largest and two
random inputs from the 50 files in its “ref” directory. Tomcatv and Swim had
only two different data sizes. We added more inputs. The test input of Twolf had
26 cells and was too small. We randomly removed half of the cells in its train
data set to produce a test input of 300 cells. Applu had a long execution time, so
we replaced the reference input with a smaller one. Finally, the inputs of Apsi
used high-dimensional data of different shapes, for which our predictor could
not make an accurate prediction. We changed the shape of its largest input. We
should also mention that all inputs of Hydro2d had a similar data size, but we
did not make any change. SP and FFT did not come from SPEC, so we randomly
picked their input sizes.

Columns 5 to 7 of the two tables show a range of data sizes from 14 thou-
sand to 36 million data elements, average reuse frequency from 6 to over
300 thousand reuses per element, and average reuse distance from 15 to over
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5 million. The longest trace is generated by the third input of Twolf and has
over 130 billion memory references. No two inputs are similar in data size or
execution length. The maximal reuse distance is very close to the data size in
all programs.

We use three different input sizes for all programs except for GCC. Based
on the two smaller inputs, we predict the largest input. We call this forward
prediction. The prediction also works backwards: based on the smallest and the
largest inputs, we predict the middle one. Locality in all executions can be thus
predicted by extrapolation and interpolation. The prediction accuracy is shown
by the 8" and 9" columns. The former, marked “Accuracy w/ data size,” gives
the prediction accuracy when using the number of distinct data elements as
the input size. The latter, marked “Accuracy w/ sample size,” gives the accuracy
when using distance-based sampling.

For most benchmarks, the two columns give comparable results, which in-
dicates a proportional relation between the input size and the data size. One
exception is Apsi in Table II. For different input parameters, the program ini-
tializes the same amount of data but uses different portions of the data in
computation. The prediction accuracy is only 27% using the data size but over
91% using distance-based sampling. In general, prediction based on sampling
yields a higher accuracy.

Both forward and backward predictions are fairly accurate. Backward pre-
diction is generally better except for Lucas—because the largest input is three
orders of magnitude larger than the medium-size input—and for Li—because
only the constant pattern is considered by the prediction. Among all prediction
results, the highest accuracy is 99.2% for the medium-size input of Tomcatv,
and the lowest is 72.8% for the large-size input of FFT. The average accuracy
is 93.5%.

The last column shows the prediction coverage. The coverage is 100% for
programs with only constant patterns because they need no sampling. For the
others, the coverage starts after the input size is found in the execution trace.
Let T be the length of the execution trace, and P be the logical time of the
discovery; the coverage is 1 — P/T. For programs using a reduced number of
iterations, T is scaled up to the length of the full execution. To be consistent with
other SPEC programs, we let programs SP and FFT have the same number of
iterations as Tomcatv. Data sampling uses the first peak of the first two data
samples for all programs with non-constant patterns except for Compress and
Li. Compress needs 12 data samples. It is predictable in this test because it
repeats compression multiple times. The results from program phase analysis
show that Gzip, which uses the same algorithm as Compress, has the same
locality when compressing files of different sizes and content [Shen et al. 2007].
Li has random peaks that cannot be consistently sampled. We predict Li based
only on the constant pattern. The average coverage across all programs is 99.1%.

The actual coverage is smaller because the instrumented program (for sam-
pling) runs slower than the original program. Our fastest analyzer causes a
slowdown of 20 to 100 times. In the worst case, we need a coverage of at least
99% to finish prediction before the end of the execution. Fortunately, the low
coverage happens only in Compress. Without Compress, the average coverage
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Table IV. Five Methods of Locality Prediction

Models Single Single Multiple Multiple Multiple
histogram reference | reference distance distance reference
histogram x-axis log-linear | log-linear | logarithmic | log-linear | log-linear
num. inputs 2 3+ 3+ 3+ 3+
num. patterns per bin 1 1 2+ 2+ 2+

Table V. Comparison of the Accuracy of Five Prediction Methods

Single Model Multi-model, 3+ Inputs

ref. hist. | ref. hist. dist. hist. Total
Bench-mark || 2inputs | 3+ inputs || logarithmic | log-linear | ref. hist. Inputs
Applu 92.06 97.40 93.65 93.90 90.83 6
Swim 94.02 94.05 84.67 92.20 72.84 5
SP 90.34 96.69 94.20 94.37 90.02 5
FFT 72.82 93.30 93.22 93.34 95.26 3
Tomcatv 92.36 94.38 94.70 96.69 88.89 5
GCC 98.61 97.95 98.83 98.91 93.34 4
Avg. 90.04 95.63 93.21 94.90 88.53 4.7

is 99.73%, suggesting 73% time coverage in online prediction on average. Even
without a fast sampler, the prediction is still useful for long running programs
and programs with mainly constant patterns. Six programs (or 40% of the test
suite) do not need sampling.

4.2.2 Multimodel Prediction. Multimodel prediction allows us to examine
three aspects of locality prediction in more depth: the use of multimodel predic-
tion and all three types of histograms, the effect of using more than two training
inputs, and prediction using very small inputs.

We compare five prediction methods listed in Table IV. The first two are
single-model prediction using two training inputs and more than two inputs.
Both use reference histograms computed from log-linear distance histograms.
The next three are multimodel prediction using all three types of histograms:
the reference histogram and the distance histogram in logarithmic and log-
linear scale. All methods use sampling to measure the input size.

We restrict our attention to six test programs in Table V, which have
multiple inputs and have some significant errors in single-model prediction.
The second and third columns show that regression analysis on multiple
inputs improves prediction accuracy. The largest improvement is from 73%
to 93% in the case of FFT. Across the six programs, the average accuracy is
raised from 90.0% to 95.6%.

The multimodel prediction using the logarithmic histogram is the most effi-
cient among all methods, using merely 20 or fewer bins. The average accuracy,
93%, is comparable to the accuracy obtained from much larger histograms.
However, low accuracy may result because the logarithmic scale produces large
ranges that may hide important details. In one execution of Swim, 12% of
the reuse distances occupy a narrow range between 260 and 280. Our predic-
tion method assumes a uniform distribution in each range, so the accuracy is
only 85% with logarithmic ranges, compared with 92% with log-linear ranges.
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Table VI. Accuracy for SP with Small-Size Inputs

Largest Testing | Single-Model | Single-model | Multi-model Multi-model
Training Size 2 Inputs 3+ Inputs Log Scale Log-linear Scale
83 108 79.61 79.61 85.92 89.50

123 79.72 75.93 79.35 82.84

143 69.62 71.12 74.12 85.14

283 64.38 68.03 76.46 80.30
103 123 91.25 87.09 84.58 90.44

143 81.91 83.20 78.52 87.23

16° 77.28 77.64 76.01 84.61
163 283 75.93 74.11 77.86 83.50

Multimodel prediction with reference histograms has the lowest average ac-
curacy among the five methods, although it makes the best prediction for one
program, FFT.

4.2.3 Prediction Using Small Inputs. An important assumption in all our
prediction methods is that the composition of patterns remains constant across
all executions. The assumption appears operable as shown by the accurate
prediction we have observed so far. If we decrease the input size, the effect of
nonrecurrent parts in a program, for example the initialization before a loop,
becomes significant. Next we pick one program, SP, artificially reduce the input
size, and evaluate our four best performing predictors.

Table VI shows the prediction accuracy when the size of the largest training
run is reduced to 1.6%, 3%, and 13% of the size used previously in Table II.
The two multimodel methods are up to 16% more accurate than the two single-
model methods. Multimodel prediction using log-linear distance histograms
is the most accurate, with accuracy ranging from 80% to 90%. The average
accuracy is 7% higher than the next best method. Multimodel prediction using
the logarithmic scale histogram does not perform as well for small inputs.

The ability of multimodel prediction to use very small inputs is useful in two
cases. First, the training time is proportional to the size of the training runs, so
very small training runs lead to very fast locality analysis. Second, it is often
unclear how to determine when an input size is large enough, so the prediction
is more reliable if it can maintain good accuracy across most input sizes.

4.3 Understanding Whole-Program Locality

Locality is considered a fundamental concept in computing because to under-
stand a computation we must understand its use of data. The predictive models
described in this article provide a new definition of locality that is quantitative,
verifiable, whole-program based and applicable to any sequential system. It
opens new ways to examine the active data usage in complex computations. We
discuss several unique features of this work that have significant implications
in how a programmer can better understand this important yet often elusive
concept.

4.3.1 Quantifying Locality as Patterns of Change. Profiling has long been
used to find invariant program properties. Examples include most used vari-
ables and functions [Wall 1991] and recurring program path [Hsu et al. 2002]
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for feedback-guided optimization, “hot” memory instruction streams for run-
time optimization [Chilimbi 2001b], and function-level [KleinOsowski and Lilja
2002] and general statistics [Eeckhout et al. 2002] for workload characteriza-
tion. The constant pattern in this article represents invariant locality. In 15
programs, 4 have only the constant pattern. Its presence in the other 11 pro-
grams ranges from 28% in Apsi to 84% in Twolf. The average is 55%. For local-
ity analysis, however, the constant pattern may be the least important because
reuse distances in a constant pattern are usually short and do not cause misses
in a large cache.

To fully characterize locality, locality prediction extends the use of profiling
analysis to capture behavioral variations between executions. The analysis is
aided by the property that reuse distance measures the recurrence independent
of the instruction and data addresses involved in the data access.

A careful reader may have noticed that for a number of programs, Tables II
and III display a near identical number in the “average distance per element”
column for different inputs. For example the number is 0.4 for all three inputs
of Swim, which means that the average distance is 40% of the data size. The
reason is that when the input size is sufficiently large, the total distance is
dominated by reuse distances in the linear pattern. The same average distance
is the result of the constant size of the linear pattern.

4.3.2 Relation between a Program and Its Input. The locality of the GNU
C Compiler, GCC, is predicted with 96% to 99% accuracy, which is higher than
people would normally expect. The program is large and complex—this version
has 222,182 lines of source code in 120 files. More importantly, the data usage
of the compiler should depend largely on the input. However, when measured
using reuse distance, GCC manifests surprisingly regular locality. Figure 9
shows the locality signature of five executions of GCC when compiling some of
its largest program files. The five signatures overlap by over 98%, which makes
prediction accurate and trivial.

A compiler belongs to the general class of service-oriented programs. It pro-
cesses input requests as a sequence of tasks, which in this case are the functions
to be compiled. Shen et al. [2007] found that the compilation tasks go through
the same sequence of phases in each task even though the length of the task is
input dependent and unpredictable.

The input files we used for GCC have hundreds of functions. The signature
might be showing the locality of compiling an “average” function. The consis-
tency across inputs might be due to consistency in programmers’ coding style,
for example, the distribution of function sizes. To understand this more, we
tested an extreme input, 166. i, provided by the benchmark set. It contains two
functions each with over one thousand lines of code. Distance-based sampling
shows that long reuse distances are two orders of magnitude greater in 166.i
than in other inputs. The locality of compiling 166. 1 is around 70% identical to
the locality signatures shown in Figure 9(a), which suggests that the locality in
GCC is 30% due to the input and 70% due to the program code.! This example

1Since the Alpha cluster has been replaced by a PC cluster at the time, we used the x86 binary
instead of the Alpha binary.
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Spec95/Gee, compiling itself

20 W train (934K data, 103M access)
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(a) The locality signature of five executions of GCC compiling its largest
program files

LaTeX typesetting program
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dingthesis (1M data, 342M acces)

M gzippaper (1M data, 58M access)

N
N
)

% references
—
(6)]
o

N
[

0 4 16 64 512 1K 4K 16K 64K 256K
reuse distance

(b) The locality signature of four executions of the LaTeX typesetting pro-
gram

Fig. 9. Locality signatures of GCC and Latex. The average locality is predictable even though the
execution is largely input driven. The two programs have very similar signatures, which indicates
common data usage patterns in compilation and type setting.

also suggests a general method—by testing a program on extreme inputs and
measuring the deviance from the average—for exploring the range of variability
in program locality.

4.3.3 Relation between Programs. With the whole-program locality model,
we can now conduct comprehensive comparisons of the locality in different
programs. In most cases, the locality signature is consistent in the same pro-
gram but differs from one program to another. One interesting exception is the
pair of programs GCC and Latex. Latex is a typesetting program commonly
used in scientific publishing (including this article). Four locality signatures of
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Latex, measured by Cheng [Cheng and Ding 2005] and shown in Figure 9(b), are
strikingly similar to the locality signatures of GCC shown in the same figure.
Intuitively, the result is expected since GCC and Latex are both language pro-
cessors, one for the C programming language and the other for a type-setting
language. However, it is significant that an automatic method can identify and
quantify this similarity using an objective metric.

The two programs were developed independently, Latex by Knuth, Lamport,
and other people mostly in universities, and GCC by a large group of open-
source developers. In the introduction we mentioned that reuse distance is
independent of localized transformations of a program or its execution. Here
is an demonstration that the metric captures inherent similarity between two
programs that share no code and have completely different data structures and
program organization.

There may be practical uses in comparing program locality. A customer who
is serious about performance may use locality as a metricin evaluating software
from different vendors. A software company may be interested in maintaining
performance (not just correctness) in new versions its products. The comparison
can reveal changes in locality in different software versions and confirm or
repudiate locality as a factor in complex performance problems. We have tested
two versions of GCC, one in SPEC 1995 and the other in SPEC 2000 benchmark
set, and found that their locality signatures overlap by 89%.

4.4 Summary

Compared to precise algorithms, approximate algorithms have faster perfor-
mance and the performance scales better with the size of data. Relative-
precision approximation provides unprecedented scalability, maintaining a
constant speed regardless of the size of data and the length of reuse distance. At
99% accuracy, it measures the length of reuse distance in trillions at the same
speed as exact solutions measure the length in millions. The scale tree it uses is
orders of magnitude more space efficient than precise representations. A user
can further improve the measurement speed by specifying a lower precision.

Using two training inputs, single-model prediction is 94% accurate on aver-
age for 15 benchmark programs, and its accuracy can be improved by 6% using
more training data. Distance-based sampling can detect the input size after
seeing less than 1% of an execution. The log-linear histograms always provide
the most precise information for locality prediction, either in single-model and
multimodel prediction.

Multimodel prediction can use logarithmic distance histograms and conse-
quently be an order of magnitude more space efficient. Space efficiency is neces-
sary for fine-grained analysis such as analyzing individual program instruction
or data. In addition, multimodel prediction is 90% accurate with one fiftieth of
the training data. However, the two efficiency boosts—logarithmic histograms
and small inputs—should not be used at the same time.

Whole-program locality shows aggregate data usage in general sequential
code. Our results show that a high degree of regularity in locality is a com-
mon phenomenon of collective behavior in complex code. The measurement and
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prediction techniques are useful in observing and understanding these emer-
gent effects, for example in understanding the relationships both between pro-
gram code and input and between different programs.

5. RELATED WORK

This section discusses related work in program locality analysis. See Section 2.3
for related work in reuse distance measurement.

Training-Based Analysis. Independent of our work, Marin and Mellor-
Crummey [2004, 2005] solved the same problem in the context of building a
performance modeling toolkit. It uses compiler analysis to identify groups of
related memory references for reuse-distance profiling. Given two histograms,
their method first finds leading bins that have identical reuse distances and
classifies them as constant patterns. Then it recursively divides the remain-
ing group by its average reuse distance until the two halves show the same
pattern of change in the two histograms, measured by the ratio between the
average reuse distances. It uses quadratic programming to determine the best
pattern parameters (because they model both locality and computation). A pat-
tern function is a linear combination of base functions, which can include user
supplied formula.

Recursive partitioning produces the minimal number of patterns with no
loss of accuracy. By analyzing one reference group at a time, it can identify
individual patterns that are difficult to separate in whole-program analysis.
Recursive partitioning, however, is costly in data collection because it needs to
store all reuse distances. In comparison, histograms with fixed-size bins are
much more efficient to store, but they lose information about the distribution
of reuse distances inside a bin. Multimodel prediction alleviates the problem
by statistically estimating the mixing of patterns in the same bin.

Fang et al. [2005] solved the problem of measuring and analyzing the lo-
cality of every memory operation in a program. They used log-linear bins in
data collection and experimented with different assumptions about the distri-
bution within a bin. They found that a linear distribution worked well for both
floating-point and integer programs while a uniform distribution (which we
use in this work) worked well only for floating-point code. To improve efficiency,
their method merges bins that have a similar distribution of reuse distances.
The adaptive merging has a similar effect to Marin and Mellor-Crummey’s
recursive partitioning and makes the model compact without sacrificing its
precision.

A common assumption in locality prediction is that a fixed fraction of reuse
distances belong to each pattern in every locality signature. Marin and Mellor-
Crummey [2004] tested heuristics not limited to this assumption but did not
find them as stable and accurate. Our results in Section 4.2.2 showed that the
assumption is mostly valid even for very small training inputs.

Static Analysis. Cascaval and Padua [2003] extended dependence analy-
sis to estimate the reuse distances and the locality signature in scientific pro-
grams. Beyls and D’Hollander [2005] developed reuse distance equations, which
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precisely compute the reuse distance in polyhedral loops using the Omega li-
brary [Kelly et al. 1996] as a fast symbolic but worst-case exponential-time
solver. There are a number of compiler techniques that estimate the miss rate of
a program [Porterfield 1989; Ferrante et al. 1991; Ghosh et al. 1999; Chatterjee
et al. 2001; Xue and Vera 2004]. Compared to the miss rate, reuse distance is
machine independent. Furthermore, it can be used to derive the miss rate. Beyls
and D’Hollander [2005] compared compiler analysis with profiling by testing
the effect of their use in cache-hint insertion.

A basic task of dependence checking is to analyze repeated accesses to
data [Allen and Kennedy 2001; Wolfe 1996; Banerjee 1988]. Large-scale data
usage can be summarized by various types of array section analysis [Havlak
and Kennedy 1991], including linearization for high-dimensional arrays [Burke
and Cytron 1986], linear inequalities for convex sections [Triolet et al. 19861,
regular array sections [Callahan et al. 1988a], and reference lists [Li et al.
1990]. Other locality analyses include the matrix model [Wolf and Lam 1991;
Kandemir 2005], memory ordering [McKinley et al. 1996], a number of later
studies using high-dimensional discrete optimization [Cierniak and Li 1995;
Kodukula et al. 1997], transitive closures [Song and Li 1999; Wonnacott 2002;
Yi et al. 2000], and integer equations [Adve and Mellor-Crummey 1998].

Locality affects the fundamental balance between computation and memory
transfer. Callahan et al. [1988b] defined the concept of program balance and
machine balance. Techniques for matching the two balances have benefits from
improving memory performance on conventional systems [Carr and Kennedy
1994; Ding and Kennedy 2004] to accelerating the design-space exploration in
hardware-software co-design [So et al. 2002]. Whole-program locality can be
used to estimate program balance in general-purpose applications.

Pure program analysis has a limited effect on general-purpose code because
of the difficulty in analyzing complex control flow and indirect data accesses
and characterizing aggregate program behavior. However, for regular loop nests
with linearly indexed array references, static analysis can precisely model the
iteration space and the data space. It can analyze locality in high-dimensional
data, which is difficult for training-based analysis. In addition, compiler anal-
ysis is sound in that the result can be used to reorder program execution, for
example, to change the program balance. Locality prediction is probabilistic.
It measures common behavior but not all behavior. It cannot observe program
behavior that does not occur in training runs. One solution is to combine com-
piler and profiling analysis, as demonstrated by Marin and Mellor-Crummey
[2005]. Another solution is speculative program optimization. For example,
Kelsey et al. [2009] proposed a software system that creates a FastTrack, which
is a copy of a program optimized for the common behavior. The original code
is run in parallel as a fallback in case the FastTrack code produces incorrect
results.

Reuse Frequency and Data Streams. Access frequency gives the first model
of data usage [Knuth 1971; Cocke and Kennedy 1974]. Later refinements in-
clude the lifetime of single objects [Seidl and Zorn 1998] or the affinity between
data pairs [Thabit 1981; Calder et al. 1998; Chilimbi et al. 1999]. Chilimbi and
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his colleagues extended the notion of affinity using hot data streams, which are
repeated sequences of data accesses up to 100 elements long [Chilimbi 2001a,
2001b]. Streams and distances are complementary concepts. Hot streams show
frequent repetitions, while the locality signature shows common recurrences.
A stream contains order information that can be used for data prefetching. The
locality signature provides a way to relate data by their aggregate locality (as
used in reference affinity analysis described in Section 6).

Runtime Analysis. Saltz and his colleagues pioneered dynamic paralleliza-
tion with the approach known as inspector-executor, where the inspector ex-
amines and partitions the data and computation at run time [Das et al. 1994].
Similar strategies were used to improve dynamic program locality [Ding and
Kennedy 1999; Mellor-Crummey et al. 2001; Strout et al. 2003; Han and Tseng
2006]. Knobe and Sarkar [1998] included runtime data analysis in array static-
single assignment (SSA) form. To reduce the overhead of runtime analysis,
Arnold and Ryder [2001] developed a software framework for periodic sam-
pling, which Chilimbi and Hirzel [2002] extended to discover hot data streams
for data prefetching. Liu et al. [2004] developed a dynamic optimization sys-
tem by leveraging hardware monitoring support for very low-cost sampling. In
addition to sampling based on program code and hardware events, Ding and
Kennedy [1999] sampled accesses to a subset of data in an array. Ding and
Zhong [2002] extended the scheme for use on dynamic data. Distance-based
sampling is a form of data-based sampling as it uses the reuse distance to
select data samples.

While runtime analysis can identify patterns unique to the current execution,
it is not as thorough as off-line training analysis. On the other hand, offline
models and online analysis can be combined to help each other, as this article
has shown in combining training analysis and distance-based sampling.

6. FIVE DIMENSIONS OF LOCALITY

Reuse distance has uses in numerous studies. As an imprecise and incomplete
count, a keyword search in the ACM Digital Library shows 91 publications
since 2003 that contain the phrase “reuse distance” in addition to the words
“locality” and “cache” in conferences and journals in the area of programming
systems, computer architecture, operating systems, and embedded systems. In
this section, we present a taxonomy that classifies representative problems,
solutions and uses of locality analysis in five mostly orthogonal dimensions:
input, code, data, time, and execution environment.

Whole-Program Locality. Locality affected by the program input. The
simple-model prediction described in this article has been used to predict
the capacity miss rate for a set of programs across cache sizes, program in-
puts [Zhong et al. 2007], and program phases [Shen et al. 2004b]. Fang et al.
[2005] extended whole-program prediction to predict the locality of each pro-
gram instruction as a function of the input size. They defined a general concept
called memory distance to include reuse, access, and value distance. Marin
and Mellor-Crummey [2004] considered cache associativity and computational
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characteristics and predicted performance across machine platforms. On paral-
lel systems, the scalability of a program depends on the ratio of computation to
communication. Locality determines the amount of communication. Rothberg
et al.[1993] used simulation and curve fitting to derive the program locality for a
SPLASH benchmark program, Barnes-Hut, which was too difficult for symbolic
analysis.

Locality in Program Code. Beyls and D’Hollander [2002, 2005] used the lo-
cality signature of each instruction to generate cache hints, which guide cache
replacement decisions in hardware so that the data loaded by low-locality in-
structions do not evict the data loaded by high-locality instructions. They re-
ported performance improvements for both integer and floating-point bench-
marks on Intel Itanium, demonstrating the first distance-based technique to di-
rectly improve performance. In a program, the locality of statements, loops, and
functions can be analyzed using training analysis [Fang et al. 2005], compiler
analysis (for scientific code) [Cascaval and Padua 2003; Beyls and D’Hollander
2005], or their combination [Marin and Mellor-Crummey 2004]. Beyls and
D’Hollander [2005] compared profiling analysis and compiler analysis (called
reuse distance equations) in generating cache hints.

Beyls and D’Hollander [2006a, 2006b] developed a program tuning tool SLO,
which identifies the cause of long distance reuses and gives improvement sug-
gestions for restructing the code. Using the tool, they were able to double the
average speed of five SPEC 2000 benchmarks on four machine platforms. Fur-
thermore, they used sampling analysis to reduce the profiling overhead from a
1000 times slowdown to a 5 times slowdown.

Locality in Program Data. As an optimization problem, data placement is
theoretically intractable in general [Petrank and Rawitz 2002]. In practice, a
useful metric is reference affinity, which identifies data that are used together.
Zhong et al. [2004] defined reference affinity using reuse distance and showed
its use in array regrouping and structure splitting. Zhang et al. [2006] showed
formally that reference affinity uncovers the hierarchical locality in data from
the access pattern in computation. Shen et al. [2005] developed a static analysis
of reference affinity and tested its use in the IBM compiler. Zhao et al. [2007]
included affinity in the Forma framework for automatic array reshaping in the
IBM compiler.

Spatial locality measures the quality of a data layout. Three studies have
defined spatial locality as the change in locality when the granularity of data
increases from data elements to cache blocks [Berg and Hagersten 2005; Gu
et al. 2009] or from data elements to memory pages [Bunt and Murphy 1984].
Gu et al. [2009] ranked program functions by (the lack of) spatial locality to aid
program tuning.

Locality over Time. Batson and Madison [1976] defined a phase as a period
of execution accessing a subset of program data. Denning [1980] stated that a
proper model must account for the tranquility of phases as well as disruptive
transitions. Shen et al. [2004a, 2007] built a model by effectively converting
an execution to a signal, that is, a sequence of reuse distances, and applying
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wavelet analysis to separate gradual changes from disruptive ones. Many sub-
sequent studies considered wavelets and locality phases in modeling temporal
behavior in a system.

For cache and memory management, a basic problem is predicting the time
of future data access. Increasing evidence shows that the last reuse distance is
an effective predictor. It has been used in memory management [Smaragdakis
et al. 2003; Chen et al. 2005; Zhou et al. 2004] and file caching [Zhou et al.
2001; Jiang and Zhang 2002]. Kelly et al. [2004] found reuse distance to be a
powerful predictor of response time in server systems. Almeida et al. [1996]
showed that the locality signature of web reference streams follows log-normal
distributions, in which the logarithm is normally distributed.

Interaction between Programs. When multiple running programs share a
cache, the performance of one program is influenced by the locality of others.
The effect can be modeled by inflating the reuse distance of the program with
the footprint of its peers [Suh et al. 2001; Chandra et al. 2005]. Jiang et al.
[2008] formulated the problem of optimal coscheduling on shared cache. For
memory sharing, Yang et al. [2006] studied cooperative interaction between
heap management in the Java virtual machine and memory management in
the operating system. The key metric is the LRU reference histogram, which is
equivalent to the locality signature in this article.

7. CONCLUSIONS

Locality has become increasingly important in the design of algorithms, com-
pilers, operating systems, and computer architectures. In this article we have
presented training-based whole-program locality analysis, which consists of
two approximate algorithms for measuring reuse distance and five prediction
methods for modeling whole-program locality. The approximate algorithms are
faster and more scalable than exact solutions while guaranteeing an absolute
or relative precision. The precision and cost are adjustable. The asymptotic
cost of the relative-precision algorithm is effectively linear in the length of the
trace. The five prediction methods decompose reuse distances using either ref-
erence histograms or distance histograms in logarithmic or log-linear scales.
Each locality component can have a single pattern or multiple patterns. For
15 floating-point and integer benchmark applications, single-model prediction
using two inputs shows 94% accuracy and 99% coverage. The accuracy can be
improved by using more inputs and multimodel prediction. The efficiency can
be improved by using compact histograms or very small inputs.

Locality is a fundamental aspect of computation. The new locality models
in this article are quantitative yet they are not tied to any specific machine
and are unaffected by irrelevant aspects of program construction. The results
show that through them locality can be quantified for complex applications. The
decomposition of locality as done in this work is orthogonal to the traditional
decomposition of program code and data and hence provides a new dimension in
program analysis. It provides a systematic model of application data behavior
and a quantitative basis for understanding and managing dynamic data usage
at different levels of a computing system.
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