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Profiling can accurately analyze program behavior for select data inputs. This article shows
that profiling can also predict program locality for inputs other than profiled ones. Here locality
is defined by the distance of data reuse. The article describes three distance-based techniques

for whole-program locality analysis. The first is approximate measurement of reuse distance in
near linear time. It can measure the reuse distance of all accesses to all data elements in full-
size benchmarks with guaranteed precision. The second is pattern recognition. Based on a few

training runs, it classifies patterns as regular and irregular and, for regular ones, it predicts their
(changing) behavior for other inputs. It uses regression and multi-model analysis to reduce the
prediction error, the space overhead, and the size of the training runs. The last technique is on-
line prediction, which uses distance-based sampling at the beginning of an execution to estimate

the locality of the whole execution. When tested on 15 integer and floating-point programs from
SPEC and other benchmark suites, these techniques predict with on average 94% accuracy for
data inputs up to hundreds times larger than the training inputs. Distance-based locality analysis
has been used in measuring and improving the cache performance of a wide range of programs.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—optimization, compilers

General Terms: Measurement, Languages, Algorithms

Additional Key Words and Phrases: program locality, reuse distance, stack distance, profiling

analysis

1. INTRODUCTION

Caching is widely used in many computer programs and systems, and cache performance
increasingly determines system speed, cost, and energy usage. The effect of caching is
determined by the locality of the memory access of a program.As new cache designs are
adding more cache levels and allowing dynamic reconfiguration, the cache performance
increasingly depends on our ability to predict the program locality.

Many programs have predictable data-access patterns. Somepatterns change from one
input to another, for example, a finite-element analysis fordifferent size terrains and a
Fourier transformation for different length signals. Somepatterns are constant, for ex-
ample, a chess program looking ahead a finite number of moves and a compression tool
operating over a constant-size window.

The past work provides mainly three ways of locality analysis: by a compiler, which
analyzes loop nests but is not as effective for dynamic control flow and data indirection;
by a profiler, which analyzes a program for select inputs but does not predict its behavior
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change in other inputs; or by run-time analysis, which cannot afford to analyze every access
to every data. The inquiry continues for a prediction schemethat is efficient, accurate, and
applicable to general-purpose programs.

The article presents a new method for locality prediction, using a concept we call the
reuse distance. In a sequential execution, the reuse distance of a data access is the number
of distinctdata elements accessed between this and the previous accessof the same data.
Since it measures the volume of the intervening data access,it is always bounded, even for
a long-running program. In 1970, Mattson et al. [1970] defined a collection of concepts
called stack distances and laid a foundation for the research in virtual memory management
in the following decades. TheLRU stack distanceis the stack distance using the least-
recently-used replacement policy. The reuse distance of a data access is equal to the stack
distance between this and the previous access of the same data. We use a different (and
shorter) name to reflect our purpose in program analysis, notmemory management. We
later show that reuse distance is measured much faster usinga tree instead of a stack.

Three properties of the reuse distance are critical for predicting program locality across
different executions of a program. First, the reuse distance is at most a linear function
of the program data size. The search space is much smaller forpattern recognition and
prediction. Second, the reuse distance reveals invariancein program behavior. Most con-
trol flow perturbs only short access sequences but not the cumulative distance over a large
amount of data. Long reuse distances suggest important dataand signal major phases of
a program. Finally, reuse distance allows direct comparison of data behavior in different
program runs. Different executions of a program may allocate different data or allocate
the same data at different locations. They may go through different paths. Distance-based
correlation does not require two executions to have the samedata or to execute the same
function. Therefore, it can identify consistent patterns in the presence of dynamic data
allocation and input-dependent control flows.

The article presents distance-based locality analysis andprediction. It has three new
components. The first is approximate reuse-distance analysis, which bounds the relative
error to arbitrarily close to zero. It takesO(N log log M) time andO(log M) space, where
N is the length of the trace andM is the size of the data. The second is pattern recogni-
tion, which profiles a few training runs, classifies patternsas regular and irregular, and, for
regular ones, constructs a parameterized model. It uses regression and multi-model anal-
ysis to reduce the prediction error, the space overhead, andthe size of the training runs.
Using the locality pattern, the last technique, distance-based sampling, predicts the locality
of an unknown execution by sampling at the beginning of the execution. Together these
three techniques provide a general method for predicting the locality of a program across
different data inputs.

We should note that the goal of this work is not cache analysis. Cache performance is
not a direct measure of a program but a projection of a particular execution on a particular
cache configuration. Our goal is program analysis. We find patterns consistent across
all data inputs. We analyze the reuses of data elements instead of cache blocks. The
element-level behavior is harder to analyze because it is not amortized by the size of cache
blocks or memory pages (element miss rate is much higher thancache-block miss rate).
We analyze the full distance, not its comparison with fixed cache sizes. Per-element, full-
length analysis is most precise and demands highest efficiency and accuracy. The distance-
based analysis has many uses in understanding and improvingthe performance of real
cache systems, as discussed in Section 4.
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We do not find all patterns in all programs. Not all programs have a consistent pattern,
nor are all patterns predictable, let alone by our method. Our goal is to define common
recurrence patterns and measure their presence in representative programs. As dependence
analysis analyzes loops that can be analyzed, we predict patterns that are predictable. We
now show that, in many cases, reuse distance can extend the scope of locality analysis to
the whole program.

2. DISTANCE-BASED LOCALITY ANALYSIS AND PREDICTION

This section presents the three components: approximate reuse-distance analysis, distance-
pattern recognition, and distance-based sampling.

2.1 Approximate reuse-distance measurement

We view a program execution by its data-access trace. To find the reuse distance, a naive
algorithm would traverse the trace and for each access, search backwards to find the last
access of the same data and count the number of different datain between. In the worst
case, it needs to look back to the beginning of the trace, so the asymptotic complexity is
O(N2) in time andO(N) in space for a trace ofN memory accesses. These costs are
impractical for real programs, whereN is often in hundreds of billions.

The time and space costs can be reduced by better measurementalgorithms. We illus-
trate the past solutions and our new algorithm through an example in Figure 1. Part (a)
shows that we need to count accesses to distinct data. Part (b) shows that instead of storing
the whole trace, we store (and count) just the last access of each data element. Part (c)
shows the most efficient counting in the past literature. By organizing the last-access times
in a search tree, the counting is done in a single tree search.Assuming a balanced tree, the
measurement takesO(N log M) time andO(M) space, whereM is the size of program
data. For a program with a large amount of data, the space requirement becomes a limiting
factor. The tree needs to store at least four attributes for each data element, as shown in
Figure 1(d). Since the tree data is four times the program data, the space requirement of
the analysis easily overflow the physical memory of a machineand even the 32-bit address
space when a program uses more than 100 million data.

We describe an approximate analysis that further reduces the asymptotic costs of the
measurement. Accurate analysis is costly but often unnecessary for long reuse distances.
If the length of a distance is in the order of millions, we rarely care about the last couple of
digits of the distance. By reducing the space cost, we can make the tree small enough to fit
in not only the physical memory but also the processor cache.

In the following discussion, we do not consider the cost of finding the last access time.
This requires a hashtable with one entry for each data. The time cost of the hash lookup
is constant per access. Bennett and Kruskal [1975] showed that hashing can be done in a
pre-pass, using blocked algorithms to reduce the memory requirement to arbitrarily low.

We present two approximation algorithms, with different guarantee on the accuracy of
the measured distance,dmeasured, compared to the actual distance,dactual. Both guarantee
dmeasured ≤ dactual. The difference is whether the error is bounded by a relativerate or
an absolute number.

1. bounded relative errore, 1 ≥ e > 0 and dactual−dmeasured

dactual
≤ e

2. bounded absolute errorB, B > 0 anddactual − dmeasured ≤ B
We show the main idea of the approximate analysis in Figure 1.As shown in Part (c) for

the accurate analysis, the tree stores the last access of each element in a separate tree node.
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(c)  The simplified trace in (b) is organized as a 

search tree.  Each tree node represents the last access 

of a data element.  The first attribute is the search 

key, which is the last-access time.  The weight 

attribute is the size of the sub-tree.  To measure the 

reuse distance, we find the last access of b through a 

tree search.  Then we count the number of tree nodes 

after its last access by a traversal of the search path 

using the sub-tree weight.

(d)  Each node represents a time range given by the first 

attribute. The size attribute is the number of elements 

whose last access is within the time range.  The weight is 

the total size of the sub-tree.  The capacity bounds the 

size of a tree node to ensure a particular accuracy, which 

is 33% in this case.  To measure the reuse  distance, we 

find the range that includes the last access of b and add 

the size of the tree nodes since then.  The approximate 

distance of two b's is 3 or 60% of the actual distance. 

(a) An example access sequence.  The reuse 

distance of the second access of b is five because 

five distinct elements are accessed since the last 

access of b.

(b)  All but the last access of each element in (a) are 

crossed out.  The reuse distance is the number of the 

remaining accesses after the last access of b at time 

four.

Fig. 1. An example illustrating the reuse-distance measurement. Part (a) shows the definition of reuse distance. Parts (b) and (c) show two
accurate measurements. Part (d) shows the approximate measurement with a bounded relative error (67%).
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We can reduce the size of the tree by using a node to store a timerange that includes the
last access of multiple elements, as shown in Part (d). We define the size of a tree node as
the number of last accesses contained in its time range. Compared to the accurate tree, the
size of the approximation tree is smaller by a factor equal tothe average node size. The
smallest tree has one node, whose time range is the entire trace. It is also the least accurate.
The approximation methods set the node size differently to obtain different efficiency and
accuracy. The rest of this section describes them in detail.

2.1.1 Analysis with a bounded relative error.The analysis guarantees a bounded error
rate that can be arbitrarily close to zero. Figure 2 shows thedata structure and the main
algorithm. Each node represents a time range in the trace. Its size is the number of the last
accesses in the time range. Given the current and the last access time, the main routine uses
TreeSearchDeleteto find the reuse distance,TreeInsertto insert the current access as the
last access, andTreeCompressionto reduce the tree size when the size is above a threshold.
The algorithms forTreeSearchDeleteandTreeCompressionare shown in Figure 3. The first
subroutine searches the tree, calculates the reuse distance, and updates the capacity of the
node once it is found. Then it deletes the tree node because the current access will be
added as the last access. The tree insertion and deletion will rebalance the tree and update
sub-tree weights. These two steps are not shown because theydepend on the type of the
balanced tree being used, which can be an AVL, red-black, splay, or B-tree.

To ensure the relative accuracy, the algorithm sets the capacity of a tree noden to be
at mostdistance ∗ e

1−e , wheredistance is the total size of thelater tree nodes, which
are the nodes whose time range is greater than the time range of n. In other words, the
distance gives the number of distinct data accessed aftern. If the last access time falls
in the time range ofn, the algorithm usedistance as the approximate reuse distance.
The approximation is no greater than the actual distance. Since the actual distance can
be at mostdistance plus the node capacity, the accuracy is at leastdistance divided by
distance + distance ∗ e

1−e , which is1 − e. The formula of e
1−e is not valid if e = 0 or

e = 1. The former means accurate analysis. The latter means that the error can be any
fraction of the actual distance. We can simply return 0 as themeasured distance.

The size of the tree determines the efficiency of the algorithm. The most important part
of the algorithm is tree compression. The subroutineTreeCompressionscans the tree nodes
in the reverse time order and updates the capacity to bedistance∗ e

1−e . It merges adjacent
tree nodes if the size of the merged node is no more than the smaller capacity of the two
nodes. Tree compression is triggered when the tree size exceeds4 ∗ log1+e′ M + 4, where
M is the number of accessed data. It guarantees that the tree size is cut by at least a half.
The following proposition proves this property and gives the time and space complexity.

PROPOSITION 2.1. For a trace ofN accesses toM data elements, the approximate
analysis with a bounded relative errore (1 > e > 0) takesO(N log log M) time and
O(log M) space, assuming it uses a balanced tree.

PROOF. The maximal tree size cannot exceed4∗ log1+e′ M +4, or,O(log M), because
of tree compression. Heree′ = e

1−e . We now show thatTreeCompressionis guaranteed
to reduce the tree size by at least a half every time it is invoked. Letn0, n1, ..., and
nt be the sequence of tree nodes in the reverse time order. Consider each pair of nodes
after compression,n2i andn2i+1. Let sizei be the combined size of the two nodes. Let
sumi−1 be the total size of nodes beforen2i, that issumi−1 =

∑
j=0,...,i−1

sizej . The
new capacity of the node,n2i.capacity, is ⌊sumi−1 ∗ e′⌋. The combined size,sizei, must
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data declarations
TreeNode= structure(time, weight, capacity, size, left, right, prev)
root: the root of the tree
e′: the bound on the error rate

algorithm ReuseDistance(last, current)
// inputs are the last and current access time
TreeSearchDelete(last, distance)
new = TreeNode(current, 1, 1, 1,⊥,⊥,⊥)

TreeInsert(new)
if (tree size ≥ 4 ∗ log1+e root.weight + 4)

TreeCompression(new)
Assert(compression more than halves the tree)

end if
return distance

end algorithm

Fig. 2. Approximate analysis with a bounded relative error.Part I.

be at leastn2i.capacity + 1 and consequently no smaller thansumi−1 ∗ e′; otherwise the
two nodes should have been compressed. We havesize0 ≥ 1 andsizei ≥ sumi−1∗e′. By
induction, we havesumi ≥ (1 + e′)i or i ≤ log1+e′ sumi. For a tree holdingM data in
Tcompressed tree nodes after compression, we havei = ⌊Tcompressed/2⌋ andsumi = M .
Therefore,Tcompressed ≤ 2 ∗ log1+e′ M + 2. In other words, each compression must
reduce the tree size by at least a half.

Now we consider the time cost. Assume that the tree is balanced and its size isT . The
time for the tree search, deletion, and insertion isO(log T ) per access. Tree compression
happens periodically after a tree growth of at least2 ∗ log1+e′ M + 2 or T/2 tree nodes.
Since at most one tree node is added for each access, the number of accesses between
successive tree compressions is at leastT/2 accesses. Each compression takesO(T ) time
because it examines each node in a constant time, and the treeconstruction from an ordered
list takesO(T ). Hence the amortized compression cost isO(1) for each access. The total
time is thereforeO(log T + 1), or O(log log M) per access.

2.1.2 Analysis with a bounded absolute error.For a cut-off distanceC and a constant
error boundB, the second approximation algorithm guarantees the precise measurement
of distances shorter thanC and an approximate measurement of longer distances with a
bounded errorB. It divides the access trace in two parts. Theprecise tracekeeps the last
accessedC elements. Theapproximate tracestores the remaining data in a tree where
the capacity of each tree node isB. Periodically, the algorithm transfers data from the
precise trace to the approximate trace. Our earlier paper describes a detailed algorithm and
its implementation using a B-Tree in both the precise and approximate trace [Zhong et al.
2002].

We now generalize algorithm. The precise trace can use a list, a vector, or any type
of trees, and the approximate trace can use any type of trees,as long as two minimal re-
quirements are met. First, the size of the precise trace is bounded by a constant. Second,
the minimal occupancy of the approximate tree is a constant fraction. To satisfy the first
requirement, we need to transfer data from the precise traceto the approximate trace when
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subroutine TraceSearchDelete(time, distance)
// time is the last access time
node = root; distance = 0
while true

node.weight = node.weight − 1
if (time < node.time and node.prev existsand time ≤ node.prev.time)

if (node.right exists)
distance = distance + node.right.weight

if (node.left not exists)break
distance = distance + node.size
node = node.left

else if (time > node.time)
if (node.right not exists)break
node = node.right

else break
end if

end while
node.capacity = max(distance ∗ e

1−e , 1)

node.size = node.size − 1
return distance

end subroutine TreeSearchDelete

subroutine TreeCompression(n)
// n is the latest node in the tree
distance = 0
n.capacity = 1
while (n.prev exist)

if (n.prev.size + n.size ≤ n.capacity)
// merge n.prev into n
n.size = n.size + n.prev.size
n.prev = n.prev.prev
deallocate n.prev

else
distance = distance + n.size
n = n.prev
n.capacity = max(distance ∗ e

1−e , 1)

end if
end while
Build a balanced tree from the list and return the root

end subroutine TreeCompression

Fig. 3. Approximate analysis with a bounded relative error.Part II.
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Table I. The asymptotic complexity of the reuse-distance measurement algorithms
Measurement Algorithms Time Space

trace as a stack (or list) [Mattson et al. 1970] O(NM) O(M)
trace as a vector-based interval tree O(N log N) O(N)

[Bennett and Kruskal 1975; Almasi et al. 2002]
trace as a search tree [Olken 1981] O(N log M) O(M)

[Sugumar and Abraham 1993; Almasi et al. 2002]
list-based aggregation [Kim et al. 1991] O(NS) O(M)

approx. w/ bounded absolute error O(N log M
B ) O(M

B )
approx. w/ bounded relative error O(N log log M) O(log M)

N is the length of execution,M is the size of program data

the size of the former exceeds a threshold. To ensure a minimal occupancy of the approx-
imate tree, we can simply merge two consecutive tree nodes ifthe combined size is no
more than their capacity. The merge operation guarantees atleast half utilization of the
tree capacity. Therefore, the maximal size of the approximate tree is2M

B .
We implemented a splay tree [Sleator and Tarjan 1985] version of the algorithm. We

will use only the approximate trace (the size of precise trace is set to 0) in distance-based
sampling because it runs fastest among all analyzers, as shown in Section 3.

2.1.3 Comparisons with Previous Algorithms.The past 30 years have seen a steady
stream of work in measuring reuse distance. We categorize previous methods by their
organization of the data access trace. The first three rows ofTable I show methods using
a list, a vector, and a tree. In 1970, Mattson et al. [1970] published the first measurement
algorithm. They used a list-based stack. Bennett and Kruskal [1975] showed that a stack
was too slow to measure long reuse distances in database traces. They used a vector and
built an m-ary interval tree on it. They also showed how to use blocked hashing in a
pre-pass. In 1981, Olken [1981] implemented the first tree-based method using an AVL
tree. He also showed how to compress the trace vector in Bennett and Kruskal’s method
and improve the time and space efficiency to those of the tree-based algorithms. In 1994,
[Sugumar and Abraham 1993] showed that a splay tree [Sleatorand Tarjan 1985] has better
memory performance. Their analyzer,Cheetah, is widely distributed with the SimpleScalar
tool set. Recently, [Almasi et al. 2002] gave an algorithm that records the empty regions
instead of non-empty cells in the trace. Although the asymptotic complexity remains the
same, the actual cost of trace maintenance is reduced by 20% to 40% in vector and tree
based traces. They found that the modified Bennett and Kruskal method was much faster
than methods using AVL and red-black trees.

Kim et al. [1991] gave the first imprecise (but accurate) analysis method in 1991. Their
method stores program data in a list, marksS ranges in the list, and counts the number of
distances fell inside each range. The time cost per access isproportional to the number of
markers smaller than the reuse distance. The space cost isO(C), whereC is the furthest
marker. The method is efficient ifS andC are bounded and not too large. It is not suitable
for measuring the full length of the reuse distance, whereS andC need to be proportional
to M . Unlike approximate analysis, this method gives an accurate count of the the reuse
distances fallen within a marked range.

In comparison, the two approximation methods, shown in the last two rows in Table I,
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trade accuracy for efficiency especially the space efficiency. They can analyze traces with a
larger amount of data and longer reuse distances. The methods are adjustable, and the cost
is proportional to the accuracy. The analysis with a boundedrelative error has the lowest
asymptotic complexity in space and time, for an error rate that can be arbitrarily close to
zero. It for the first time cuts the space complexity from linear to logarithmic. The time
cost per access isO(log log M), which is effectively constant for any practicalM .

Reuse distance is no longer a favorable metric in low-level cache design because it can-
not model the exact interaction between the cache and CPU, for example, the timing. How-
ever, for program traces, reuse distance determines the number of capacity misses for all
cache sizes. Earlier work has also extended it to analyze interference in various types of
set-associative cache [Hill 1987; Mattson et al. 1970]. Section 4 will discuss the uses of
reuse distance analysis in performance analysis and optimization.

2.2 Distance-pattern prediction

Pattern recognition detects whether the recurrence pattern is predictable across different
data inputs. We define the reuse, recurrence or locality pattern as the distribution of the
reuse distance in a program, represented by a histogram and called thereuse signature.
Based on the reuse signature of two or more training runs, distance-based pattern recogni-
tion constructs a parameterized pattern that predicts the reuse signature for other inputs of
the program. The main parameter is the size of data involved in program recurrences. This
is not the same as the size of data touched by a program. The next section will show how
to obtain an estimate of this number through distance-basedsampling. In this section, we
assume it exists and refer to it indistinctively as the program data size.

Three factors strongly affect the prediction accuracy: thenumber of training inputs,
the precision of the histogram collection, and the complexity of patterns. The number
of training inputs needs to be at least two, although using more inputs may allow more
precise recognition of common patterns. The precision of data collection is determined
by the number of histogram bins. Using more bins leads to moreprecise distribution of
the reuse distance but lower speed in data collection and pattern prediction. The third
factor is the complexity of patterns. We now describe the collection of histograms and the
recognition of their patterns.

2.2.1 Collecting distance and reference histograms.We use two types of histograms.
In a reuse-distance histogram(distance histogramin short), thex-axis is reuse-distance
ranges, and they-axis is the percentage of data accesses in each range or thesizeof each
bin. The range of the distance can be in alinear scale, e.g.[0k, 1k), [1k, 2k), [2k, 3k), · · ·,
or a log scale, e.g. [0, 1), [1, 2), [2, 4), [4, 8), · · ·, or a log-linear scalewhere the ranges
below2048 are in a log scale and those above2048 in a linear scale. Figure 4(a) shows the
reuse-distance histogram of a fluid dynamics simulation program,SP , in the log scale.

A reference histogramis a transpose of the reuse-distance histogram. Thex-axis is
groups of data accesses, sorted by the reuse distance. They-axis is the average reuse
distance of each bin. All bins have the same size. Figure 4(b)is the reference histogram of
SP in 100 bins. It first gives the average distance for the 1% shortest reuse distances, then
the average for the next 1% shortest reuse distances, and so on.

The reference histogram complements the distance histogram. A distance histogram
controls the range of the distance of a bin but not its size. A reference histogram ensures
equal size but the range of distance may not be uniform. Controlling the size of a bin
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Fig. 4. The histograms ofSPwith the input size283. (a) the reuse-distance histogram (b)
the reference histogram

serves two purposes. First, it isolates the effect of non-recurrent parts of the program.
Some instructions are executed per execution; some are repeated per program data. When
the data size becomes sufficiently large, the effect of the former group diminishes into at
most a single bin of the histogram. Second, it offers a trade-off between information loss
and computation/space efficiency. For dense regions in the distance histogram, where a
large portion of memory accesses have similar reuse distances, the reference histogram
uses short ranges to increase accuracy. For sparse regions in the distance histogram, the
reference histogram uses large ranges to reduce the total number of bins. The size of the
bin determines the granularity and the cost of prediction. Abin size of 1% means that
we need to analyze only 100 bins. At the same time, we do not predict the distribution of
distances within each 1% of memory references.

We first collect the distance histogram through profiling. Wethen compute the reference
histogram by traversing the distance histogram and calculating the average distance for
each fraction of memory references. Getting a precise histogram incurs a high space cost.
We again use approximation since we do not measure precise distances anyway. In the
experiment, we collect the distance histogram using a log-linear scale. The size of bins
is a power of 2 up to2048 and then it is2048 for each bin. To improve precision, we
calculate the average distance within each bin and use the average distance as the distance
of all references in the bin when converting it to the reference histogram. Each bin in our
reference histogram holds 0.1% of the total data accesses. The cost and accuracy of the
histogram collection can be adjusted by simply changing thesize of bins in both types of
histograms.

2.2.2 Distance patterns.Given two reference histograms from two training runs, we
construct a formula to represent the distance value of each bin. We denote the bins in
the two histograms as〈g1, g2, · · · , gB〉 and〈ĝ1, ĝ2, · · · , ĝB〉 and denote the average reuse
distances ofgi and ĝi by di andd̂i respectively,i = 1, 2, · · · , B, whereB is the number
of bins. Lets andŝ be the data size of the two training runs. We can use linear fitting to
find the closest linear function that maps the data size to thereuse distance. Specifically,
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we find the two coefficients,ci andei, that satisfy the following two equations.

di = ci + ei ∗ fi(s) (1)

d̂i = ci + ei ∗ fi(ŝ) (2)

wheredi andd̂i is the average reuse distance ofith reference group when the input size is
s and ŝ, ci andei are two parameters to be determined by the prediction method, andfi

is a function. Assuming the functionfi is known, the two coefficients uniquely determine
the distance for any other data size. The formula therefore defines the pattern for each
bin, parameterized by the data size. The program pattern is the aggregation of all bins.
The pattern is more accurate if more training runs are used, as shown later. The minimal
number of training inputs is two.

In a program,the largest reuse distance cannot exceed the size of programdata. There-
fore, the functionfi can be at most linear. It cannot be a general polynomial function. We
consider the following choices offi:

0; s; s1/2; s1/3; s2/3

The first is 0. We call it a constant pattern because reuse distance does not change with the
data size. A bini has a constant pattern if its average reuse distance stays the same in the
two runs, i.e.di = d̂i. The second iss. We call it a linear pattern. A bini has a linear
pattern if the average distance changes linearly with the change in program input size, i.e.
di

d̂i

= ci + ei
s
ŝ , wherec andk are constants. Constant and linear are the lower and upper

bound of the reuse distance changes. Between them are the three sub-linear patterns. The
patterns1/2 happens in two-dimensional problems such as matrix computation. The other
two happen in three-dimensional problems such as ocean simulation. We could consider
higher dimensional problems in the same way, although we didnot find a need in our test
programs.

For each bin of the two reference histograms, we calculate the ratio of their average
distance,di/d̂i, and pickfi to be the pattern function that is closest todi/d̂i. We take care
not to mix sub-linear patterns from a different number of dimensions. In our experiments,
the dimension of the problems was given as an input to the analyzer. This can be automated
by trying all dimension choices and using the best overall fit.

2.2.3 Regression-based prediction.Using more than two training inputs may produce
a better prediction, because it reduces the noise from imprecise reuse distance measurement
and reference histogram construction. According to the regression theory, more data can
reduce the effect of noises and reveal a pattern closer to thereal pattern [Rawlings 1988].
Accordingly, we apply a regression method on more than two training inputs.

The extension is straightforward. For each input, we have anequation as shown in
Equation 1. For each bin, instead of two linear equations fortwo unknowns, we have as
many equations the number of training runs. We use theLeast square regression[Rawlings
1988] to determine the best values for the two unknowns. We use 3 to 6 training inputs in
our experiment. Although more training data can lead to better results, they also lengthen
the profiling process. We will show that a small number of training inputs is sufficient to
gain high prediction accuracy.

2.2.4 Multi-model prediction.An important source of imprecision comes from the
limited granularity because the above methods assume that all accesses in the same bin
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have the same pattern. We call them single-model prediction. We now describe multi-
model prediction, which allows multiple patterns inside each bin of a histogram. We will
use the terms pattern and model interchangeably.

In multi-model prediction, the reuse distance function of abin is as follows.

hi(s) = ϕm1
(s, i) + ϕm2

(s, i) + · · · + ϕmj
(s, i) (3)

where,s is the size of input data,hi(s) is they-axis value of theith bin for input of sizes,
andϕm1

...ϕmj
are the functions corresponding to all possible patterns ormodels.

Eachhi(s) is a linear combination of all the possible models of the standard histogram:

ϕm1
(s0, 1), ϕm1

(s0, 2), · · · , ϕm1
(s0, B), ϕm2

(s0, 1), ϕm2
(s0, 2), · · · , ϕm2

(s0, B),
· · · , ϕmj

(s0, 1), ϕmj
(s0, 2), · · · , ϕmj

(s0, B)

where,B is number of bins in the standard histogram.
Figure 5 shows an example of the multi-model prediction. We arbitrarily pick one of

the training inputs as thestandard input. In this example,s0 is the size of the standard
input (the other training inputs are not showed in the figure.) Its reuse distance histogram,
calledstandard histogram, has 12 bins, and each bin has two models—the constant and
the linear pattern. Using multi-model analysis, the standard histogram in Figure 3(a) is
decomposed into the constant and the linear pattern in Figure 3(b) and 3(c). Given another
program data size, e.g.8∗s0, we predict the reuse distance accordingly for the two patterns,
Figure 5(d) for the constant pattern and 5(e) for the linear pattern. The constant pattern
remains unchanged, and the distance of the accesses in the linear pattern is lengthened by
a factor of 8. Thex-axis is in log scale, so the bar in the linear pattern moves right by 3
points. The final prediction is the combination of the predicted constant and linear parts,
shown in Figure 3(f).

As an example of the actual calculation, take a program that has both constant and linear
patterns. For easy description, we assume:

range 0: [0,1); range 1: [1,2); range 2: [2,4); range 3: [4,8), · · ·

For another input of sizes1 = 3 ∗ s0, we calculate they-axis value of range[4, 8) as
follows:

h3(s1) = ϕ0(s0, 3) + ϕ1(s0, r)

where,r is the range[ 4
3
, 8

3
). We calculateϕ1(s0, r) as

ϕ1(s0, r) = ϕ1(s0, r1) + ϕ1(s0, r2)

where,r1 = [4
3
, 2) andr2 = [2, 8

3
). We assume the reuse distance has uniform distribution

in each bin. Hence,

ϕ1(s0, r1) = (2−4/3

2−1
)ϕ1(s0, 1) = 2

3
ϕ1(s0, 1)

ϕ1(s0, r2) = (8/3−2

4−2
)ϕ1(s0, 2) = 2

3
ϕ1(s0, 2)

Finally, we calculateh3(s1) as

h3(s1) = ϕ0(s0, 3) + 2

3
ϕ1(s0, 1) + 2

3
ϕ1(s0, 2)

After processing eachhi(s) of all training inputs in a similar manner, we obtain an equa-
tion group. The unknown variables are the models in the standard histogram. Regression
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Fig. 5. An example of multi-model prediction. Part (a) is thereuse-distance histogram of
the inputs0. After regression analysis on this and other training inputs, the histogram is
decomposed into two parts—the constant and the linear parts in (b) and (c). Given a new
input8∗ s0, the constant part keeps unchanged, shown in (d), and the distance of the linear
part multiplies by 8 times, shown in (e). Thex-axis is in the log-2 scale. The reuse-distance
histogram of the new input is the combination of (d) and (e), showed in Figure (f).

techniques are used to find the models that fit all training histograms with the least error.
An important assumption is that the percentage of memory accesses in each model remains
unchanged for different inputs. We will show later that the assumption is valid for a wide
range of programs.

A multi-model method does not depend on the type of histograms. It can use distance
histograms with log or linear scales. It can also use reference histograms. The equations
are constructed and solved in the same manner.

2.2.5 Space and time complexity.The space and time cost of the prediction methods
areO(B), whereB is the size of the histogram. The size isO(M) for a linear-scale dis-
tance histogram,O(logM) for a log-scale distance histogram, andO(1) for a reference
histogram. Although most costly, the linear-scale histogram has higher precision, which
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can produce better results especially when using small-size training runs. The log scale is
needed to separate reference groups with short reuse distances. The reference histogram
has a constant cost, but it raises a problem: how to choose thebest number of bins. The
range of choices is large. The maximal number of groups, is the number of memory refer-
ences in the smallest training run. We will see in the evaluation section that the prediction
accuracy depends heavily on the choice of the number of bins.

2.2.6 Limitations. Although the analysis can handle any sequential program, the gen-
erality comes with several limitations. For high-dimensional data, pattern prediction re-
quires that different inputs have a similar shape, in other words, their size needs to be
proportional or close to proportional in all dimensions. Otherwise, a user has to train the
analyzer for each shape. In our future work, we will combine the pattern analyzer with
a compiler to predict for all shapes. All high-dimensional data we have seen come from
scientific programs, for which a compiler can collect high-level information. In addition,
predicting reuse pattern does not mean predicting execution time. The prediction gives the
percentage distribution but not the total number of memory accesses, just as loop analysis
can know the dependence but not the total number of loop iterations.

Once the pattern is recognized from training inputs, we can predict constant patterns in
another input statically. For other patterns, we need the data size of the other input, for
which we use distance-based sampling.

2.3 Distance-based sampling

The purpose of data sampling is to estimate data size in a program execution. For on-line
pattern prediction, the sampler creates a twin copy of the program and instruments it to
generate data access trace. When the program starts to execute, the sampling version starts
to run in parallel until it finds an estimate of data size. Independent sampling requires
that the input of the program be replicated, and that the sampling run do not produce side
effects.

The sampling isdistance-based. It uses the reuse distance analyzer and monitors each
measured distance. It records only long-distance reuses because they reveal global patterns.
When the reuse distance is above a threshold (thequalification threshold), the accessed
memory location is taken as a data sample. A later access to a data sample is recorded as
an access sample if the reuse distance is over a second threshold (thetemporal threshold).
To avoid picking too many data samples, it requires that a newdata sample to be at least a
certain space distance away (thespatial threshold) in memory from existing data samples.
Given the sequence of access samples of a data sample, the sampler findspeaks, which
are time samples whose height (reuse distance) is greater than that of its preceding and
succeeding time samples.

The sampler runs until seeing the firstk peaks of at leastm data samples. It then takes
the appropriate peak as the data size. The peak does not have to be the actual data size. It
just needs to be proportional to the data size in different inputs. We use the same sampling
scheme to determine data size in both training and prediction runs. For most programs we
tested, it is sufficient to take the first peak of the first two data samples. An exception is
Apsi. All its runs initialize the same amount of data as required by the largest input size, but
smaller inputs use only a fraction of the data in the computation. We then use the second
peak as the program data size. More complex cases happen whenearly peaks do not show
a consistent relation with data size, or the highest peak appears at the end of a program.



Distance-Based Locality Analysis and Prediction · 15

We identify these cases during pattern recognition and instruct the predictor to predict only
the constant pattern.

The sampling can be improved by more intelligent peak finding. For example, we re-
quire the peak and the trough differ by a certain factor, or use a moving average to remove
noises. The literature on statistics and time series is a rich resource for sample analysis. For
pattern prediction, however, we do not find a need for sophisticated methods yet because
the (data-size) peak is either readily recognizable at the beginning or it is not well defined
at all.

The cost of distance-based sampling is significant since it needs to measure reuse dis-
tance of every memory reference until peaks are found. The analysis does not slow the
program down since it uses a separate copy. It only lengthensthe time taken to make
a prediction. For minimal delay, it uses the fastest approximation analyzer. It can also
use selective instrumentation and monitor only distinct memory references to global and
dynamic data [Ding and Zhong 2002]. For long-running programs, this one-time cost is
insignificant. In addition, many programs have majority of memory references reused in
constant patterns, which we predict without run-time sampling.

Another use of distance-based sampling is to detect phases in a program. For this pur-
pose, we continue sampling through the entire execution. Time segments between consec-
utive peaks are phases. A temporal graph of time samples shows recurrent accesses in time
order and the length and shape of each recurrence. The evaluation section will use phase
graphs to understand the results of pattern prediction.

Finding the first few peaks of the first few data samplings is anunusual heuristic because
it is not based on keeping track of a particular program instruction or a particular data item.
The peaks found by sampling in different program executionsdo not have to be caused by
the same memory access to the same data. Very likely they are not. In programs with input-
dependent control flow, one cannot guarantee the execution of a function or the existence
of a dynamic data item. Distance-based sampling allows correlation across data inputs
without relying on any pre-assumed knowledge about programcode or its data.

3. EVALUATION

3.1 Reuse distance measurement

Figure 6 compares the speed and accuracy for eight analyzers, which we have described
in Section 2.1.BK-2, BK-16, andBK-256are vector-based k-ary tree analyzers withk
equal to 2, 16, and 256 [Bennett and Kruskal 1975].KHW is list-based aggregation with
three markers at distance 32, 16K, and the size of analyzed data [Kim et al. 1991]. We re-
implemented it since the original no longer exists.Cheetah[Sugumar and Abraham 1993]
uses a splay-tree.ZDK-2k andSamplingare approximate analysis with the error bound
B = 2048, as described in Section 2.1.2.ZDK-2kuses a B-tree and a mixed trace [Zhong
et al. 2002].Samplinguses a splay tree and only the approximate trace.99%is the analysis
with the bounded relative errore = 1%. The input program traversesM data twice with
a reuse distance equal toM/100. To measure only the cost of reuse-distance analysis, the
hashing step was bypassed by pre-computing the last access time (except forKHW, which
does not need the access time). The timing was collected on a 1.7 GHz Pentium 4 PC with
800 MB of main memory. The programs were compiled usinggccwith the optimization
flag -O3.
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Fig. 6. Comparison of analyzers

Compared to the accurate methods, approximate analysis is faster and more scalable
with data size and distance length. The vector-based methods have the lowest speed.KHW
with three markers is fastest (7.4 million memory references per second) for small and
medium distances but is not suited for measuring very long reuse distances.Cheetah
achieves an initial speed of 4 million memory references persecond. All accurate anal-
yses run out of physical memory at 100 million data.Samplinghas the highest speed,
around 7 million memory references per second, for large data sizes.ZDK-2k runs at a
speed from 6.7 million references per second for 100 thousand data to 2.9 million refer-
ences per second for 1 billion data.SamplingandZDK-2kdo not analyze beyond 4 billion
data since they use 32-bit integers.

The most scalable performance is obtained by the analyzer with 99% accuracy (e = 1%),
shown by the line marked99%. We use 64-bit integers in the program and test it for up
to 1 trillion data. The asymptotic cost isO(log log M) per access. In the experiment,
the analyzer runs at an almost constant speed of 1.2 million references per second from
100 thousand to 1 trillion data. The consistent high speed isremarkable considering that
the data size and reuse distance differs by eight orders of magnitude. The speed is so
predictable that when we first ran 1 trillion data test, we estimated that it would finish in
19.5 days: It finished half a day later, which was a satisfyingmoment considering that
prediction is the spirit of this work. If we consider an analogy to physical distance, the
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Fig. 7. Pattern prediction for Spec2K/Lucas

precise methods measure the distance in miles, the approximation method measures light
years with the same speed.

The lower graph of Figure 6 compares the accuracy of approximation on a partial his-
togram ofFFT. The y-axis shows the percentage of memory references, and thex-axis
shows the distance in a linear scale between 55 thousand and 66 thousand with an incre-
ment of 2048.99.9%and99%approximation (e = 0.1% ande = 1% respectively), shown
by the second and the third bars in each group, closely match the accurate distance. Their
overall error is about 0.2% and 2% respectively. The boundedabsolute error with a bound
2048, shown by the last bar, has a large misclassification near the end, although the error
is no more than 4% of the actual distance. In terms of the spaceoverhead, accurate ana-
lyzers need 67 thousand tree or list nodes,ZDK-2kneeds 2080 tree nodes,99%needs 823,
and99.9%needs 5869. The last two results show that the cost and the accuracy of the
approximate analysis are adjustable.

3.2 Pattern prediction

Figure 7 shows the result of pattern prediction forLucasfrom Spec2K, which is represen-
tative in our test suite. The graph shows four reuse signatures. The first two are for the two
training inputs. They are used by the analyzer to recognize distance patterns and to make
the locality prediction for a third input. The analyzer runsthe program with the third input,
samples 0.4% of its execution, finds the data size, and predicts the reuse signature shown
by the third bar in each group. The prediction matches closely with the measured signature
shown by the fourth bar of each group. The two histograms overlap by 95%. The accuracy
is remarkable considering that the target execution has 480times more data and 320 times
longer trace than the larger one of the two training runs has and 3650 times more data and
3220 times longer traces than the smaller one has. The correct prediction of the peaks on
the far side of the histograms is especially telling becausethey differ from the peaks of the
training inputs not only in position but also in shape and height.



18
·

C
he

n
D

in
g

et
al

.

Table II. Prediction accuracy and coverage for floating-point programs
Data Avg. reuses Avg. dist. Accuracy Accuracy Cover-

Benchmark Description Patterns Inputs elements per per w/ data w/ sample age
element element size (%) size (%) (%)

Lucas Lucas-Lehmer test const ref 20.8M 621 2.49E-1 85.0 95.1 99.6
(Spec2K) for primality linear train 41.5K 971 2.66E-1 85.9 81.8 100

test 6.47K 619 2.17E-1
Applu solution of five const 453 9.33M 153 1.62E-1 91.9 92.1 99.4

(Spec2K) coupled nonlinear 3rd roots train(243) 1.28M 150 1.62E-1 94.1 94.1 99.4
PDE’s linear test(123) 127K 146 1.57E-1

Swim finite difference const ref(5122) 3.68M 33.1 4.00E-1 94.0 94.0 99.8
(Spec95) approximations for 2nd root 4002 2.26M 33.0 4.00E-1 98.7 98.7 99.8

shallow water equation linear 2002 568K 32.8 3.99E-1
SP computational fluid const 503 4.80M 132 1.05E-1 90.3 90.3 99.9

(NAS) dynamics (CFD) 3rd roots 323 1.26M 124 1.01E-1 95.8 95.8 99.9
simulation linear 283 850K 125 9.78E-2

Tomcatv vectorized mesh const ref(5132) 1.83M 208 1.71E-1 92.4 92.4 99.5
(Spec95) generation 2nd root 4002 1.12M 104 1.67E-1 77.3 99.2 99.3

linear train(2572) 460K 104 1.67E-1
Hydro2d hydrodynamical ref 1.10M 13.4K 2.23E-1 98.5 98.5 100
(Spec95) equations computing const train 1.10M 1.35K 2.23E-1 98.5 98.4 100

galactical jets test 1.10M 139 2.20E-1
FFT fast Fourier const 5122 1.05M 63.7 7.34E-2 72.6 72.8 99.6

transformation 2nd root 2562 263K 57.5 8.13E-2 95.5 95.5 99.5
linear 1282 65.8K 51.4 9.04E-2

Mgrid multi-grid solver const ref(643) 956K 35.6K 6.81E-2 96.4 96.4 100
(Spec95) in 3D potential 3rd roots test(643) 956K 1.42K 6.76E-2 96.5 96.5 99.3

field linear train(323) 132K 32.4K 7.15E-2
Apsi pollutant distribution const 128x1x128 25.0M 6.35 1.60E-3 27.2 91.6 97.8

(Spec2K) for 3rd roots train(128x1x64) 25.0M 146 2.86E-4 27.8 92.5 99.1
weather predication linear test(128x1x32) 25.0M 73.6 1.65E-4
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Table III. Prediction accuracy and coverage for integer programs
Data Avg. reuses Avg. dist. Accuracy Accuracy Cover-

Benchmark Description Patterns Inputs elements per per w/ data w/ sample age
element element size (%) size (%) (%)

Compress an in-memory version const ref 36.1M 628 4.06E-2 86.1 85.9 92.2
(Spec95) of the common UNIX linear train 279K 314 6.31E-2 92.3 92.3 86.9

compression utility test 142K 147 9.73E-2
Twolf circuit placement and const ref(1888-cell) 734K 177K 2.08E-2 92.6 94.2 100

(Spec2K) global routing, using linear train(752-cell) 402K 111K 1.82E-2 96.2 96.6 100
simulated annealing 370-cell 227K 8.41K 1.87E-2

Vortex an object oriented ref 7.78M 4.60K 4.31E-4 95.1 95.1 100
(Spec95) database const test 2.58M 530 3.25E-4 97.2 97.2 100
(Spec2K) train 501K 71.3K 4.51E-4

Gcc based on the expr 711K 137 2.75E-3 98.2 98.2 100
(Spec95) GNU C compiler cp-decl 705K 190 2.65E-3 98.6 98.6 100

version 2.5.3 const explow 321K 68.3 3.69E-3 96.1 96.1 100
train(amptjp) 467K 221 3.08E-3 98.7 98.7 100

test(cccp) 456K 233 3.25E-3
Li const ref 87.9K 328K 2.19E-2 85.6 82.7 100

(Spec95) Xlisp interpreter linear train 44.2K 1.86K 3.11E-2 85.8 86.0 100
test 14.5K 37.0K 2.56E-2

Go an internationally ref 109K 124K 3.78E-3 96.5 96.5 100
(Spec95) ranked go-playing const test 104K 64.6K 3.78E-3 96.9 96.9 100

program train 86.1K 2.68K 2.02E-3
average 88.6 93.5 99.1
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Table II and III show the effect of pattern prediction on 15 benchmarks, including 7
floating-point programs and 6 integer programs from SPEC95 and SPEC2K benchmark
suites, and 2 additional programs,SPfrom NASA and a two-dimensionalFFT kernel. We
reduce the number of iterations in a program if it does not affect the overall pattern. We
compile the tested programs with the DEC compiler using the default optimization (-O3).
Different compiler optimization levels may change the reuse pattern but not the accuracy
of our prediction. We use Atom [Srivastava and Eustace 1994]to instrument the binary
code to collect the address of all loads and stores and feed them to our analyzer, which
treats each distinct memory address as a data element.

Column 1 and 2 of the table in Table II give the name and a short description of the test
programs. The programs are listed in the decreasing order ofthe average reuse distance.
Their data inputs are listed by the decreasing order of the data size. For each input, Column
5 shows the data size or the number of distinct data, and Column 6 and 7 give the number
of data reuses and average reuse distance normalized by the data size. The programs have
up to 36 million data, 130 billion memory references, and 5 million average reuse distance.
The table shows that these are a diverse set of programs: no two programs are similar in
data size or execution length. Although not shown in the table, the programs have different
reuse distance histograms (even though the average distance is a similar fraction of the data
size in a few programs). In addition, the maximal reuse distance is very close to the data
size in each program run.

The third column lists the patterns in benchmark programs, which can be constant, lin-
ear, or sub-linear. Sub-linear patterns include2nd root (x1/2) and 3rd roots (x1/3 and
x2/3). Floating-point programs generally have more patterns than integer programs.

The prediction accuracy is shown by the Column 8 and 9 of the table. Letxi andyi

be the size ofith bar in predicted and measured histograms. The cumulativedifference,
E, is the sum of|yi − xi| for all i. In the worst case,E is 200%. We use1 − E/2 as
the accuracy. It measures the overlap between the two histograms, ranging from 0% or
no match to 100% or complete match. The accuracy ofLucaswith sampled size is 95%,
shown in Figure 7.

As we discussed in Section 2.2, reuse signature pattern is parameterized by the size of
data involved in program recurrences. This is not the same asthe size of data touched
by a program and we use distance-based sampling described inSection 2.3 to estimate
the number. The accuracy of prediction based on this sampling estimation is given by
Column 9. As a comparison, Column 8 lists the prediction accuracy based on program data
size. For many benchmarks, the two columns give comparable results, which indicates a
proportional relation between the size of data involved in program recurrences and the size
of data visited in whole program execution. But this does nothold for all programs. An
obvious example isApsi. For different input parameters, the program initializes the same
amount of data, but only uses part of it in computation. Therefore reuse signature pattern
built on program data size can not capture the locality behavior for Apsiand the prediction
accuracy is only 27%. In general, prediction based on samplesize has a higher average
accuracy.

We use three different input sizes for all programs except for Gcc. Based on two smaller
inputs, we predict the largest input. We call this forward prediction. The prediction also
works backwards: based on the smallest and the largest inputs, we predict the middle one.
In fact, the prediction works for any data input over a reasonable size. The table shows
that both forward and backward predictions are very accurate. Backward prediction is
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generally better except forLucas—because the largest input is about 500 times larger than
the medium-size input—and forLi—because only the constant pattern is considered by the
prediction. Among all prediction results, the highest accuracy is 99.2% for the medium-
size input ofTomcatv, the lowest is 72.8% for the large-size input ofFFT. The average
accuracy is 93.5%.

The last column shows the prediction coverage. The coverageis 100% for programs
with only constant patterns because they need no sampling. For others, the coverage starts
after the data-size peak is found in the execution trace. LetN be the length of the execution
trace,P be the logical time of the peak, then the coverage is1−P/N . For programs using
a reduced number of iterations,N is scaled up to be the length of the full execution. To be
consistent with other SPEC programs, we letSP andFFT to have the same number of
iterations asTomcatv. Data sampling uses the first peak of the first two data samplesfor all
programs with non-constant patterns except forCompressandLi. Compressneeds 12 data
samples. It is predictable only because it repeats compression multiple times, an unlikely
case in real uses.Li has random peaks that cannot be consistently sampled. We predict Li
based on only the constant pattern. The average coverage is 99.1%.

The reported coverage is for predicting simulation results. Instead of measuring reuse
distance for the whole program, we can predict it by samplingon average 1.2% of the ex-
ecution. To predict a running program, the coverage is smaller because the instrumented
program (for sampling) runs much slower than the original program. Our fastest analyzer
causes a slowdown by factors ranging from 20 to 100. For a slowdown of 100, we need
a coverage of at least 99% to finish prediction before the end of the execution! Fortu-
nately, the low coverage happens only inCompress. Without them, the average coverage
is 99.73%, suggesting 73% time coverage on average. Even without a fast sampler, the
prediction is still useful for long running programs and programs with mainly constant
patterns. Six programs or 40% of our test suite do not need sampling.

Most inputs are test, train, and reference inputs from SPEC.For GCC, we pick the
largest and two random ones from the 50 input files in itsref directory. SPandFFT do
not come from SPEC, so we randomly pick their input sizes (FFT needs a power of two
matrix). We change a few inputs for SPEC programs, shown in Column 4. Tomcatv and
Swim has only two different data sizes. We add in more inputs. All inputs ofHydro2d
have a similar data size, but we do not make any change. The test input of Twolf has 26
cells and is too small. We randomly remove half of the cells inits train data set to produce
a test input of 300 cells.Applu is a benchmark with long-time execution, so we replace
reference input with a smaller one to save data collection time. Finally,Apsiuses different-
shape inputs of high-dimensional data, for which our current predictor cannot make an
accurate prediction. We change the shape of its largest input.

3.3 Regression-based multi-model prediction

We now turn our attention to a sub-set of the test programs that have multiple inputs so
that we can test regression-based and multi-model prediction. The first column of Table IV
gives results obtained by Ding and Zhong’s original method.Other columns show the
accuracy of the new methods. All methods are based on histograms given by the same
reuse-distance analyzer and the input sizes given by the same distance-based sampler.

The results in Table IV show that for most programs, all regression-based predictions
produce better results than the method using two training inputs. Therefore, regression
on multiple inputs indeed improves prediction accuracy. Except forSWIM, multi-model
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logarithmic scale method is comparable to the best predictors. However, it is the most
efficient among all methods because the storage space of a log-scale histogram is 95% less
than other histograms.

SWIMshows inconsistent results. The multi-model logarithmic scale has poor result
for SWIM, but multi-model log-linear scale and single-model methods give very accurate
predictions. Figure 8 shows the distance histogram ofSWIM. Note it has a high peak in a
very small reuse distance range. Multi-model logarithmic scale useslog scale ranges. It
assumes that the reuse distance is evenly distributed in each range, which brings significant
noise in a histogram using a log scale.

The performance of multi-model log-linear scale method is slightly better than multi-
model logarithmic scale method for the first four benchmarksand much better forSWIM.
However, log-linear scale costs more than 20 times in space and computations than loga-
rithmic scale for most programs. The multi-model method based on reference histograms
outperforms single-model two-input method for two out of six programs. It gives the high-
est accuracy forFFT . As we explained in Section 2.2.4, this approach is very flexible
and its performance depends heavily on the number of groups.In our experiment, we
tried 7 different numbers of groups for each benchmark and presented the highest accu-
racy, but finding the maximal accuracy requires trying thousands of choices. The result
for FFT shows the potential of this method, but the overhead of finding the best result is
prohibitively high.

Table IV. The prediction accuracy of the five methods
Bench- Single Model Multi-model Max.
mark RF-Hist. RF-Hist. Log Log-linear Num.

2 inputs 3+ inputs RD-Hist. RD-Hist. RF-Hist. Inputs
Applu 92.06 97.40 93.65 93.90 90.83 6
SWIM 94.02 94.05 84.67 92.20 72.84 5
SP 90.34 96.69 94.20 94.37 90.02 5
Tomcatv 92.36 94.38 94.70 96.69 88.89 5
FFT 72.82 93.30 93.22 93.34 95.26 3
GCC 98.61 97.95 98.83 98.91 93.34 4
Average 90.04 95.63 93.21 94.90 88.53 4.7

So far the prediction uses a relatively large input, so that different patterns are separated
from each other. It is important for the two single-model methods that different patterns
do not overlap, because the methods assume that only one model exists in each range. In
addition, the composition of patterns in a bin is likely constant when the input size is large.
This is required by both single-model and multi-model basedmethods.

When the training uses small input sizes, single-model methods are not expected to per-
form well, but multi-model methods should work as well as in large input sizes. Table V
shows the performance of the four methods on small size inputs ofSP benchmark. We do
not show the results of the multi-model method using reference histograms because it is
difficult to tune. The results show that multi-model log-linear scale method is significantly
more accurate than other methods. The good accuracy shows that the percentage of each
model remains unchanged even for small inputs. The performance of multi-model logarith-
mic scale method is worse than the log-linear scale method because of the low precision in
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Fig. 8. The reuse-distance histogram ofSWIM

logarithmic scale histograms. Although multi-model log-linear scale method needs more
computation and more space than the logarithmic scale method, this cost is not an issue for
small-size inputs.

Table V. Accuracy forSP with small-size inputs
largest testing single-model single-model multi-model multi-model
training size 2 inputs 3+ inputs log scale log-linear scale
83 103 79.61 79.61 85.92 89.5

123 79.72 75.93 79.35 82.84
143 69.62 71.12 74.12 85.14
283 64.38 68.03 76.46 80.3

103 123 91.25 87.09 84.58 90.44
143 81.91 83.20 78.52 87.23
163 77.28 77.64 76.01 84.61

163 283 75.93 74.11 77.86 83.50

We compare the five methods in Table VI. Methods A, B, and E use reference histograms
while Methods C and D use reuse distance histograms. The latter group needs not to
transform between the two histograms. Using log-scale distance histograms, Method C
saves 20 times in space and computation compared to other methods. The last method can
also save cost because it can freely select the number of bins, but it is hard to pick the
right number. While efficient, Method C loses information because it assumes a uniform
distribution in large ranges. It could not accurately predict the locality ofSWIM , where a
large number of reuse distances stay in a narrow range. In that case, other methods produce
much better results because they use shorter, linear-scaleranges. Among them, multi-
model prediction methods predict with a higher accuracy than the single-model methods
do if multiple patterns overlap in the same bin. Overlappingoften happens for inputs of a
small size.



24 · Chen Ding et al.

Table VI. Features of Various Reuse Distance Prediction Methods

Methods A B C D E
Models single single multiple multiple multiple
Histogram Reference Reference Distance Distance Reference
Histogramx-axis log-linear log-linear log log-linear log-linear
Number of inputs 2 3+ 3+ 3+ 3+
Number of models per bin 1 1 2+ 2+ 2+

In summary, regression analysis significantly improves theaccuracy of reuse distance
prediction, even with only a few training inputs. The multi-model method using loga-
rithmic histograms can save 95% space and computations and still keep the best accuracy
in most programs, although it is not as consistent as those methods using log-linear his-
tograms. Space efficiency is necessary for fine-grained analysis of the patterns in individual
program data. It is a good choice when efficiency is important. The single-model multi-
input method has the highest accuracy, but it cannot accurately model small-size inputs.
It is the best choice when one can tolerate a high profiling cost. The multi-model method
using log-linear scale histograms is the best for small input sizes, where different models
tend to overlap each other. It is also efficient because the input size is small.

3.3.1 Comparisons with Profiling Analysis.Most profiling methods use the result from
training runs as the prediction for other runs. An early study measured the accuracy of this
scheme in finding the most frequently accessed variables andexecuted control structures
in a set of dynamic programs [Wall 1991]. We call this schemeconstant prediction, which
in our case uses the reuse-distance histogram of a training run as the prediction for other
runs. For programs with only constant patterns, constant prediction is the same as our
method. For the other 11 programs, the worst-case accuracy is the size of the constant
pattern, which is 55% on average. The largest is 84% inTwolf, and the smallest 28% in
Apsi. The accuracy can be higher if the linear and sub-linear patterns overlap in training
and target runs. It is also possible that the linear pattern of a training run overlaps with a
sub-linear pattern of the target run. However, the latter two cases are not guaranteed; in
fact, they are guaranteed not to happen for certain target runs. The last case is a faulty
match since those accesses have different locality.

For several programs, the average reuse distance is of a similar fraction of the data
size. For example inSwim, the average distance is 40% of the data size in all three runs.
This suggests that we can predict the average reuse distanceof other runs by the data size
times 40%. This prediction scheme is in fact quite accurate for programs with a linear
pattern (although not for other programs). When the data sizeis sufficiently large, the
total distance will be dominated by the contribution from the linear pattern. The average
distance is basically the size of the linear pattern, which in Swimis 40% of all references.
This scheme, however, cannot predict the overall distribution of reuse distance. It also
needs to know the input data size from distance-based sampling. The total data size is not
always appropriate. For example,Apsi touches the same amount of data regardless of the
size of the data input.

As a reality check, we compare with the accuracy of random prediction. If a random dis-
tribution matches the target distribution equally well, our method would not be very good.
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A distribution is ann-element vector, where each element is a non-negative real number
and they sum to 1. Assuming any distribution is equally likely, the probability of a random
prediction has an errorα or less is equal to the number of distributions that are within α
error to the target distribution divided by the total numberof possible distributions. We
calculate this probability usingn-dimensional geometry. The total number of such vectors
is equal to the surface volume on a corner cut of ann-dimensional unit-size hypercube.
The number of distributions that differ byα with a given distribution equals to the sur-
face volume of a perpendicular cut through2n−1 corner cuts of anα-size hypercube. The
probability that a random prediction yields at least1 − α accuracy isαn−1, the ratio of
the latter volume to the former. For the programLucasshown in Figure 7,n is 26 and the
probability of a random prediction achieving over 95% accuracy is0.0525 or statistically
impossible.

3.3.2 A case study.The programGcccompiles C functions from an input file. It has
dynamic data allocation and input-dependent control flow. Acloser look atGcchelps to
understand the strength and limitation of our approach. We sample the entire execution of
three inputs,Spec95/Gcccompilingcccp.i andamptjp.i andSpec2K/Gcccompiling
166.i. The three graphs in Figure 9 show the time samples of one datasample. Other
data samples produce similar graphs. The upper two graphs,cccp.i andamptjp.i,
link time samples in vertical steps, where the starting point of each horizontal line is a time
sample. The time samples for166.i are shown directly in the bottom graph.

The two upper graphs show many peaks, related to 100 functions in the 6383-line
cccp.i and 129 functions in the 7088-lineamptjp.i. Although the size and location of
each peak appear random, their overall distribution is 96% to 98% identical between them
and to three other input files (shown previously in Table II).The consistent pattern seems
to come from the consistency in programmers’ coding, for example, the distribution of
function sizes. Our analyzer is able to detect such consistency in logically unrelated recur-
rences. On the other hand, our prediction is incorrect if theinput is unusual. For example
for 166.i, Gccspends most of its time on two functions consisting of thousands lines of
code. They dominate the recurrence pattern, as shown by the lower graph in Figure 9. Note
the two orders of magnitude difference in the range of x- and y-axes. Our method cannot
predict such unusual pattern.

Our analyzer is also able to detect the similarity between different programs. For ex-
ample, based on the training runs ofSpec95/Gcc, we can predict the reuse pattern of
Spec2K/Gccon its test input (the same as the test input in Spec95) with 89% accuracy.

While our initial goal was to predict programs with regular recurrence patterns,Gccand
other programs such asLi andVortextook us by surprise. They showed that our method
also captured the cumulative pattern despite the inherent randomness in these programs.
High degree of consistency was not uncommon in applicationsincluding program compila-
tion, interpretation, and databases. In addition,Gccshowed that our method could predict
the behavior of a later version of software by profiling its earlier version.

4. USES OF DISTANCE-BASED LOCALITY PATTERNS

Distance-based locality analysis is unique because it is generally applicable as program
profiling is, yet it describes the program behavior under allinputs as compiler analysis
does. This section briefly surveys the current and potentialuses of the distance-based
locality information.
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Performance modeling Reuse distance gives richer information about a program than a
cache miss rate does. At least four compiler groups have usedreuse distance for different
purposes: to study the limit of register reuse [Li et al. 1996] and cache reuse [Huang and
Shen 1996; Ding 2000; Zhong et al. 2002], and to evaluate the effect of program transfor-
mations [Ding 2000; Beyls and D’Hollander 2001; Almasi et al. 2002; Zhong et al. 2002].
Recently, Zhong et al. [2003] and [Marin and Mellor-Crummey2004] applied distance-
based analysis to memory blocks and reported accurate miss-rate prediction across differ-
ent program inputs and cache sizes. Using the predictor described in this article, Fang et al.
[2004] examined the reuse pattern of each program instruction of 11 SPEC2K CFP bench-
mark programs and predicted the miss rate of 90% of instructions with a 97% accuracy.
They used to prediction tool to identifycritical instructions that generate the most cache
misses.

Program transformation Beyls and D’Hollander [2002] is the first to show real perfor-
mance improvement using the reuse distance information. They used reuse distance pro-
files to generate cache hints, which tell the hardware whether and which level to place
or replace a loaded memory block in cache. Their method improved the performance of
SPEC95 CFP benchmarks by an average 7% on an Itanium processor. Our recent work
sub-divides the whole-program distance pattern in the space of its data. The spatial analy-
sis identifies locality relations among program data. Programs often have a large number
of homogeneous data objects such as molecules in a simulatedspace or nodes in a search
tree. Each object has a set of attributes. In Fortran 77 programs, attributes of an object are
stored separately in arrays. In C programs, the attributes are stored together in a structure.
Neither scheme is sensitive to the access pattern of a program. A better way is to group
attributes based on the locality of their access. For arrays, the transformation is array re-
grouping. For structures, it is structure splitting. We grouped arrays and structure fields
that have a similar reuse signature. The new data layout consistently outperformed array
and structure layouts given by the programmer, compiler analysis, frequency profiling, and
statistical clustering on machines from all major vendors [Zhong et al. 2004].

Memory adaptation A recent trend in memory system design is adaptive caching based
on the usage pattern of a running program. Balasubramonian et al. [2000] described a
system that can dynamically change the size, associativity, and the number of levels of
on-chip cache to improve speed and save energy. To enable phase-based adaptation, our
recent work divides the distance pattern in time to identifyabrupt reuse-distance changes as
phase boundaries. The new technique is shown more effectiveat identifying long, recurring
phases than previous methods based on program code, execution intervals, and manual
analysis [Shen et al. 2004]. For FPGA-based systems, So et al. [2002] showed that a best
design can be found by examining only 0.3% of design space with the help of program
information, including the balance between computation and memory transfer as defined
by Callahan et al [1988b]. So et al. used a compiler to adjust program balance in loop
nests and to enable software and hardware co-design. While our analysis cannot change
a program to have a particular balance (as techniques such asunroll-and-jam do [Carr
and Kennedy 1994]), it can be used to measure memory balance and support hardware
adaptation for programs that are not amenable to loop-nest analysis.

File caching For software managed cache, Jiang and Zhang [2002] developed an efficient
buffer cache replacement policy,LIRS, based on the assumption that the reuse distance of
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cache blocks is stable over a certain time period. Zhou et al.[2001] divided the second-
level server cache into multiple buffers dedicated to blocks of different reuse intervals.
The common approach is partition cache space into multiple buffers, each holding data
of different reuse distances. Both studies showed that reuse distance based management
outperforms single LRU cache and other frequency-based schemes. Our work will help in
two ways. The first is faster analysis, which reduces the management cost for large buffers
(such as server cache), handles larger traces, and providesfaster run-time feedbacks. The
second is predication, which gives not only the changing pattern but also a quantitative
measure of the regularity within and between different types of workloads.

5. RELATED WORK

The preceding sections have discussed related work in the measurement and the use of
reuse distance. This section compares our work with programanalysis techniques. We
focus on data reuse analysis. Data reuse analysis can be performed mainly in three ways:
by a compiler, by profiling or by run-time sampling.

Compiler analysis Compiler analysis has achieved great success in understanding and
improving locality in basic blocks and loop nests. A basic tool is dependence analysis.
Dependence summarizes not only the location but also the distance of data reuse. We re-
fer the reader to a recent, comprehensive book on this subject [Allen and Kennedy 2001].
Various types of array sections can measure data locality inloops and procedures. Such
analysis includes linearization for high-dimensional arrays [Burke and Cytron 1986], lin-
ear inequalities for convex sections [Triolet et al. 1986],regular array sections [Callahan
et al. 1988a], and reference lists [Li et al. 1990]. Havlak and Kennedy [1991] studied the
effect of array section analysis on a wide range of programs.Cascaval and Padua [2003]
extended dependence analysis to estimate the distance of data reuses. Other locality analy-
sis includes the matrix model [Wolf and Lam 1991], the memoryordering [McKinley et al.
1996], and a number of later studies using high-dimensionaldiscrete optimization [Cier-
niak and Li 1995; Kodukula et al. 1997], transitive dependence analysis [Song and Li
1999; Wonnacott 2002; Yi et al. 2000], and integer sets and equations [Chatterjee et al.
2001; Ghosh et al. 1999].

Because dependence analysis is static, it cannot accurately analyze input-dependent con-
trol flow and dynamic data indirection, for which we need profiling or run-time analysis.
However, dynamic analysis cannot replace compiler analysis, especially for understanding
high-dimensional computation.

Balasundaram et al. [1991] used training sets in performance prediction on a parallel
machine. They ran test programs to measure the cost of primitive operations and used the
result to calibrate the performance predictor. While their method trains for different ma-
chines, our scheme trains for different program inputs. Compiler analysis can differentiate
fine-grain locality patterns. Recent source-level tools use a combination of program instru-
mentation and profiling analysis. McKinley and Temam [1999]carefully measured various
types of reference locality within and between loop nests. Mellor-Crummey et al. [2001]
measured fine-grained reuse and program balance through their HPCView tool. Reuse dis-
tance has recently been used in source- and binary-level tools [Zhong et al. 2004; Marin
and Mellor-Crummey 2004]. Since our current analyzer can analyze all data in complete
executions, it can definitely handle program fragments or data subsets.

Data Access Frequency Access frequency has been used since the early days of comput-
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ing. Early analysis included sample- and counter-based profiling [Knuth 1971] and static
probability estimation [Cocke and Kennedy 1974]. Most profiling work considered only a
single data input. Thabit [1981] measured how often two dataelements were used together.
Chilimbi later used grammar compression to findhot data streams, which are sequences
of repeated data accesses up to 100 elements long [2001a; 2001b].

While previous studies find repeating sequences by measuringfrequency and individ-
ual similarity, we find recurrence patterns by measuring thedistance between data reuses.
Phalke and Gopinath [1995] used a Markov model to predict thetime distance between
data reuses inside the same trace. Distance-based analysisdoes not construct frequent
sub-sequences as other techniques do. On the other hand, it discovers the overall pattern
without relying on identical sequences or fixed-size trace windows. Repetition and recur-
rence are orthogonal and complementary aspects of program behavior. Recurrence helps to
explain the presence or absence of repetition. For example in architectural simulation, one
study found thatSpec95/Gccwas so irregular that they needed to sample 33% of program
trace [Lafage and Seznec 2000], while another study showed thatSpec2K/Gcc(compiling
166.i) consisted of two identical phases with mainly four repeating patterns [Sherwood
et al. 2002]. Being a completely different approach than cycle-accurate CPU simulation,
distance-based sampling shown in Figure 9 confirms both of their observations and sug-
gests that the different recurrence pattern is the reason for this seemingly contradiction.
Lafage and Seznec [2000] mentioned that although reuse distance might help their analy-
sis, it was too time consuming to measure. Using the efficientanalysis described in this
paper, our later work has successfully identified repeatingpatterns in an execution [Shen
et al. 2004].

Correlation among data inputs Wall [1991] presented an early study of execution fre-
quency across multiple runs. Chilimbi [2001b] examined theconsistency of hot streams.
Since data may be different from one input to another, Chilimbi used the instruction PC
instead of the identity of data and found that hot streams include similar sets of instruc-
tions if not the same sequence. The maximal stream length he showed was 100. Hsu et al.
[2002] compared frequency and path profiles in different runs. Eeckhout et al. [2002] stud-
ied correlation in 79 inputs of 9 programs using principal components analysis followed
by hierarchical clustering. They considered data properties including access frequency of
global variables and the cache miss rate. All these techniques measure rather than predict
correlation.

The past profiling analysis is limited to using a single inputor discovering invariance
among a few inputs. Most used program data or code. The focus of this work is to analyze
the program behavior in terms of its reuse distances and to predict thechanging behavior
in other program inputs, including those that are too large to run, let alone to simulate.

Run-time data analysis Saltz and his colleagues pioneered dynamic parallelization with
an approach known as inspector-executor, where the inspector examines and partitions data
(and computation) at run time [Das et al. 1994]. Similar strategies were used to improve
dynamic locality [Ding and Kennedy 1999; Han and Tseng 2000;Mellor-Crummey et al.
2001; Strout et al. 2003]. Knobe and Sarkar [1998] included run-time data analysis in array
static-single assignment (SSA) form. To reduce the overhead of run-time analysis, Arnold
and Ryder [2001] described a general framework for dynamic sampling, which Chilimbi
and Hirzel [2002] extended to discover hot data streams to aid data prefetching. Their run-
time sampling was based on program code, while our run-time sampling is based on data
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(selected using reuse distance). The two schemes are orthogonal and complementary. Ding
and Kennedy [1999] used compiler and language support to mark and monitor important
arrays. Ding and Zhong [2002] extended it to selectively monitor structure and pointer
data. Run-time analysis can identify patterns that are unique to a program input, while
training-based prediction cannot. On the other hand, profiling analysis like ours is more
thorough because it analyzes all accesses to all data.

6. CONCLUSIONS

The paper has presented a general method for predicting program locality. It makes three
contributions. First, it builds on the 30-year long series of work on stack distance mea-
surement. By using approximate analysis with arbitrarily high precision, it for the first
time reduces the space cost from linear to logarithmic. The new analyzer achieves a con-
sistently high speed for practically any large data and longdistance. Second, it extends
profiling to provide predication for data inputs other than profiled ones. It defines com-
mon locality patterns including the constant, linear, and afew sub-linear patterns. Finally,
it enables correlation among different executions with distance-based histogram and sam-
pling, which overcomes the limitation of traditional code or data based techniques. When
tested on an extensive set of benchmarks, the new method achieves 94% accuracy and 99%
coverage, suggesting that pattern prediction is practicalfor use by locality optimizations in
compilers, architecture, and operating systems.
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