
Pacman: Program-Assisted Cache Management ⇤

Jacob Brock
Department of Computer Science

University of Rochester
Rochester, NY, USA

jbrock@cs.rochester.edu

Xiaoming Gu †

Azul Systems, Inc.
Sunnyvale, CA, USA

xiaoming@azulsystems.com

Bin Bao †

Adobe Systems Incorporated
bbao@adobe.com

Chen Ding
Department of Computer Science

University of Rochester
Rochester, NY, USA

cding@cs.rochester.edu

Abstract
As caches become larger and shared by an increasing number
of cores, cache management is becoming more important. This
paper explores collaborative caching, which uses software hints
to influence hardware caching. Recent studies have shown that
such collaboration between software and hardware can theoreti-
cally achieve optimal cache replacement on LRU-like cache.

This paper presents Pacman, a practical solution for collabora-
tive caching in loop-based code. Pacman uses profiling to analyze
patterns in an optimal caching policy in order to determine which
data to cache and at what time. It then splits each loop into different
parts at compile time. At run time, the loop boundary is adjusted to
selectively store data that would be stored in an optimal policy. In
this way, Pacman emulates the optimal policy wherever it can. Pac-
man requires a single bit at the load and store instructions. Some of
the current hardware has partial support. This paper presents results
using both simulated and real systems, and compares simulated re-
sults to related caching policies.

Categories and Subject Descriptors B.3.2 [MEMORY STRUC-
TURES]: Design Styles - Cache memories; D.3.4 [PROGRAM-
MING LANGUAGES]: Processors - Compilers, Optimization

General Terms Algorithms, Performance, Theory

Keywords cache replacement policy, collaborative caching, opti-
mal caching, priority cache hint

⇤ The research is supported in part by the National Science Foundation
(Contract No. CCF-1116104, CCF-0963759, CNS-0834566), IBM CAS
Faculty Fellowship and a grant from Huawei.
† The work was done when Xiaoming Gu and Bin Bao were graduate
students at the University of Rochester.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’13, June 20–21, 2013, Seattle, Washington, USA.
Copyright c� 2013 ACM 978-1-4503-2100-6/13/06. . . $15.00

1. Introduction
There are two basic strategies to reduce the number of cache
misses: locality optimization and cache management. In cases
where locality optimization falls short (e.g. when loop tiling and
loop fusion cannot reduce the working set size to fit in the cache),
improved cache management can pick up the slack by storing as
much of the active data as possible.

In this paper, we present program-assisted cache management
(Pacman), a practical solution to approximate optimal cache man-
agement. It solves mainly two problems: at compile time, deciding
how to best cache data, and at run time, communicating the deci-
sion to hardware.

To decide whether or not to cache data, we employ a comparison
with OPT, the optimal caching policy. Under this policy, the stack
distance of a block at any access (which we will call the OPT
distance) represents the smallest cache size for which the access
will be a cache hit [19].

We present profiling techniques that collect and identify pat-
terns in the OPT distance for individual references over the pro-
gram. Two training runs with different program inputs show linear
patterns for some references that allow the inference of patterns for
future runs with any input. The decision of whether to cache the
data is then simple: If the OPT distance is less than the cache size,
the data is cached. Otherwise, it is not.

In order to communicate this decision to the hardware, Pacman
divides each loop into two parts at compile time: a high-locality
part with short OPT distances, and a low-locality part with long
OPT distances. At run time, the loop boundaries are adjusted based
on the input and cache size, and high-locality accesses are cached,
while low-locality accesses are not.

Pacman requires hardware support, in particular, a single bit at
each instruction to control whether cache should store the accessed
data. A limited form of such an interface is the non-temporal stores
on Intel machines, which have recently been used to reduce string
processing and memory zeroing time [21, 30]. A number of other
systems have been built or proposed for software hints to influence
hardware caching. Earlier examples include the placement hints
on Intel Itanium [7], bypassing access on IBM Power series [23],
the evict-me bit of [26]. Wang et al. called a combined software-
hardware solution collaborative caching [26].

Past collaborative caching solutions have used the dependence
distance [4] and the reuse distance [7, 26] to distinguish between

high and low-locality data and to cache the former more securely
over the latter. However, in an optimal cache policy, low-locality
data is not always thrown out (consider a program, e.g. streaming,
that has only low locality data). A reuse distance based hint would
mark all data as low locality and does not exploit the fact that a
portion of it can fit in cache and benefit from cache reuse. Pacman
conducts partial data caching by mimicking OPT management (as
illustrated in Figure 4). In addition, unlike the previous solutions,
the Pacman hints change with the cache and the input size (which
are the two parameters to loop splitting).

Pacman optimizes loop code by performing different types of
cache accesses based on the loop index. In this paper, we analyze
and evaluate scientific loop kernels and benchmark programs. For
loops in other types of programs, the Pacman framework can be
applied without change, but the effect depends on whether Pacman
can identify exploitable patterns for cache management. Another
possible use of Pacman is to augment the implementation of the
array abstraction in higher level languages (Section 4.5).

The rest of the paper first characterizes OPT caching and then
describes the Pacman system that allocates cache among data
within an array and across multiple arrays.

2. Pacman System Overview
Cache management is traditionally done online in hardware. Un-
fortunately, the optimal caching solution is impossible to compute
online, because it requires knowledge of future memory accesses.
Pacman circumvents this problem by computing the optimal solu-
tion at profiling time and then applying the solution at run time.
Figure 1 shows an overview of the system, and the three phases are
outlined as follows:

Figure 1. Overview of the Pacman system with OPT pattern pro-
filing, LRU/MRU loop splitting, and collaborative caching

1. Profiling Time At a training run, the memory access trace is
profiled to determine the OPT distance at each access. Patterns
are then identified in these OPT distances. With multiple train-
ing runs using different input array sizes, patterns for other in-
puts can be extrapolated.

2. Compile Time Based on the patterns, a compiler performs loop
splitting so that at run time, the loop iterations can be divided
into groups where each static memory reference in the loop is
tagged with a hint (for either LRU or MRU eviction).

3. Run Time At run time, based on the cache size and the input, a
Pacman-optimized loop determines the actual division of loop
splitting to guide the cache with the hints to approach optimal
cache management.

3. Optimal Caching and the OPT Distance
The optimal (OPT) algorithm replaces the block that is accessed
furthest in the future whenever a replacement was necessary. An-
other way to put it is that OPT evicts the least imminently used
block, instead of the least recently used one that the least recently
used (LRU) policy would. This is the basis of the optimal caching
algorithm of [5].

The idea was expanded by [19] with the concept of the OPT
stack, a priority list for what blocks should be the cache at any
given time; A cache of size (1, 2, 3, ...) will contain the first (1, 2,
3, ...) blocks in the stack, thus an access to a data block is a miss
when its stack position (OPT distance, or OPTD) is greater than
the size of the cache. Figure 2 shows a memory access trace for
a simple streaming program and demonstrates the application of
three rules for managing the OPT cache stack:

• Upward Movement: A block can only move up when accessed,
and then it moves to the top. Moving upward implies entering a
cache (of size less than its current stack position), and this can
only happen if the block is accessed. The block goes to the top
of the OPT stack because it needs to be accessible by a cache
of size 1.

• Downward Movement: Vacancies are filled by whichever
block above it will not be used for the longest time in the future.
A new block is treated as having vacated a new spot at the bot-
tom (in order to usurp the top position). Moving a block down-
ward to fill a vacancy represents its eviction from all caches
smaller than the position of the vacancy (and the block with the
most remote future use is evicted).

• Tiebreaking: When there is a tie due to two infinite forward
distances, it may be broken arbitrarily.

 Trace| a b c d a b c d a b c d
------------|------------------------
OPT Stack 1 | a b c d a b c d a b c d
 ! ! ! ! 2 | a a a d d d c c c b b
 ! ! ! ! 3 | ! b b b a a a d d d c
! ! ! ! 4	! ! c c c b b b a a a
 OPT Dist | " " " " 2 3 4 2 3 4 2 3
 c=2 Hits | H H H

Figure 2. An example memory access trace for a simple streaming
application. Because a block must always be loaded into the cache
for the processor to use it, the top stack position is always given
to the current memory block. When they are necessary, demotions
are given to the block in the stack which will not be needed for
the longest time in the future. For a cache size of 2, this program
would cause cache thrashing under an LRU policy, but under the
OPT policy, every third access is a hit once the cache is warm. This
is a result of the (2, 3, 4) pattern in the OPT distances which arises
for streaming accesses, as explained the appendix. Demotions are
shown with arrows, and the next access is shown in red with
underline.

To demonstrate the practical difference between the optimal
policy and the LRU policy, consider a simple streaming applica-
tion which repeatedly traverses a 5MB array. Figure 3 compares

64K 256K 1M 4M 16M 64M
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

cache sizes (byte)

m
is

s
ra

tio

LRU
OPT

Figure 3. LRU & OPT miss ratios of a streaming application on
power of 2 cache sizes from 64KB to 32MB (64-byte blocks, 16-
way set associative). LRU does not benefit from a larger cache
unless/until the working set fits in completely. OPT fully utilizes
the available space to cache the working set as much as possible.

the cache performance of LRU and OPT for 16-way set associa-
tive cache with 64-byte cache blocks (8 data elements per block).
The figure shows the miss ratio for all power-of-two cache sizes
between 64KB and 32MB. When the cache size is less than 5MB,
the LRU cache has a constant miss ratio of 1

8 = 12.5%, but there is
a sharp drop in the miss ratio at 5MB because the whole array then
fits in the cache.

The OPT distances in this example vary from 2 cache blocks to
roughly the data size. To show why this is the case, we demonstrate
in Figure 2 how the OPT distances vary from 2 to roughly the data
size in a smaller access trace. As the OPT distance varies between
128 bytes and 5MB in the streaming application, those accesses
whose OPT distance is below the cache size will be cache hits. As
the cache size grows, more accesses will be hits, so there is a more
gradual reduction in the miss ratio.

Another way to view the performance discrepancy is that at the
end of the array, LRU is acting on the assumption that the array
will now be traversed backwards, while OPT knows that it will be
traversed forwards again from the beginning.

4. OPT-based Hint Insertion
This section describes the theory, analysis, transformation, and two
extensions of Pacman.

4.1 Optimal Collaborative Caching
Collaborative caching may obtain the performance of OPT on LRU
like caches, as proved for several papers including the bypass and
trespass LRU caches [10] and the LRU/MRU cache [11]. Instead
of clairvoyance and complex cache replacement as required by
OPT (described in Section 3), the collaborative cache uses two
alternatives more amenable to hardware implementation:

• 1-bit hint. A memory access is marked by a single bit to be
either a normal (LRU) access or a special (MRU, e.g.) access.

• LRU-like hardware. The deviation from LRU involves only
actions affecting the boundary positions of the stack (while
OPT requires reordering in the middle of the stack) [11]. In
fact, limited implementations are already available on existing
hardware (see Section 5.6).

Pacman uses the LRU/MRU cache and the OPT distance for
hint insertion. As an example, consider Pacman being given the

data access trace in Figure 4. To make it interesting, the trace
has mixed locality: 2 blocks xy are reused frequently, having high
locality; while the other 7 blocks abcdefg (highlighted in red)
have a streaming pattern and low locality. Pacman first computes
the forward OPT distances, which are shown below the trace.

trace xyaxybxycxydxyexyfxygxyaxybxycxydxye ...
fwd. optd 234235236237238239234235236237238239 ...
hint (c=5) LLLLLLLLMLLMLLMLLMLLLLLLLLMLLMLLMLLM ...

Figure 4. Since the non-xy accesses (highlighted in red) all have
reuse distances greater than the cache size, a reuse distance based
hint would cache none of them. A better solution is to cache some,
but not all of them.

Suppose that the cache size is 5. For each access, Pacman
inserts either an LRU or an MRU hint, shown in the table below
the distances, by checking whether the distance is over 5. Being
so hinted, the cache keeps xy and 2 of the streaming data in
cache while leaving the others out, despite the fact that each of the
streaming data have reuse distances larger than the cache size. In
this way, the cache stores as much data in the cache as can benefit
from it.

To quantify cache performance, the following table gives the
stack distances for LRU (i.e. the reuse distance), MRU, OPT [19],
and Pacman (i.e. the LRU/MRU distance) [11]. Capacity misses
happen on accesses whose distance exceeds the cache size (miss
iff dis > c = 5). The miss counts are 5 and 10 for LRU and
MRU but just 3 for OPT and Pacman. Where Pacman accurately
predicts the OPT distance, it gives the optimal cache hint. 1 OPT
and Pacman distances differ, because the Pacman cache has LRU-
like logic, while OPT does not.

miss
trace xyaxybxycxydxyexyfxygxyaxybxycxydxye (c=5)
lru ---33-33-33-33-33-33-119119119119119 5
mru ---23-34-45-56-67-78-892924345456567 10
opt ---23-23-23-23-23-23-234235236237238 3
pac. ---33-33-32-32-32-32-325334336327328 3

Figure 5. Comparison of caching policies, demonstrating that,
with correct OPTD predictions, Pacman can match the optimal pol-
icy.

The distances explain the inner workings of the cache man-
agement. The high distances in LRU show its inability to cache
any low-locality data. The high distances in MRU show its prob-
lem with caching high-locality data. Both OPT and Pacman treat
the two working sets separately and always have low distances for
high-locality data and linearly increasing distances for low-locality
data. The varying distances are effectively priorities through which
these policies select program data to cache.

4.2 OPT Pattern Recognition
In an execution, a reference in a loop may make many accesses,
each with a forward OPT distance. Pattern analysis uses training
runs to find the correlation between the loop index and the OPT
distance so the OPT distance can be predicted when the program is
run for real.

OPT Forward Distance Profiling The profiling step records the
forward OPT distance and the iteration count at all enclosing
loops. Each reference-loop pair provides one sequence of <index,
distance> pairs for the next step of pattern analysis. The profiling
mechanism and cost are described in Section 4.4.
1 In fact, it can be proved that the LRU/MRU cache will miss if and only if
the OPT cache does (for the chosen cache size, 5 in this case). [11]

Figure 6. The OPT distances exhibited by a reference in Swim.
The bounded pattern is between 5 and 10. The linear pattern has a
slope of 38 cache blocks for every 100 iterations.

Linear and Bounded Patterns The OPT distances of a reference
have mainly two types of patterns. The first is bounded length. For
example, as a loop traverses a (8-byte) double precision array, it
moves to a different (64-byte) cache block at every eighth access.
The seven preceding accesses are spatial reuses. The length of these
OPT distances are bounded. The eighth access, however, has an
OPT distance that varies and can be as large as the size of the array.
The first case is a bounded pattern, and the latter a linear pattern.
We define the bounded pattern by the upper bound of the distances
and the linear pattern by an intercept ↵ and a slope �. An <index,

distance> pair < i, d > belongs to a linear pattern < ↵,� > if
d ⇡ ↵+ �i.

As an example, Figure 6 plots the OPT distances for 647 thou-
sand accesses by one of the 197 references in the SPEC 2000
benchmark program Swim. The 647 thousand distances are drawn
as circles on a 2D plot, with the distance on the y-axis and the iter-
ation count on the x-axis.

The bounded pattern is visible as the line at the bottom of the
figure. The distances are between 5 and 10. The pattern contains
about 7/8 (88%) of all points. The 5 diagonal lines (from lower
left to upper right) show five linear patterns. The common slope
(0.38) shows that the distance increases by 38 cache blocks for
every 100 iterations. Although it is not visually apparent, the two
patterns include most of the points on the plot. The points outside
these two patterns account for less than 0.001% of the total (262
out of 646,944).

Grid Regression Most OPT distances are part of some linear
pattern: Either they stay within a constant range, as in the case
of spatial reuse, or they grow at a constant rate, as in the case
of an array traversal. However, in real data the intermingling of
multiple patterns (as in Figure 6) makes linear regression difficult.
The problem can be solved by separating the data points into their
pattern groups and then applying linear regression within each
group. Based on this observation, we developed a technique we
call grid regression.

algorithm grid_regression(set)

tile_partition(set) #3 rows x 40 cols

for each tile

slope = regression(tile).slope

intercept = regression(tile).intercept

y_pred(x) = slope*x + intercept

for each point

if abs(y - y_pred) < 100

add point to pattern

combine_tile_patterns

end algorithm

Given a set of (x,y) coordinates for iteration index and OPT
distance of the reference at that access, the data set is divided into
40 rows and 3 columns. Each tile is assigned a slope and intercept
based on standard linear regression. Each point in each tile is then
accepted as “in the pattern” if the OPT distance is within 100 of the
regression line. If more than 90% of the points in a region are in the
pattern, the tile is considered to have a pattern. Next, each pattern
merges with each neighbor if the neighbor’s smallest and largest
points are within 100 of the first pattern’s regression line. After as
many patterns have merged as possible, each pattern’s accuracy is
defined as the percentage of points in the set that lie in the pattern.

An Example in Swim Swim is a SPEC 2000 benchmark, adapted
from vectorized code for shallow water simulation. It has 197 ref-
erences to 14 arrays in 22 loops. As an example profiling analysis,
we run the program on the input 256 by 256. Each array is 524KB
in size. The following table shows OPT distance patterns for a 2-
level nested loop, with 18 references at the inner loop (Loop 3) and
6 more at the outer loop (Loop 4).

Loop 4: r257 to r262

Loop 3: r251 to r256

ref loop alloc intercept accuracy/size

251 4 48.6% 534kb 96.2%

252 4 24.4% 1620kb 99.6%

253 4 48.6% 534kb 97.0%

254 4 24.4% 1613kb 99.2%

255 4 77.3% 186kb 22.2%

256 4 24.4% 1620kb 99.2%

257 4 48.9% 545kb 100.0%

258 4 32.3% 3789kb 100.0%

259 4 48.9% 540kb 100.0%

260 4 24.5% 1620kb 100.0%

261 4 48.8% 540kb 100.0%

262 4 24.5% 1628kb 100.0%

The multi-level grid regression found patterns (third to fifth
columns) for these references (first column). The patterns show
an elaborate size-dependent cache allocation. If the cache size
is smaller than 186KB, all these references are MRU. Between
186KB and 540KB, r255 in the inner loop is allocated in cache.
From 540KB to 1.6MB, r251 and r253 in the inner loop and r257,
r259 and r261 in the outer loop all take an equal share, 49%. These
six references access only two arrays, with the inner-loop ones
accessing the body and outer-loop ones the boundary of the arrays.
As the cache size increases beyond 1.6MB, more referenced data is
allocated into cache. Using Swim as a non-trivial example, we next
discuss the issues in analyzing programs with more complex loop
structures.

Nested Loops For each reference, all enclosing loops are ana-
lyzed for patterns. The loop whose pattern has the highest accuracy
is considered pattern carrying. Its loop index and those of the in-
ner loops are used for the OPT distance prediction. As an example,
Figure 7 shows a reference in a two-level i, j loop that traverses a
matrix. In the inner j loop, the iteration count ranges from 0 to nj ,

Figure 7. The OPT distance patterns of a reference in a nested
loop. The x-axis shows the inner-loop iteration count in the upper
graph and the cumulative iteration count in the lower graph. The
outer loop (cumulative iteration count) is selected for Pacman to
predict the OPT distance.

the number of j iterations. In the outer i loop, the iteration count
is cumulative and ranges from 0 to njni. Grid regression identifies
many linear patterns at the inner loop, one for each loop instance,
but no majority pattern. At the j loop, it finds a single (linear) pat-
tern. The patterns in Swim are all carried by the outer loop as in this
example, as stated by the second column in the previous table.

Non-contiguous access, Non-perfect Nesting, Branches, and In-
direction Linear patterns are fairly robust against code com-
plexity. The previous Swim loop nest processes the boundary el-
ements differently than the body elements outside the inner loop
(r257-r262). These accesses form a regular linear pattern since
their processing recurs at regular intervals. Similarly, if there is
conditional processing, an array is accessed by multiple references
in branches or switch cases. If some of those references access each

element, then they will all have the same linear pattern. Still, the
linear pattern may fail in two cases. The first is when an array is
accessed only partially and at irregular intervals, e.g. through in-
direction. Linear regression would show an accuracy proportional
to the degree of regularity. The second is when the same reference,
through indirection, accesses two different arrays at different reg-
ular intervals. The analysis can detect multiple linear patterns, but
each pattern is small in size and unsuitable for prediction.

Conservative Pattern Selection Pacman uses a pattern only if the
accuracy is above a threshold, e.g. 90%. When the pattern accuracy
is low, we may not know which access should be labeled MRU.
To be conservative, we make them LRU, so at least not to perform
worse than the original program. A compiler solution may remedy
this. Beyls and D’Hollander developed conditional hints for loop
references that have mixed reuse-distance patterns [7]. To use it
here, we need compiler analysis of the OPT distance, which we
leave as future work.

Whole-array and Priority-array Patterns Two characteristics in
the Swim example are common in programs we have tested. First,
the linear patterns occur at the whole-array level, e.g. the outer loop
in Swim. The OPT distance grows with the array size, independent
of the array shape. We call it the whole-array pattern. Second, the
intercept represents a kind of stratification — lower priority arrays
(because of the greater intercepts) are cached only after all higher
priority arrays have been. We call it the priority-array pattern.
These two properties are important in cross-input pattern analysis.

Cross-Input Pattern Prediction When the input changes, a ref-
erence may access the same array but with a different shape and
size. The shape does not affect whole-array patterns. The size af-
fects the intercept of priority-array patterns. The intercept changes
proportionally to the size of the high priority arrays.

To predict the change in the intercept, Pacman uses multiple
training runs. Each provides an <intercept, input size> pair.
Then the pattern is established by standard linear regression. The
minimum number of tests needed is two. Our test programs in
Section 5 are mostly scientific simulations on some dense physical
grid. We use the total grid size as the input size in the experiment.
It can be automated by examining the loop bounds in training and
using them to calculate the input size before executing the loop.

The predictability of loop bounds has been carefully studied
by Mao and Shen. They gave a three-step solution — feature
extraction, incremental modeling and discriminative prediction —
and showed accurate prediction of the loop bounds in a set of Java
program from just a few extracted parameters [17].

4.3 Loop Splitting and Hint Insertion
After Pacman finds a linear pattern for a reference, it uses a com-
piler to split the pattern-carrying loop. The following function finds
the break point before which a reference should make LRU ac-
cesses and after which it should make MRU accesses. In the for-
mula, p is a pattern with intercept and slope. The two splitting
parameters are the cache size c and the input size n.

function lru-mru-split(p, c, n)

return (c - p.intercept * n) / p.slope

end

A loop may have k references that require loop splitting. Pac-
man produces at most k different breakpoints. The reference is
LRU in the loops before its breakpoint and MRU in the loops af-
ter its breakpoint. Of the k + 1 loops, the first will have all LRU
accesses, and the last will have MRU accesses.

for i in 1, n // loop x

body

end

is transformed to

b1,..,bk = lru-mru-split(p1,...,pk, n, c)

sort(b1,...,bk)

for i in 1, b1

body-1

end

...

for i in bk-1, bk

body-k

end

for i in bk, n

body-k+1

end

Loop splitting increases the code size as the loop body is du-
plicated for every breakpoint. However, the degree of splitting is
limited. First, not all references require splitting. It is required only
for references that have a linear OPT distance pattern. Second, ref-
erences with similar patterns can use the same breakpoint. For the
example shown in Section 4.2, the loop nest from Swim has 18 ref-
erences in the inner loop. Twelve have linear patterns and require
loop splitting. Five of them have a similar pattern, so they can use
the same split. The other 7 have 2 additional patterns, so this exam-
ple would take 4 replicated loops. Third, loop code is compact and
has good spatial locality. As the execution moves from one to the
next, the active code size does not change. Forth, some of the loops
may not be executed. In the Swim example, the largest pattern (of
the 3) has an intercept of 3.8MB. At a smaller input size or a larger
data size, the last replicated loop would have zero iteration. Finally,
if a loop has a large body and requires a large number of splits, we
may choose a subset of splits by weighing on the relative impor-
tance of the references. In evaluation, we will show that loop code
tends not to incur misses because the instruction cache on modern
machines is large.

4.4 OPT Forward Distance Profiling
OPT profiling (i.e. stack simulation [19]) takes a data access trace
as the input and computes the OPT distance for each access. The
distance is backward because it is computed at the end of each data
reuse pair. Pacman converts it to a forward distance by recording it
at the start of the data reuse pair. Since a program trace is too large
to fit in main memory, Pacman dumps the access time and OPT
distance pairs to a file. While the backward distance is ordered, the
forward distance is not. Pacman uses the Unix sort command in a
second pass to order the pairs by the access time in preparation for
pattern analysis.

We can reduce the cost of storing the OPT distance traces by
ignoring short distances if needed but by far the greatest cost in
Pacman is the OPT simulation. For fastest OPT profiling, we use
the tool by Sugumar and Abraham [25]. It implements the OPT
stack using a splay tree for cache efficiency and a novel technique
to update stack layout quickly. Profiling times for each workload
are shown in Table 1.

Accompanying the OPT distance, Pacman records three types of
program information: memory reference, loop, and function call.
For memory profiling, we instrument every load and store. For
function profiling, we insert profiling calls before and after every
call site. Loop profiling captures 3 events: loop entry, loop exit, and
a loop tick for every iteration.

The purpose of function profiling is to detect context-sensitive
patterns in loops. In the following we discuss only loop pattern

analysis, which is the same once the context is fixed. A function
may be called inside a loop. There are two effects. First, the same
function may be called by multiple loops. Pacman treats it in each
loop context as a different function so not to mix their patterns.
Second, a function may be executed multiple times in the same
loop iteration. Pacman records these OPT distances as happening
at the same time (measured by the iteration count).

4.5 Non-loop Pacman
We discuss an extension that takes advantage of the flexibility of
program control: the support of non-loop code. In modern lan-
guages, most array operations are implemented in libraries such
as the Vector class in Java and Array class in Ruby. Some of the
functions traverse the entire array. These functions can take the
LRU/MRU breakpoint as an optional parameter. The implementa-
tion would access the array using LRU access up to the breakpoint
and MRU afterwards. A recent paper discusses the modern imple-
mentation of dynamically sized array [22]. Pacman may be added
as another optimization technique to enable programmer control
over the cache allocation for the array.

5. Evaluation
5.1 Experimental Setup
Workloads To evaluate Pacman, we simulate its use with 8 work-
loads. As the commonly used benchmark to measure memory
bandwidth, stream repeatedly traverses a set of large arrays. Our
version uses just one array. SOR implements Jacobi Successive
Over-relaxation modified from SciMark 2.0 [1]. Swim, mgrid, and
applu are from SPEC CPU 2000 [2] and bwaves, leslie3d and
zeusmp from SPEC CPU 2006 [3]. For each workload, we have 3
different input sizes: small, medium, and large. Table 1 shows the
number of references and loops and the size of their executions.

We chose these programs because their data size and running
length can be adjusted by changing the input parameters. The
training uses OPT, so Pacman cannot profile programs on overly
large inputs. The testing of Pacman can be done on any size input.
In order to compare with OPT, however, we choose small enough
inputs in testing as well.

Pacman Implementation We implemented the profiling support
a version of the LLVM compiler [15]. We did not implement loop
splitting. Instead, all loop accesses are processed during simulation,
and the splitting is done by the simulator. The simulated cache has
64-byte blocks, 16- way set associativity for cache sizes between
2MB and 16MB. The block size and associativity are based on
the x86 machine we use for the simulation. Since we simulate
only (data) cache, not the CPU, we cannot evaluate the looping
overhead. We do not expect a significant overhead for the list of
reasons given in Section 4.3. In Section 5.6, we will use a simple
test to measure the complete effect of Pacman on a real system.

The OPT profiling times shown in Table 1 were measured on a
3 GHz AMD Opteron Processor 4284 with a 2 MB L3 cache.

Dynamic Insertion Policy (DIP) We compare Pacman with
a hardware solution called Dynamic Insertion Policy (DIP) by
Qureshi et al. [20]. DIP divides the cache into three sets: (1) a small
set of cache blocks dedicated to the LRU policy, (2) another small
set of cache blocks dedicated to a mostly-MRU policy called Bi-
modal Insertion Policy (BIP), and (3) the majority of cache blocks
which will follow whichever of the first two policies is performing
best at any point in time.

For workloads that are LRU-averse during any phase in their
execution, DIP can outperform LRU by adaptively choosing BIP.
For workloads that are LRU-friendly throughout, DIP consistently
allocates the majority of cache blocks to LRU, but can in rare

Workload Mem. Loops Input Trace Data Set OPT
Ref’s (Num.) Size Length Size Profile

(Num.) (M) (MB) Time (s)
streaming small 5.2 2.1 11.7

1 2 med. 10.5 4.2 18.1
(C) large 21.0 8.4 35.0

SOR small 10.7 2.1 10.8
7 5 med. 42.8 8.4 35.3

(C) large 171.7 33.6 149.7
swim small 42.5 7.6 50.8

341 33 med. 95.5 16.9 151.7
(F77) large 169.6 29.9 306.6
mgrid small 5.1 0.2 5.7

418 46 med. 39.5 1.1 37.9
(F77) large 312.2 7.6 323.5
applu small 42.2 2.8 50.9

1858 125 med. 62.9 4.1 74.9
(F77) large 163.1 10.3 213.2

bwaves small 25.6 1.1 33.4
630 96 med. 52.9 2.2 69.0

(F77) large 389.6 16.6 631.4
leslie3d small 31.1 1.9 32.7

3718 295 med. 64.9 3.7 72.9
(F90) large 147.6 6.9 171.4

zeusmp small 13.9 2.1 19.4
10428 446 med. 39.5 2.9 53.8

(F77) large 85.5 4.2 117.6

Table 1. The statistics of the 8 workloads

instances even be outperformed by LRU because of misses incurred
by BIP dedicated blocks.

For our comparisons, we used a DIP implementation of Xiang
et al. [28], which follows the description in the original paper
and selects the parameters the paper mentioned: a policy selection
threshold of 1024 (so that the LRU set must have 1024 more misses
than the BIP set in any time window to trigger a policy switch to
BIP), and “bimodal throttle parameters” of 1/16, 1/32, and 1/64 (so
that each BIP block randomly uses LRU instead of MRU with this
probability). The lowest miss rate between these three options is
always reported, although there is only small variation.

Estimated Reuse Distance Hint Policy (RDE-Hint) We compare
Pacman with a software solution by Beyls and D’Hollander [7].
They proposed a reuse distance based hint. If over 90% of memory
accesses generated by an instruction have reuse distances greater
than the cache size, the instruction is given a cache hint of “MRU”.
Pacman works similarly, but using the OPT distance metric de-
scribed in Section 3 instead of reuse distance.

The estimated reuse distance hint (RDE-Hint) policy is a
modification of Pacman and an approximation of the Beyls and
D’Hollander method. Figure 4 shows an example where the reuse
distance for certain accesses (abcdefg) remains constant (and
large), but the OPT distance forms a linear pattern peaking above
the reuse distance. When an OPTD pattern is identified in the Pac-
man policy, these references will likely have large reuse distances,
as demonstrated above, so they are tagged by the RDE-Hint policy
for MRU eviction.

5.2 Pacman for Swim
Figure 8 shows the percent reduction of misses for four cache sizes.
When training and testing on the same input, Pacman reduces the
number of misses by 3%, 6%, 22% and 39%. When training on two
small inputs and testing on a large input, the reduction becomes
3%, 5%, 41% and 58%. The larger reduction has to do with the
relation between the data size and cache size and does not mean
the predicted OPT distance is more accurate for the larger input.

We use the total grid size as the data size for swim. Two grids
may have different shapes but the same size. We have tested two

2MB 4MB 8MB 16MB
Cache Sizes

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

0
20

40
60

DIP RDE−Hint Pacman OPT

0
20

40
60

(a) Swim, training on input 256 by 256 and 384 by 384 and testing
on 512 by 512

1MB 2MB 4MB 8MB
Cache Sizes

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

0
20

40
60

DIP RDE−Hint Pacman OPT

0
20

40
60

(b) Swim, training on input 384 by 384 and testing on 200 by 737

2MB 4MB 8MB 16MB
Cache Sizes

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

0
20

40
60

DIP RDE−Hint Pacman OPT

0
20

40
60

(c) Swim, training on input 256 by 256 and 384 by 384 and testing
on 300 by 873

Figure 8. DIP, RDE-Hint, Pacman and OPT tested on swim when
the input size (a), array shape (b) and both (c) change from training
to testing.

other inputs. The first is 200 by 737, which we choose to have the
same total size as 384 by 384. Pacman predicts the same linear
patterns for the two executions. Similarly, we choose 300 by 837 to
have the same size of 512 by 512. We test Pacman by changing just
the grid shape, just the input size, and both. The reduction numbers
are shown in Figure 8. There is no significant loss of Pacman
benefits as a result of these changes. It demonstrates the robustness
of the Pacman pattern analysis and the cross-input prediction for
this program.

0.5MB 1MB 2MB 4MB
Cache Sizes

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

0
20

40
60

DIP RDE−Hint Pacman OPT

0
20

40
60

(a) Streaming, training on SIZE=256 and SIZE=512 and testing on
SIZE=1024

2MB 4MB 8MB 16MB
Cache Sizes

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

0
20

40
60

DIP RDE−Hint Pacman OPT

0
20

40
60

(b) SOR, training on SIZE=512 and 1024 and testing on SIZE=2048

0.5MB 1MB 2MB 4MB
Cache Sizes

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

0
20

40
60

DIP RDE−Hint Pacman OPT

0
20

40
60

(c) Mgrid, training on SIZE=24 and SIZE=25 and testing on
SIZE=26

1MB 2MB 4MB 8MB
Cache Sizes

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

0
20

40
60

DIP RDE−Hint Pacman OPT

0
20

40
60

(d) Applu, training on inputs 12 by 12 by 12 and 18 by 18 by 18 and
testing on input 24 by 24 by 24

0.5MB 1MB 2MB 4MB
Cache Sizes

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

0
20

40
60

DIP RDE−Hint Pacman OPT

0
20

40
60

(e) Leslie3d, training on inputs 21 by 21 by 2 and 31 by 31 by 2 and
testing on 41 by 41 by 3

0.5MB 1MB 2MB 4MB
Cache Sizes

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

0
20

40
60

DIP RDE−Hint Pacman OPT

0
20

40
60

(f) Zeusmp, training on inputs 8 by 8 by 8 and 12 by 12 by 12 and
testing on 16 by 16 by 16

Figure 10. The improvements by DIP, RDE-Hint, Pacman and OPT over LRU. The input size is given by grid dimensions. The total size is
used by the run-time predictor.

5.3 Other Programs
We show the results for 6 programs in Figure 10. Stream has the
simplest pattern. Pacman obtains a performance close to optimal.
In SOR, most computation happens in a 3-nested loop in Figure 11.

In the j loop, all 6 array references have group spatial reuse.
Pacman profiling shows that the LLVM compiler generates 3 ref-
erences for the loop. Two of the references have only short OPT
distances. Only the third reference shows a linear pattern. Pacman

recognizes it and reduces the miss ratios by 5%, 11%, 21% and
43% for the four cache sizes from 2MB to 16MB.

A more powerful compiler can apply loop tiling and reduce
the size of the working set to fit entirely in cache. Pacman would
find no linear pattern. On the other hand, there are iterative com-
putations not amenable to tiling (e.g. k-means) and programs not
amenable to compiler analysis. For those, Pacman provides the ben-
efit of better cache management as in this example.

0.5 1 2 4 8 16
Cache Sizes (MB)

(%
) C

ac
he

 M
is

s
R

ed
uc

tio
n

ov
er

 L
RU

−4
0

0
40

DIP RD−Hint Pacman OPT

−4
0

0
40

Figure 9. DIP, RDE-Hint, Pacman and OPT tested on bwaves
(training on input 9 by 9 by 4 and 9 by 9 by 8 and testing on 17
by 17 by 16).

for (p=0; p<TIME; p++) {

for (i=1; i<SIZE-1; i++) {

for (j=1; j<SIZE-1; j++)

G[i][j] = omega_over_four * (G[i-1][j] +

G[i+1][j] + G[i][j-1] +

G[i][j+1]) + one_minus_omega

* G[i][j];

}

}

Figure 11. The main loop in SOR, where Pacman inserts MRU
hints for 3 of the references

The other four programs are physical simulations. Mgrid is a
multi-grid solver that computes a three dimensional scalar poten-
tial field. Applu, bwaves, zeusmp, and leslie3d are all fluid dynam-
ical simulations. Applu solves five coupled nonlinear PDEs on a
three dimensional grid, bwaves and zeusmp both simulate blast
waves (zeusmp does so specifically for astrophysical scenarios),
and leslie3d simulates eddy flows in a temporal mixing layer.

There are 418 references in 46 loops in mgrid and 1858 refer-
ences in 125 loops in applu. The types of patterns are more complex
than those of SOR. Many references in applu have a similar look as
shown by an example one in Figure 7. Mgrid does not have as many
strong linear patterns, partly because of its divide-and-conquer type
computation. As a result, the reduction by Pacman is higher in ap-
plu, from 2% to 34%, than in mgraid, from -6% to 10%.

There are a few cases of negative impacts on cache whose size is
small. The reason is an error in cross-input analysis which predicts
MRU for LRU access. For large set-associative cache, an over-
use of MRU is not immediately harmful. The chance is that the
following accesses would visit somewhere else in cache. For small
cache, however, the incorrect MRU accesses may cause the eviction
of high locality data and hence increase the miss rate.

Pacman obtains significant miss-ratio reductions over LRU,
11% to 24% for leslie3d and 0% to 26% for zeusmp. As mem-
bers of SPEC2006, their code is larger. Zeusmp has as many as 10
thousand (static) references in nearly 500 loops.

Pacman does not improve the last program, bwaves, as shown
in Figure 9. Bwaves has 260 references in 68 loops; most of the
loops are nested 4 to 6 levels deep, and the input grid has just
3 dimensions. Although the performance is worse than LRU for
caches of 0.5 MB and 1 MB, for larger caches, Pacman does no
worse than LRU. Figure 12 shows the OPT distances for one of the

14 references in a 5-nested loop indexed by the combined iteration
count from the outermost loop. In this and most other references,
Pacman could not find a usable pattern because of the low accuracy
(as low as 20% in the largest pattern).

Figure 12. The OPT distances of a reference-loop pair in bwaves.
Pacman finds multiple linear patterns but none is usable because of
low accuracy.

5.4 Comparison to Dynamic Insertion Policy
In the SOR workload outlined above, DIP gives nearly the same
miss rate as LRU because during the traversal of G, there are
a significant number of immediate reuses (causing misses in the
BIP blocks). While there are also low locality accesses, BIP never
outperforms LRU strongly enough to trigger a policy switch to BIP.
DIP does not reduce the number of misses in our test suite, with
the exception of zeusmp, for which it makes a significant reduction
for two of the cache sizes shown in Figure 10. The changes in all
other programs are less than 1%. While DIP does not improve the
performance, it does not degrade it, which makes it a safe policy.

Pacman outperforms DIP in most of our trials. It has the ad-
vantage of gathering program information through profiling (where
DIP uses on-line execution history). On the other hand, the mecha-
nism differs. DIP applies a single policy across the board at any one
point in program execution. The goal is to find the better solution
of two policies. Pacman assigns an eviction policy to each access.
The goal is the best solution of all policies.

To be fair, we limited our tuning of DIP to the parameters
specified in that paper. DIP was not developed with our tests, with
the exception of swim. Swim was deemed “inherently LRU” as DIP
was not able to improve its performance [20]. Nonetheless, this
does demonstrate that, due to its fine-grained policy selection (as
shown for the specific Swim loop in Section 4.2), Pacman has the
edge for “inherently LRU” programs.

5.5 Comparison to Estimated Reuse Distance Hint Policy
RDE-Hint performed at or above the level of Pacman for some tri-
als. There is only one trial (Mgrid, 4MB) where Beyls significantly
outperforms Pacman.

The difference between RDE-Hint and Pacman is that whenever
Pacman might provide an MRU hint (when there is a linear OPTD
pattern), RDE-Hint does. In the example in Figure 4, RDE-Hint
will provide MRU hints to the high reuse distance data abcdefg,
just like the LRU policy. This similarity is shown in the results for
the Streaming and SOR benchmarks, where RDE-Hint performs on

par with LRU. Like the OPT policy of Mattson [19], Pacman places
a portion of the high reuse distance data in the cache. While RDE-
Hint beats Pacman in some tests, the possibility of throwing out too
much data makes it more volatile, as seen in the results for Leslie3d
and Zeusmp

RDE-Hint can do worse than LRU because LRU evicts unused
data, whereas RDE-Hint does not cache data in the first place
if it is predicted to be unused. Overclassification of data as low
locality then results in throwing out data that could have been used.
For example, when there is both low and high-locality data as in
Figure 5, LRU eviction is better than MRU eviction, but RDE-
Hint will flag the low-locality data for MRU eviction. In contrast,
Pacman will almost never do worse than LRU; since only a portion
of the low-locality data is flagged for MRU, it is unlikely that too
many accesses will be uncached.

5.6 Performance on Real Hardware
The x86 ISA provides non-temporal store instructions which can
bypass cache. They write to memory without loading the corre-
sponding cache line first. SSE4.1 adds a non-temporal read instruc-
tion which is limited to write-combining memory area. For regu-
lar data that resides in main memory, the non-temporal read does
not bypass the cache hierarchy [13]. There are also non-temporal
prefetch instructions on x86, but they do not provide the full func-
tionality of a non-temporal read. Still, we can evaluate the effect of
Pacman using just the non-temporal store.

We run our tests on a machine with an Intel Xeon E5520 pro-
cessor. The processor contains 4 symmetric 2.27GHz cores which
share an 8MB L3 cache. With Hyper-Threading enabled, the pro-
cessor can support up to 8 hardware threads.

Figure 13 shows the kernel of our test program. The outer loop
advances in time step. In each time step, the inner loop updates
each element of array A based on its old value. The inner loop
is parallelized with OpenMP. The size of array A is set to 12MB,
which is too large for cache reuse under LRU.

for(t = 0; t < MAXITER; t++)
#pragma omp parallel for

for(i = 0; i < N ; i++)
A[i] = foo(A[i]);

Figure 13. An OpenMP loop nest: the inner loop updates the array
element by element; the outer loop repeats each the inner loop at
each time step.

To enable the outer loop reuse, Pacman splits the inner loop into
two, each of which is still an OpenMP parallel loop. The first loop
writes to the first 8MB of array A using the normal (LRU) access,
and the second loop the last 4MB of A using the non-temporal
access. In the second loop, the non-temporal store is via the GCC
intrinsic mm stream pd. We unroll the inner loop 8 times, and the
non-temporal stores happen once for each cache block rather than
each element. To exclude the unrolling effect from the performance
comparison, we perform the same loop unrolling on the original
program. After loop splitting, Pacman keeps the first 8MB of A in
the last level cache for reuse throughout the time steps.

Figure 14 gives the performance comparison between the orig-
inal program and the optimized version. Another version, which
only naively replaces the regular stores with non-temporal ones
without splitting the inner loop, is also included in Figure 14 for
comparison.

Figure 14(a) depicts the performance data with hardware prefetch-
ing on and in Figure 14(b) without prefetching. In the second case,
we turn off all four kinds of hardware prefetchers by setting the
corresponding Model-Specific Register (MSR) on all cores, similar
to the approach in [27]. We test our programs for up to 8 threads,

●

●
● ●

●
● ● ●

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Thread number

Ti
m

e(
se

co
nd

s)

Regular
Non−temporal
Non−temporal+Splitting

(a) Performance with hardware prefetching

●

●

●

● ●
●

● ●

1 2 3 4 5 6 7 8

0
2

4
6

8

Thread number

Ti
m

e(
se

co
nd

s)

Regular
Non−temporal
Non−temporal+Splitting

(b) Performance without hardware prefetching

Figure 14. The performance comparison on Intel Xeon E5520.

threads 1-4 are assigned to four physical cores, and threads 5-8 are
bound to four hyper-threads.

First let’s consider single-thread performance. For the experi-
ment, we turn on and off prefetching to measure its effect. With
prefetching, the Pacman code is 19% slower than the original
program when using 1 thread. Without prefetching, Pacman is
17% faster. The difference shows that for single-thread execu-
tion, prefetching is more effective than Pacman despite the fact
that it improves the locality. The 19% slowdown suggests that non-
temporal accesses either have a higher overhead or interfere with
prefetching (which must be designed to maximize performance for
sequential streaming access).

Prefetching requires sufficient memory bandwidth to be effec-
tive. In the single-thread test, one CPU core has the memory band-
width of the entire system. Once the memory bandwidth is shared
by more cores, cache management becomes important because bet-
ter caching reduces the bandwidth demand and hence the con-
tention on memory bandwidth. At more than 2 threads, Pacman is
clearly better, as shown in Figure 14(a). At 3 and 8 threads, Pacman
reduces the parallel execution time by over 30%. The results show
the relation between cache management and prefetching. When
there is enough bandwidth, prefetching is sufficient, at least for
contiguous memory traversals; when the bandwidth is under con-

tention, caching is effective in further improving performance (by
over 30% in this test).

Loop splitting by Pacman is also important. Without it, the
performance is as much as 47% lower than the original program.
If we turn off prefetching, the better cache management by Pacman
is uniformly beneficial, from 17% improvement in one thread to
25% improvement at 8 threads, as shown in Figure 14(b).

We have tested the overhead of loop splitting by running the
sequential version with one loop doing all the work and with eight
replica loops each doing one eighth of the work. In addition, each
loop is unrolled 8 times, so each loop body has 8 statements. The
binary size is 7583 bytes before loop splitting and 8159 bytes
after splitting. The running time is completely identical between
the two versions. There is no visible run-time overhead from loop
splitting. We also tested on an AMD Opteron machine and found
no overhead by loop splitting. The reason is that the total code size,
despite unrolling and splitting, is still small compared to the size
of L1 instruction cache (32KB on Intel Xeon and 64KB on AMD
Opteron). Furthermore, loop code has good instruction locality. As
long as the size of a single loop does not exceed 32KB or 64KB,
we do not expect repeated misses in the instruction cache.

On multicore machines, the memory bandwidth is shared
among all co-run programs. By reducing the memory bandwidth
demand of one program, Pacman improves not only the cache per-
formance for the program but possibly its co-run peers because they
can now use a greater share of the available memory bandwidth.

6. Related Work
Several previous solutions used reuse distance analysis, either by a
compiler [7, 26] or by profiling [6, 7, 16], to distinguish between
high locality and low locality accesses. The different caching mech-
anisms include Itanium placement hints [6, 7], evict-me tags [26]
and cache partitioning through page coloring [16].

The reuse distance shows the program locality independent of
cache management and size. When data larger than cache size have
the same locality (reuse distance), it is unclear how to select a
subset for caching. If we choose one group of accesses for LRU
and the others for MRU, the cache locality changes for affected data
but also for other data. This common problem when optimizing a
tightly coupled system is described in a Chinese adage: “pulling
one hair moves the whole body”.

Reuse distance has been used to predict cross-input locality
from the whole program to individual references (e.g. [8, 18].
Pacman uses the same training strategy but predicts the change in a
linear pattern rather than in a histogram.

Optimal collaborative caching has been studied as a theoretical
possibility [10–12]. Gu et al. proved the theoretical optimality in
bypass and trespass LRU cache [10], the LRU-MRU cache [11],
which we use in Pacman, and the priority LRU cache [12]. They
designated each reference as LRU or MRU based on whether the
majority of its OPT distances is greater than a threshold [11],
following the technique of Beyls and D’Hollander [7]. A reference
is always MRU or always LRU. The drawback is the same with
the reuse distance: there is no partial caching of a working set. The
optimality requires re-inserting hints for each different input and
cache size. A recent solution allowed the same hints to optimize
for caches of an arbitrary size but required passing integer-size
priority hints rather than a single bit [12]. Pacman uses linear-
pattern analysis and loop splitting to adapt cache hints across input
and cache sizes. It addresses practical problems such as non-unit
size cache blocks, nested loops, and cross-array and cross-program
cache allocation.

Cache can implement adaptive solutions entirely in hardware
with no visible overhead and with transparency to the user program.
Indeed, perhaps no modern cache is implemented strictly as LRU.

Techniques such as DIP [20] (compared in Section 5.4), recently
reuse-time predictor [9] and many previous techniques improve
over LRU by revising the LRU strategy or switching among multi-
ple strategies. For memory management, elaborate strategies have
been developed for paging, including EELRU [24], MRC [31],
LIRS [14], and CRAMM [29]. While these previous policies are
based on heuristics, Pacman is based on the optimal strategy, which
it computes at the profiling time (to obtain program information
and tolerate the OPT overhead). It inserts program hints so the
hardware can obtain optimal management without needing pro-
gram analysis or computing the optimal strategy. The empirical
comparison shows the need for program-level control to allocate
cache among differently for different groups of arrays and use dif-
ferent LRU/MRU policies within the same array. Finally, collabo-
rative caching permits direct software control.

7. Summary
In this paper, we have presented the Pacman system for program-
assisted cache management. It uses profiling to obtain the forward
OPT distances, grid regression and cross-input analysis to identify
linear patterns, and loop splitting to enable the dynamic designation
of LRU/MRU accesses for each original data reference. Pacman
needs the hardware to support LRU/MRU access interface. The
interface requires at most one bit for each memory access. Most
of the analysis and all program transformation are done off-line
before a program executes.

By evaluating the system using simple and complex benchmark
programs, we found that most programs exhibit strong linear pat-
terns that can be captured by profiling. The reduction over LRU
is significant and becomes as much as 40% to 60% when man-
aging a large cache. Real-machine experiments suggest that MRU
access incurs an overhead. Still, the improved cache reuse can im-
prove performance when prefetching is difficult or when the con-
tention on memory bandwidth is high. While Pacman is not the first
caching policy to make use of program profiling, its unique contri-
bution is in its use of the OPT distance for providing cache hints.

From these results, we believe that computer architects should
consider supporting LRU/MRU hints to enable collaborative caching.
The interface enables new types of cache memory management by
a program or a compiler.

Acknowledgments
The authors would like to thank Yaoqing Gao, Xipeng Shen the
anonymous ISMM reviewers, and our colleagues and visitors at the
University of Rochester: Lingxiang Xiang, Xiaoya Xiang, Sandhya
Dwarkadas, Engin Ipek, Jorge Albericio, and Li Shen for their
insightful ideas, questions, and comments, and the use of code.

References
[1] SciMark2.0. http://math.nist.gov/scimark2/.
[2] SPEC CPU2000. http://www.spec.org/cpu2000.
[3] SPEC CPU2006. http://www.spec.org/cpu2006.
[4] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-

tures: A Dependence-based Approach. Morgan Kaufmann Publishers,
Oct. 2001.

[5] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78–101, 1966.

[6] K. Beyls and E. D’Hollander. Reuse distance-based cache hint selec-
tion. In Proceedings of the 8th International Euro-Par Conference,
Paderborn, Germany, Aug. 2002.

[7] K. Beyls and E. D’Hollander. Generating cache hints for improved
program efficiency. Journal of Systems Architecture, 51(4):223–250,
2005.

[8] C. Fang, S. Carr, S. Önder, and Z. Wang. Instruction based memory
distance analysis and its application. In Proceedings of PACT, pages
27–37, 2005.

[9] M. Feng, C. Tian, C. Lin, and R. Gupta. Dynamic access distance
driven cache replacement. ACM Trans. on Arch. and Code Opt.,
8(3):14, 2011.

[10] X. Gu, T. Bai, Y. Gao, C. Zhang, R. Archambault, and C. Ding. P-
OPT: Program-directed optimal cache management. In Proceedings
of the LCPC Workshop, pages 217–231, 2008.

[11] X. Gu and C. Ding. On the theory and potential of LRU-MRU
collaborative cache management. In Proceedings of ISMM, pages 43–
54, 2011.

[12] X. Gu and C. Ding. A generalized theory of collaborative caching. In
Proceedings of ISMM, pages 109–120, 2012.

[13] A. Jha and D. Yee. Increasing memory throughput with intel streaming
simd extensions 4 (intel sse4) streaming load, 2007. Intel Developer
Zone.

[14] S. Jiang and X. Zhang. Making lru friendly to weak locality work-
loads: A novel replacement algorithm to improve buffer cache perfor-
mance. IEEE Trans. Computers, 54(8):939–952, 2005.

[15] C. Lattner and V. S. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In
Proceedings of PLDI, pages 129–142, 2005.

[16] Q. Lu, J. Lin, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan.
Soft-OLP: Improving hardware cache performance through software-
controlled object-level partitioning. In Proceedings of PACT, pages
246–257, 2009.

[17] F. Mao and X. Shen. Cross-input learning and discriminative predic-
tion in evolvable virtual machines. In Proceedings of CGO, pages
92–101, 2009.

[18] G. Marin and J. Mellor-Crummey. Cross architecture performance
predictions for scientific applications using parameterized models. In
Proceedings of SIGMETRICS, pages 2–13, 2004.

[19] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM System Journal, 9(2):78–117,
1970.

[20] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and J. S. Emer. Adap-
tive insertion policies for high performance caching. In Proceedings
of ISCA, pages 381–391, 2007.

[21] S. Rus, R. Ashok, and D. X. Li. Automated locality optimization based
on the reuse distance of string operations. In Proceedings of CGO,
pages 181–190, 2011.

[22] J. B. Sartor, S. M. Blackburn, D. Frampton, M. Hirzel, and K. S.
McKinley. Z-rays: divide arrays and conquer speed and flexibility.
In Proceedings of PLDI, pages 471–482, 2010.

[23] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B.
Joyner. Power5 system microarchitecture. IBM J. Res. Dev., 49:505–
521, July 2005.

[24] Y. Smaragdakis, S. Kaplan, and P. Wilson. The EELRU adaptive
replacement algorithm. Perform. Eval., 53(2):93–123, 2003.

[25] R. A. Sugumar and S. G. Abraham. Efficient simulation of caches
under optimal replacement with applications to miss characterization.
In Proceedings of SIGMETRICS, Santa Clara, CA, May 1993.

[26] Z. Wang, K. S. McKinley, A. L.Rosenberg, and C. C. Weems. Using
the compiler to improve cache replacement decisions. In Proceedings
of PACT, Charlottesville, Virginia, 2002.

[27] C.-J. Wu and M. Martonosi. Characterization and dynamic mitigation
of intra-application cache interference. In Proceedings of ISPASS,
pages 2–11, 2011.

[28] L. Xiang, T. Chen, Q. Shi, and W. Hu. Less reused filter: improving
L2 cache performance via filtering less reused lines. In Proceedings
of ICS, pages 68–79, New York, NY, USA, 2009. ACM.

[29] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM:
Virtual memory support for garbage-collected applications. In Pro-
ceedings of OSDI, pages 103–116, 2006.

[30] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and K. S.
McKinley. Why nothing matters: the impact of zeroing. In OOPSLA,
pages 307–324, 2011.

[31] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar. Dynamic tracking of page miss ratio curve for memory
management. In Proceedings of ASPLOS, pages 177–188, 2004.

A. Two Properties of OPT Distance
OPT distance is a foundational concept in the paper. We present
two of its theoretical properties to aid its understanding. First, we
show a general relation with the reuse distance.

PROPOSITION 1. At each access, the OPT distance is no more than
the reuse distance.

Proof Without loss of generality, consider an access of the data
element x and the reuse window from the last access to the current
access of x. At the start of the window, x is just accessed, so it is
at the top position in both the LRU and the OPT stacks. Next we
compare the movement of x in these two stacks.

The movement is based on priority. LRU ranks data by the last
access time. OPT ranks by the next access time. As the other data
are accessed, they come to the top of the stack. In LRU, they always
gain a higher priority than x, so they stay over x in the LRU stack.
In OPT, depending on the next access time, they may rank lower
than x and drop below x. As a result, x always stays at the same
or a higher stack position in OPT than in LRU until the end of the
reuse window. At the end, the OPT distance is smaller than or equal
to the reuse distance.

The next proposition states the exact OPT distance formula for
repeated streaming accesses. We have seen this pattern in a specific
example in Section 3. Here we prove a general result.

PROPOSITION 2. When repeatedly traversing n data a1 . . . an, the
OPT distance is 1 for the first n accesses and then repeats from
2 . . . n until the end of the trace.

Proof It is trivial to show the pattern if n = 2. Next we assume n >

2. At the nth position, an is accessed. All n blocks are in cache.
The OPT stack, from top to bottom, is an, a1 . . . an�1. Except for
an, the elements are ordered by the next access time. Now we
examine the OPT distance and the stack layout in the following
n � 1 accesses: a1, . . . , an�1. At a1, the OPT distance is 2, and
the top two stack entries are changed to a1, an. At a2, the OPT
distance is 3, and the top 3 spots are changed to a2, an, a1. The
pattern continues. At an�1, the OPT distance is n, and the stack is
an�1, an, a1, . . . , an�2. Now, the next n� 1 accesses in the trace
are an, a1, . . . , an�2. Comparing to the last n � 1 accesses, we
see the identical configuration of the stack and the upcoming n� 1
accesses, if we re-number data blocks from an, a1, . . . , an�1 to
a1, . . . , an. The same reasoning applies, and hence the pattern of
OPT distances repeats.

We note that the periodicity of the OPT distances is n � 1. As
a result, the same datum does not have the same OPT distance
over time. Its OPT distance increases by 1 each time the datum
is reused in cache. For any cache size, every datum will alternate
to stay in and out of the OPT cache. The optimal caching is not
by a preference of a data subset but a rotation of all data over
time. In fact, it can be shown that choosing a preferred subset is
an inferior solution. If we phrase this theoretical result in political
terms, we have a proof that democracy outperforms aristocracy in
data caching.

