
HOTL: A Higher Order Theory of Locality

Chen Ding
University of Rochester

with Xiaoya Xiang, Bin Bao and Hao Luo

Chen Ding, HOTL theory, University of Rochester

The Story of a Theory

• An empirical observation
• “During any interval of execution, a program favors a subset

of its pages, and this set of favored pages changes slowly”
-- Peter Denning

• The 80-20 rule
• The law of diminishing returns

• How to quantify?
• the locality of a program or an operation?
• what are “primary” metrics?

• Two example quantities
• data volume and reuse time

• the connection is the key

2

Locality Statistics I

Miss Ratio

Chen Ding, HOTL theory, University of Rochester http://en.wikipedia.org/wiki/File:Cache,missrate.png

Chen Ding, HOTL theory, University of Rochester

Cache Performance for SPEC CPU2000 Benchmarks
Version 3.0

May 2003

Jason F. Cantin
Department of Electrical and Computer Engineering

1415 Engineering Drive
University of Wisconsin-Madison

Madison, WI 53706-1691
jcantin@ece.wisc.edu
http://www.jfred.org

Mark D. Hill
Department of Computer Science

1210 West Dayton Street
University of Wisconsin-Madison

Madison, WI 53706-1685
markhill@cs.wisc.edu

http://www.cs.wisc.edu/~markhill

http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data

Abstract

The SPEC CPU2000 benchmark suite (http://www.spec.org/osg/cpu2000) is a collection of 26 compute-
intensive, non-trivial programs used to evaluate the performance of a computer's CPU, memory system, and
compilers. The benchmarks in this suite were chosen to represent real-world applications, and thus exhibit a
wide range of runtime behaviors. On this webpage, we present functional cache miss ratios and related
statistics for the SPEC CPU2000 suite. In particular, L1 instruction, L1 data, and L1 unified caches ranging
from 1KB to 1MB with 64B blocks and associativities of 1, 2, 4, 8 and full. Prefetch operations were
always executed, but results are posted both with and without them counted in the hit ratios. Most of this
data was collected at the University of Wisconsin-Madison with the aid of the Simplescalar toolset
(http://www.simplescalar.org).

Contents

Methodology
Benchmarks
Summary Data
Table Format
Miss Ratio Tables
Experimental Error
Related Work
Acknowledgements
Publications

Chen Ding, HOTL theory, University of Rochester http://en.wikipedia.org/wiki/File:Cache,missrate.png

Locality Statistics II

Reuse Distance

(i.e. LRU stack distance [Mattson et al. IBM 1970])

Chen Ding, HOTL theory, University of Rochester

Reuse Distance

• Reuse distance of an access to x
• the number of distinct data accessed after the

previous access to x
• Reuse distance (rd) vs reuse time (rt)
• Distribution function P(rd) and P(rt)

• the distribution of all rd and rt
• P(rd=3) = 2/7
• P(rt=3) = 0/7

• P(rd) determines the LRU miss ratio
• mr(3) = P(rd>3) = 3/7
• Smith formula to account for associativity

• Not enough to model cache sharing

a b c a a c b
3 1 2 38 8 8

8

4 2 4 68 8 8rt:
rd:

Locality Statistics III

Footprint

[Ding, Xiang et al. PPOPP 2008/11, PACT 11]

Chen Ding, HOTL theory, University of Rochester

Footprint

• Amount of data access in an execution period
• fp(w): average footprint of ALL windows of length w
• length-n trace, O(n2) windows

• 1 billion accesses, half quintillion windows
• Example: “abbb”

• 3 length-2 windows: “ab”, “bb”, “bb”
• footprints 2, 1, 1

• the average fp(2) = (2 + 1 + 1)/3 = 4/3
• Example “xyz xyz ...”

• fp(i) = i for 0 <= i <= 3
• fp(i) = 3 for i > 3

10

Chen Ding, HOTL theory, University of Rochester

Footprint Measurement
• Working set

• limit value in an infinitely long trace [Denning & Schwartz 1972]
• Direct counting

• single window size [Thiebaut & Stone TOCS’87]
• seminal paper on footprints in shared cache

• same starting point [Agarwal & Hennessy TOCS’88]
• Statistical approximation

• [Denning & Schwartz 1972; Suh et al. ICS’01; Berg & Hagersten PASS’04;
Chandra et al. HPCA’05; Shen et al. POPL’07]

• level of precision couldn’t be quantified
• Recent precise definition/solutions [Xiang+ PPOPP’11, PACT’11]

• footprint distribution, O(n log m) [Xiang et al. PPOPP’11]
• footprint function, O(n) [Xiang et al. PACT’11]

11

Higher-order Locality Theory

Chen Ding, HOTL theory, University of Rochester

The Xiang formula for fp
[PACT’11]

• rt: reuse time
• m: data size
• n: trace length

HOTL Conversion

13

fp(x) ⇡ m�
Pn�1

k=x+1(k � x)P (rt = k)

mr(c) = mr(fp(x)) = fp(x+�x)�fp(x)
�x

P (rd = c) = mr(c� 1)� mr(c)
(a)

t fp(t) c mr(c) P(rd=c)
1 1 1 1 0
2 2 2 1 0
3 3 3 0 1
4 3 4 0 0

(b)

Figure 3: The definition of footprint function fp(t) and the calculation of the miss ratio curve mr(c) and the reuse
distance distribution P (rd = c) in (a). The formulas are used on an example trace “xyzxyz...” to produce its locality
measures in (b).

locality metrics formal
property useful characteristics

3rd order:
footprint,

volume fill time

concave/
convex

linear-time, amenable to
sampling, composable

(dynamic locality)

2nd order:
miss ratio,

inter-miss time
monotone

machine specific, e.g. cache
size/associativity
(cache locality)

1st order:
reuse distance

non-
negative

decomposable by code units
and data structures
(program locality)

(a) The hierarchy of cache locality metrics. The five local-
ity metrics are mutually derivable by either taking the dif-
ference when moving down the hierarchy or taking the sum
when moving up.

HOTL
hierarchy

working set locality
theory (WSLT)

cache locality theory
(CLT)

data volume
(3rd order) mean WS size s(T) mean footprint fp(T),

mean fill time vt(c)

miss rate
(2nd order)

time-window miss
rate m(T),

lifetime L(T)=1/m(T)

LRU miss rate mr(c),
inter-miss time
im(c)=1/mr(c)

reference
behavior

(1st order)

inter-reference
interval (reuse time)
distribution P(iri=x)

reuse distance
distribution P(rd=x)

Precise definition.
How are they related
 mutually derivable.
Two consequences
 fast measurement, get one, get all.
 composabilily, compose one, compose all.

(b) Comparison between two higher order locality theories:
the working set locality theory (WSLT) for primary memory
and the cache locality theory (CLT) for cache memory.

Figure 4: The higher-order cache locality theory (shown partly in Figure 3) and comparison with the working-set
theory.

distance c. The capacity miss ratio, mr(c), is the total fraction of reuse distances greater than the cache size
c, i.e. mr(c) = P (rd > c). The third formula in Figure 3(a) computes P (rd > c) by taking the difference
between successive mr(c) values.

To demonstrate the conversion formulas, Figure 3(b) shows the computed locality for the example trace
“xyzxyz...” Assuming it infinitely repeating, we have m = 3 and n = 1. The formulas in Figure 3(a)
produce the results in Figure 3(b).

In algebra, the term order may refer to the degree of a polynomial. Through differentiation, a higher
order function can derive a lower order function. If we use the concept liberally on locality functions (over
the discrete integer domain), we see a similar relation among the three locality metrics and can therefore
organized them as a metrics hierarchy in Figure 4(a). The higher order theory gives their relations. In
one direction, we compute a higher-order metric by taking the sum in a lower-order metric; in the reverse
direction, we compute a lower-order metric by taking the difference in a higher-order metric.

The new theory is a parallel to the working-set locality theory (WSLT), developed Denning and others for
dynamic partitioned primary memory [?,?,?]. Figure 4(b) shows the matching metrics in the 3-tier hierarchy.
Denning and Schwartz gave the original proof based on ideal conditions in infinitely long executions [?]. We
recently proved the higher order relation for arbitrary, finite-length program executions [?]. The new theory
subsumes the infinitely long case and gives a theoretical explanation to the long observed effectiveness of
the working set theory [?].

D–5

Chen Ding, HOTL theory, University of Rochester

•
• average time for

aal misses

•
• miss rate at size c

fp to mr Conversion

14

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =

fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vt

Filmer

(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vt

direct

(1) = (1+1+1+2+1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c+ 1)� vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

(
vt(c+ 1)� vt(c) if 0  c < m
n

m

if c � m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + �x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x+�x)� fp(x)

�x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c 2 [fp(x), fp(x+�x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let �x = x2 � x1 be the
difference in the window length and �y = y2�y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) =

vt(y2)�vt(y1)
y2�y1

=

�x

�y

, and the footprint
conversion computes the miss ratio mr(fp(x1)) = mr(y1) =

fp(x2)�fp(x1)
x2�x1

=

�y

�x

.
For associative cache, Smith showed that cache conflicts can

be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c� 1)�mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =

fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vt

Filmer

(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vt

direct

(1) = (1+1+1+2+1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c+ 1)� vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

(
vt(c+ 1)� vt(c) if 0  c < m
n

m

if c � m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + �x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x+�x)� fp(x)

�x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c 2 [fp(x), fp(x+�x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let �x = x2 � x1 be the
difference in the window length and �y = y2�y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) =

vt(y2)�vt(y1)
y2�y1

=

�x

�y

, and the footprint
conversion computes the miss ratio mr(fp(x1)) = mr(y1) =

fp(x2)�fp(x1)
x2�x1

=

�y

�x

.
For associative cache, Smith showed that cache conflicts can

be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c� 1)�mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =

fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vt

Filmer

(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vt

direct

(1) = (1+1+1+2+1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c+ 1)� vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

(
vt(c+ 1)� vt(c) if 0  c < m
n

m

if c � m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + �x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x+�x)� fp(x)

�x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c 2 [fp(x), fp(x+�x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let �x = x2 � x1 be the
difference in the window length and �y = y2�y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) =

vt(y2)�vt(y1)
y2�y1

=

�x

�y

, and the footprint
conversion computes the miss ratio mr(fp(x1)) = mr(y1) =

fp(x2)�fp(x1)
x2�x1

=

�y

�x

.
For associative cache, Smith showed that cache conflicts can

be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c� 1)�mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

cache size C

vol. fill time vt(C)

average footprint fp

Figure 1: Defining the volume fill time using the footprint.

the same problem happens if there are x1, x2 such that fp(x1) =

fp(x2). However, this problem does not occur using the footprint-
based definition. We will prove later in Section 2.7 that the average
footprint is a concave function. As a result, it is strictly increasing,
and as its inverse, vt is a proper function and strictly increasing as
well. We call the footprint-based definition the Filmer fill time.

Alternatively, we can define the fill time in a different way. For
the volume v, we find all windows in which the program accesses v
amount of data. The average window length is then the fill time. We
refer to the second definition the direct fill time, since it is defined
directly, not through function inversion.

Consider another example trace “abbc”. The Filmer fill time is
vt

Filmer

(1) = 1, since all single-element windows access one
datum. The direct fill time takes the 5 windows with the unit-size
data access: “a”, “b”,“b”, “bb”, and “c” and computes the average
vt

direct

(1) = (1+1+1+2+1)/5 = 6/5. The Filmer definition
uses the windows of the same length. The direct definition uses the
windows of possibly different lengths.

The cache fill time is related to the residence time in the working
set theory [14]. Once a program accesses in a data block but stops
using it afterwards, its residence time in cache is the time it stays
in cache before being evicted.

In Appendix A, we give an algorithm to measure the direct fill
time. In Section 4.4, we show that the direct definition has serious
flaws and is unusable in practice. Unless explicitly specified in the
rest of the paper, by fill time we mean the Filmer fill time.

2.4 Inter-miss Time and Miss Ratio
We derive the inter-miss time for fully associative LRU cache of
size c. Starting at a random spot in an execution, run for time vt(c),
the program accesses c amount of data and populates the cache of
size c. It continues to run and use the data in the cache until the time
vt(c+1), when a new data block is accessed, triggering a capacity
or a compulsory miss [24]. The time interval, vt(c+ 1)� vt(c), is
the miss-free period when the program uses only the data in cache.
We use this interval as the average inter-miss time im(c)1. The
reciprocal of im(c) is the miss ratio mr(c).

im(c) =

(
vt(c+ 1)� vt(c) if 0  c < m
n

m

if c � m

Since the fill time is the inverse function of the footprint, we
can compute the miss ratio from the footprint directly. The direct
conversion is simpler and more efficient. In practice, we measure

1 In the working-set theory, the corresponding metric is the time between
page faults and known as the lifetime.

0e+00 1e+10 2e+10 3e+10 4e+10

0e
+0

0
2e

+0
6

4e
+0

6

window size

av
er

ag
e

fo
ot

pr
in

t

403.gcc

∆x

average footprint fp
∆ycache size c

mr(c) = ∆x
∆y

im(c) = ∆y
∆x

Figure 2: Equivalent conversions of the footprint to the miss ratio
and the fill time to the inter-miss time.

the footprint not for all window sizes but only those in a logarithmic
series. Let x and x + �x be two consecutive window sizes we
measure, we then compute the miss ratio for cache size c = fp(x):

mr(c) = mr(fp(x)) =
fp(x+�x)� fp(x)

�x

Being a simpler and more general formula, we will use it in the
theoretical analysis and empirical evaluation. To cover all cache
sizes in practice, we use it as the miss ratio for all cache sizes
c 2 [fp(x), fp(x+�x)).

The fill time (vt) conversion and the footprint (fp) conversion
are equivalent. Figure 2 shows the two visually. For the same two
data points on the footprint curve, let �x = x2 � x1 be the
difference in the window length and �y = y2�y1 be the difference
in the amount of data access. The fill time conversion computes the
inter-miss time im(y1) =

vt(y2)�vt(y1)
y2�y1

=

�x

�y

, and the footprint
conversion computes the miss ratio mr(fp(x1)) = mr(y1) =

fp(x2)�fp(x1)
x2�x1

=

�y

�x

.
For associative cache, Smith showed that cache conflicts can

be estimated based on the reuse distance [37]. Hill and Smith
evaluated how closely such estimate matched with the result of
cache simulation [25]. We next derive the reuse distance. Once
derived, we can use it and the Smith formula to estimate the effect
of cache conflicts and refine the miss ratio prediction.

2.5 Reuse Distance
For each memory access, the reuse distance, or LRU stack distance,
is the number of distinct data used between this and the previous
access to the same datum [31]. The reuse distance includes the
datum itself, so it is at least 1. The probability function P (rd = c)
gives the fraction of data accesses that have the reuse distance
c. The capacity miss ratio, mr(c), is the total fraction of reuse
distances greater than the cache size c, i.e. mr(c) = P (rd > c).
Consequently,

P (rd = c) = mr(c� 1)�mr(c)

The reuse distance has extensive uses in program analysis and
locality optimization. Any transformation that shortens a long reuse
distance reduces the chance of a cache miss. At the program level,
reuse distance analysis extends dependence analysis, which identi-
fies reuses of program data [1], to count the volume of the interven-
ing data [4, 8, 10]. At the trace level, the analysis can correlate the
change in locality in different runs to derive program-level patterns
and complement static analysis [21, 30, 49].

Chen Ding, HOTL theory, University of Rochester

Two HOTL Theories

15

fp(t) =
P

all w of length t fpw
n�t+1

mr(c) = mr(fp(x)) = fp(x+�x)�fp(x)
�x

P (rd = c) = mr(c� 1)�mr(c)

(a)

t fp(t) c mr(c) P(rd=c)
1 1 1 1 0
2 2 2 1 0
3 3 3 0 1
4 3 4 0 0

(b)

Figure 3: The definition of footprint function fp(t) and the calculation of the miss ratio curve mr(c) and the reuse
distance distribution P (rd = c) in (a). The formulas are used on an example trace “xyzxyz...” to produce its locality
measures in (b).

locality metrics formal
property useful characteristics

3rd order:
footprint,

volume fill time

concave/
convex

linear-time, amenable to
sampling, composable

(dynamic locality)

2nd order:
miss ratio,

inter-miss time
monotone

machine specific, e.g. cache
size/associativity
(cache locality)

1st order:
reuse distance

non-
negative

decomposable by code units
and data structures
(program locality)

(a) The hierarchy of cache locality metrics. The five
locality metrics are mutually derivable by either tak-
ing the difference when moving down the hierarchy or
taking the sum when moving up.

HOTL
hierarchy

working set locality
theory (WSLT)

cache locality theory
(CLT)

data volume
(3rd order) mean WS size s(T) mean footprint fp(T),

mean fill time vt(c)

miss rate
(2nd order)

time-window miss
rate m(T),

lifetime L(T)=1/m(T)

LRU miss rate mr(c),
inter-miss time
im(c)=1/mr(c)

reference
behavior

(1st order)

inter-reference
interval (reuse time)
distribution P(iri=x)

reuse distance
distribution P(rd=x)

Precise definition.
How are they related
 mutually derivable.
Two consequences
 fast measurement, get one, get all.
 composabilily, compose one, compose all.

(b) Comparison between two higher order locality the-
ories: the working set locality theory (WSLT) for pri-
mary memory and the cache locality theory (CLT) for
cache memory.

Figure 4: The higher-order cache locality theory (shown partly in Figure 3) and comparison with the working-set
theory.

distance c. The capacity miss ratio, mr(c), is the total fraction of reuse distances greater than the cache size
c, i.e. mr(c) = P (rd > c). The third formula in Figure 3(a) computes P (rd > c) by taking the difference
between successive mr(c) values.

To demonstrate the conversion formulas, Figure 3(b) shows the computed locality for the example trace
“xyzxyz...” Assuming it infinitely repeating, we have m = 3 and n = 1. The formulas in Figure 3(a)
produce the results in Figure 3(b).

In algebra, the term order may refer to the degree of a polynomial. Through differentiation, a higher
order function can derive a lower order function. If we use the concept liberally on locality functions (over
the discrete integer domain), we see a similar relation among the three locality metrics and can therefore
organized them as a metrics hierarchy in Figure 4(a). The higher order theory gives their relations. In
one direction, we compute a higher-order metric by taking the sum in a lower-order metric; in the reverse
direction, we compute a lower-order metric by taking the difference in a higher-order metric.

The new theory is a parallel to the working-set locality theory (WSLT), developed Denning and others
for dynamic partitioned primary memory [20–22]. Figure 4(b) shows the matching metrics in the 3-tier
hierarchy. Denning and Schwartz gave the original proof based on ideal conditions in infinitely long execu-

D–5

m(T) = P (rt > T)

s(T + 1) = s(T) +m(T)

Taking together, the working set size s(T) is the second order sum
of the reuse frequency.

The s(T) formula was first proved by Denning and Schwartz
in 1972 [15]. The formulation assumes an infinitely long execution
with a “stationary” state (“the stochastic mechanism ... is station-
ary”). The working set, w(t, T), is the number of distinct pages
accessed between time t � T + 1 and t. The average working set
size, s(T), is the limit value when taking the average of w(t, T) for
all t. The proof is based on the fact that only recurrent pages with
an infinite number of accesses contribute to the mean working set
size.

In 1978, Denning and Slutz defined the generalized working set
(GWS) as a time-space product [16]. The product, denoted here
as st(T), is defined for finite-length execution traces, variable-size
memory segments, all cache replacement policies that observe the
stack property. Interestingly, they found the same recursive relation.
The GWS formula is as follows, where the last term is the extra
correction to take into account the finite trace length.

st(T + 1) = st(T) + Tm(T)� a(T)

Dividing both sides by T , we have the last term vanishing for large
T and see the same recursive relation for GWS in finite-length
traces as s(T) in infinitely long traces.

In the present paper, the same recurrence emerges in Section 2.7
as an outcome of Theorem 2.2. For the average footprint, we have
effectively

fp(T + 1) = fp(T) +m(T)

If we view the following three as different definitions of the
working set: the limit value in 1972 [15], the time-space product in
1978 [16], and the average footprint in 2011 [46], we see an iden-
tical equation which Denning envisioned more than four decades
ago (before the first proof in 1972). We state it as a law of locality
and name it after its inventor:

Denning’s Law of Locality The working set is the second-order
sum of the reuse frequency, and conversely, the reuse frequency is
the second-order difference of the working set.

As the relativity theory gives the relation between space and
time, Denning’s law gives the relation between memory and com-
putation: the working set is the working memory, and the reuse
frequency is a summary of program actions (time transformed into
frequency and a spectrogram of time). The law states that the rela-
tion is higher order.

Our work augments Denning’s law in two ways. First, it is the
final step to conclusively prove Denning’s Law — that it holds for
the footprint working set in finite-length program executions. The
1972 proof depends on the idealized condition in infinite-length
executions. Subsequent research has shown that the working set
theory is accurate and effective in managing physical memory for
real applications [14]. The new proof subsumes the infinitely long
case and makes Denning’s law a logical conclusion for all (long
enough) executions. It gives a theoretical explanation to the long
observed effectiveness of the working set theory in practice.

Second, we extend HOTL to include cache memory. For main
memory, the locality is parameterized in time: the working set of
a program in a time quantum. For cache, the primary constraint is
space: the miss ratio for a given cache size. Denning et al. named
them the “time-window miss ratio” and the “LRU miss ratio” and

noted that the two are not necessarily equal [15, 16]. The following
formulas show the two miss ratios:

working set m(T) = P (rt > T)
cache locality mr(fp(T)) = P (rt > T)

In the above juxtaposition, the only difference is the parame-
ter to the miss rate function. In m(T), the parameter is the time
window length. In mr(fp(T)), the parameter is the cache size.
Through the second formula, this work connects the cache size and
the reuse frequency. In Section 2.4, we show how the time-centric
and the space-centric views have different derivations but the same
miss ratio. Then in Section 2.7, we give the reuse-window hypoth-
esis as the condition for correctness, which implies the equality
between the time-window miss ratio and the LRU miss ratio.

3. Sampling-based Locality Analysis
The footprint can be analyzed through sampling, e.g. by tracing
a window of program execution periodically. Sampling has two
benefits. First, by reducing the sampling frequency, the cost can be
arbitrarily reduced. Second, sampling may better track a program
that has significant phase behavior.

Uniform sampling We implement footprint sampling using a
technique pioneered by shadow profiling [32] and SuperPin [42].
When a program starts, we set the system timer to interrupt at some
preset interval. The interrupt handler is shown in Figure 5. It forks
a sampling task and attaches the binary rewriting tool Pin [29].
The Pin tool instruments the sampling process to collect its data
access trace, measures all-window footprints using the Xiang for-
mula [46]. In the meanwhile, the base program runs normally until
the next interrupt.

Require: This handler is called whenever a program receives the
timer interrupt

1: pid fork()
2: if pid = 0 then
3: Attach the Pin tool and begin sampling until seeing c distinct

memory accesses
4: Exit
5: else
6: Reset the timer to interrupt in k seconds
7: Return
8: end if

Figure 5: The timer-interrupt handler for footprint sampling

Footprint Sampling Footprint by definition is amenable to sam-
pling. We can start a sample at any point in an execution and con-
tinue until the sample execution accesses enough data to fill the
largest cache size of interest. We can sample multiple windows in-
dependently, which means they can be parallelized. It does not mat-
ter whether the sample windows are disjoint or overlapping, as long
as the choice of samples is random and unbiased.

The Associative Cache A program execution produces a series of
m samples at regular intervals, x1, x2, . . . , xm

. We use them in the
following way:

1. For each sample x
i

, with trace length n
i

, predict the miss ratio
function mr(x

i

, c) for each cache size c by the following:
(a) Use the analysis of Xiang et al. [46] to compute the average

footprint function fp.
(b) Use the footprint conversion to compute the capacity miss

ratio for cache size c.

Denning &
Schwartz,

1972

Chen Ding, HOTL theory, University of Rochester

fp(t) =
P

all w of length t fpw
n�t+1

mr(c) = mr(fp(x)) = fp(x+�x)�fp(x)
�x

P (rd = c) = mr(c� 1)�mr(c)

(a)

t fp(t) c mr(c) P(rd=c)
1 1 1 1 0
2 2 2 1 0
3 3 3 0 1
4 3 4 0 0

(b)

Figure 3: The definition of footprint function fp(t) and the calculation of the miss ratio curve mr(c) and the reuse
distance distribution P (rd = c) in (a). The formulas are used on an example trace “xyzxyz...” to produce its locality
measures in (b).

locality metrics formal
property useful characteristics

3rd order:
footprint,

volume fill time

concave/
convex

linear-time, amenable to
sampling, composable

(dynamic locality)

2nd order:
miss ratio,

inter-miss time
monotone

machine specific, e.g. cache
size/associativity
(cache locality)

1st order:
reuse distance

non-
negative

decomposable by code units
and data structures
(program locality)

(a) The hierarchy of cache locality metrics. The five
locality metrics are mutually derivable by either tak-
ing the difference when moving down the hierarchy or
taking the sum when moving up.

HOTL
hierarchy

working set locality
theory (WSLT)

cache locality theory
(CLT)

data volume
(3rd order) mean WS size s(T) mean footprint fp(T),

mean fill time vt(c)

miss rate
(2nd order)

time-window miss
rate m(T),

lifetime L(T)=1/m(T)

LRU miss rate mr(c),
inter-miss time
im(c)=1/mr(c)

reference
behavior

(1st order)

inter-reference
interval (reuse time)
distribution P(iri=x)

reuse distance
distribution P(rd=x)

Precise definition.
How are they related
 mutually derivable.
Two consequences
 fast measurement, get one, get all.
 composabilily, compose one, compose all.

(b) Comparison between two higher order locality the-
ories: the working set locality theory (WSLT) for pri-
mary memory and the cache locality theory (CLT) for
cache memory.

Figure 4: The higher-order cache locality theory (shown partly in Figure 3) and comparison with the working-set
theory.

distance c. The capacity miss ratio, mr(c), is the total fraction of reuse distances greater than the cache size
c, i.e. mr(c) = P (rd > c). The third formula in Figure 3(a) computes P (rd > c) by taking the difference
between successive mr(c) values.

To demonstrate the conversion formulas, Figure 3(b) shows the computed locality for the example trace
“xyzxyz...” Assuming it infinitely repeating, we have m = 3 and n = 1. The formulas in Figure 3(a)
produce the results in Figure 3(b).

In algebra, the term order may refer to the degree of a polynomial. Through differentiation, a higher
order function can derive a lower order function. If we use the concept liberally on locality functions (over
the discrete integer domain), we see a similar relation among the three locality metrics and can therefore
organized them as a metrics hierarchy in Figure 4(a). The higher order theory gives their relations. In
one direction, we compute a higher-order metric by taking the sum in a lower-order metric; in the reverse
direction, we compute a lower-order metric by taking the difference in a higher-order metric.

The new theory is a parallel to the working-set locality theory (WSLT), developed Denning and others
for dynamic partitioned primary memory [20–22]. Figure 4(b) shows the matching metrics in the 3-tier
hierarchy. Denning and Schwartz gave the original proof based on ideal conditions in infinitely long execu-

D–5

HOTL conversion
formulas

But is it correct in general?

fp(t) =
P

all w of length t fpw
n�t+1

mr(c) = mr(fp(x)) = fp(x+�x)�fp(x)
�x

P (rd = c) = mr(c� 1)� mr(c)
(a)

t fp(t) c mr(c) P(rd=c)
1 1 1 1 0
2 2 2 1 0
3 3 3 0 1
4 3 4 0 0

(b)

Figure 3: The definition of footprint function fp(t) and the calculation of the miss ratio curve mr(c) and the reuse
distance distribution P (rd = c) in (a). The formulas are used on an example trace “xyzxyz...” to produce its locality
measures in (b).

locality metrics formal
property useful characteristics

3rd order:
footprint,

volume fill time

concave/
convex

linear-time, amenable to
sampling, composable

(dynamic locality)

2nd order:
miss ratio,

inter-miss time
monotone

machine specific, e.g. cache
size/associativity
(cache locality)

1st order:
reuse distance

non-
negative

decomposable by code units
and data structures
(program locality)

(a) The hierarchy of cache locality metrics. The five local-
ity metrics are mutually derivable by either taking the dif-
ference when moving down the hierarchy or taking the sum
when moving up.

HOTL
hierarchy

working set locality
theory (WSLT)

cache locality theory
(CLT)

data volume
(3rd order) mean WS size s(T) mean footprint fp(T),

mean fill time vt(c)

miss rate
(2nd order)

time-window miss
rate m(T),

lifetime L(T)=1/m(T)

LRU miss rate mr(c),
inter-miss time
im(c)=1/mr(c)

reference
behavior

(1st order)

inter-reference
interval (reuse time)
distribution P(iri=x)

reuse distance
distribution P(rd=x)

Precise definition.
How are they related
 mutually derivable.
Two consequences
 fast measurement, get one, get all.
 composabilily, compose one, compose all.

(b) Comparison between two higher order locality theories:
the working set locality theory (WSLT) for primary memory
and the cache locality theory (CLT) for cache memory.

Figure 4: The higher-order cache locality theory (shown partly in Figure 3) and comparison with the working-set
theory.

distance c. The capacity miss ratio, mr(c), is the total fraction of reuse distances greater than the cache size
c, i.e. mr(c) = P (rd > c). The third formula in Figure 3(a) computes P (rd > c) by taking the difference
between successive mr(c) values.

To demonstrate the conversion formulas, Figure 3(b) shows the computed locality for the example trace
“xyzxyz...” Assuming it infinitely repeating, we have m = 3 and n = 1. The formulas in Figure 3(a)
produce the results in Figure 3(b).

In algebra, the term order may refer to the degree of a polynomial. Through differentiation, a higher
order function can derive a lower order function. If we use the concept liberally on locality functions (over
the discrete integer domain), we see a similar relation among the three locality metrics and can therefore
organized them as a metrics hierarchy in Figure 4(a). The higher order theory gives their relations. In
one direction, we compute a higher-order metric by taking the sum in a lower-order metric; in the reverse
direction, we compute a lower-order metric by taking the difference in a higher-order metric.

The new theory is a parallel to the working-set locality theory (WSLT), developed Denning and others for
dynamic partitioned primary memory [?,?,?]. Figure 4(b) shows the matching metrics in the 3-tier hierarchy.
Denning and Schwartz gave the original proof based on ideal conditions in infinitely long executions [?]. We
recently proved the higher order relation for arbitrary, finite-length program executions [?]. The new theory
subsumes the infinitely long case and gives a theoretical explanation to the long observed effectiveness of
the working set theory [?].

D–5

fp(x) ⇡ m�
Pn�1

k=x+1(k � x)P (rt = k)

mr(c) = mr(fp(x)) = fp(x+�x)�fp(x)
�x

P (rd = c) = mr(c� 1)� mr(c)
(a)

t fp(t) c mr(c) P(rd=c)
1 1 1 1 0
2 2 2 1 0
3 3 3 0 1
4 3 4 0 0

(b)

Figure 3: The definition of footprint function fp(t) and the calculation of the miss ratio curve mr(c) and the reuse
distance distribution P (rd = c) in (a). The formulas are used on an example trace “xyzxyz...” to produce its locality
measures in (b).

locality metrics formal
property useful characteristics

3rd order:
footprint,

volume fill time

concave/
convex

linear-time, amenable to
sampling, composable

(dynamic locality)

2nd order:
miss ratio,

inter-miss time
monotone

machine specific, e.g. cache
size/associativity
(cache locality)

1st order:
reuse distance

non-
negative

decomposable by code units
and data structures
(program locality)

(a) The hierarchy of cache locality metrics. The five local-
ity metrics are mutually derivable by either taking the dif-
ference when moving down the hierarchy or taking the sum
when moving up.

HOTL
hierarchy

working set locality
theory (WSLT)

cache locality theory
(CLT)

data volume
(3rd order) mean WS size s(T) mean footprint fp(T),

mean fill time vt(c)

miss rate
(2nd order)

time-window miss
rate m(T),

lifetime L(T)=1/m(T)

LRU miss rate mr(c),
inter-miss time
im(c)=1/mr(c)

reference
behavior

(1st order)

inter-reference
interval (reuse time)
distribution P(iri=x)

reuse distance
distribution P(rd=x)

Precise definition.
How are they related
 mutually derivable.
Two consequences
 fast measurement, get one, get all.
 composabilily, compose one, compose all.

(b) Comparison between two higher order locality theories:
the working set locality theory (WSLT) for primary memory
and the cache locality theory (CLT) for cache memory.

Figure 4: The higher-order cache locality theory (shown partly in Figure 3) and comparison with the working-set
theory.

distance c. The capacity miss ratio, mr(c), is the total fraction of reuse distances greater than the cache size
c, i.e. mr(c) = P (rd > c). The third formula in Figure 3(a) computes P (rd > c) by taking the difference
between successive mr(c) values.

To demonstrate the conversion formulas, Figure 3(b) shows the computed locality for the example trace
“xyzxyz...” Assuming it infinitely repeating, we have m = 3 and n = 1. The formulas in Figure 3(a)
produce the results in Figure 3(b).

In algebra, the term order may refer to the degree of a polynomial. Through differentiation, a higher
order function can derive a lower order function. If we use the concept liberally on locality functions (over
the discrete integer domain), we see a similar relation among the three locality metrics and can therefore
organized them as a metrics hierarchy in Figure 4(a). The higher order theory gives their relations. In
one direction, we compute a higher-order metric by taking the sum in a lower-order metric; in the reverse
direction, we compute a lower-order metric by taking the difference in a higher-order metric.

The new theory is a parallel to the working-set locality theory (WSLT), developed Denning and others for
dynamic partitioned primary memory [?,?,?]. Figure 4(b) shows the matching metrics in the 3-tier hierarchy.
Denning and Schwartz gave the original proof based on ideal conditions in infinitely long executions [?]. We
recently proved the higher order relation for arbitrary, finite-length program executions [?]. The new theory
subsumes the infinitely long case and gives a theoretical explanation to the long observed effectiveness of
the working set theory [?].

D–5

Chen Ding, HOTL theory, University of Rochester

HOTL for Cache

17

To review the conversion formulas, let’s consider the example
trace “xyzxyz...”. Assuming it infinitely repeating, we have m = 3

and n = 1. The following table shows the discrete values of the
Filmer metrics computed according to the HOTL conversion.

t fp(t) c vt(c) im(c) mr(c) P(rd=c)
1 1 1 1 1 1 0
2 2 2 2 1 1 0
3 3 3 3 1 0 1
4 3 4 1 1 0 0

2.6 The Higher Order Relations
In algebra, the term order may refer to the degree of a polynomial.
Through differentiation, a higher order function can derive a lower
order function. If we use the concept liberally on locality functions
(over the discrete integer domain), we see a higher order locality
theory, as shown in a metrics hierarchy in Figure 3.

locality metrics formal
property useful characteristics

3rd order:
footprint,

volume fill time

concave/
convex

linear-time, amenable to
sampling, composable

(dynamic locality)

2nd order:
miss ratio,

inter-miss time
monotone

machine specific, e.g. cache
size/associativity
(cache locality)

1st order:
reuse distance

non-
negative

decomposable by code units
and data structures
(program locality)

Figure 3: The hierarchy of cache locality metrics. The five locality
metrics are mutually derivable by either taking the difference of the
metrics when moving down the hierarchy or taking the sum of the
metrics when moving up.

In the preceding sections, we have shown the series of conver-
sions from the third order metric, the footprint, to the first order
metric, the reuse distance. To compute a lower order metric, the
HOTL conversion takes the difference of the function of a higher
order metric. The inter-miss time is the difference of the fill times,
and the reuse distance is the difference of the miss ratios.

The conversion formulas are all reversible. We can calculate a
higher order metric by integrating the function of a lower order
metric. For example, the miss ratio is the sum of the reuse distances
greater than the cache size. The fill time is the sum of the inter-miss
times up to the cache size.

The mathematical property is different depending on the order
of the locality metric, as shown in the second column in Figure 3.
Going bottom up, the reuse distance is a distribution, so the range
is non-negative. For just compulsory and capacity misses, the miss
ratio is monotone and non-increasing, i.e. the stack property [31].
The footprint has been shown to be monotone [46]. Later we will
prove a stronger property.

Although the phrase higher order was not used, the working set
theory was about the higher order relations between the working
set size, the miss rate, and the reuse-time interval. In Section 2.8,
we will compare the two higher order theories.

2.7 The Correctness Condition
The conversion from the footprint to the miss ratio is not always
correct. To understand correctness, consider the reuse distance and
the footprint both as window statistics. The reuse distance is the

footprint of a reuse window. A reuse window starts and finishes
with two accesses to the same datum with no intervening reuses.
For a program with n accesses to m data, there are n � m finite-
length reuse windows. They are a subset of all windows. The
number of all windows is n choose 2 or n(n+1)

2 . We define the
average footprint over all reuse windows as rfp(l), the same way
we define fp(l) over all windows.

In this section, we show the correctness condition: for the HOTL
conversions to be correct, the two functions, fp(l) and rfp(l),
must be equal.

To show this result, we introduce a different formula for pre-
dicting the miss ratio. To estimate whether an access is a miss for
cache size c, we take the reuse window length l, find the average
footprint fp(l), and predict it a cache miss if and only if fp(l) > c.
We call this method the reuse-time conversion. Let P (rt = t) be
the density function of the reuse time, that is, the fraction of reuse
windows with the length t. The miss ratio predicted by the reuse-
time conversion is as follows. We label the result mr

rt

to indicate
that the prediction is based on the reuse time. The first access to a
datum has the reuse time of 1.

mr
rt

(fp(l)) = P (rt > l) =
1X

t=l+1

P (rt = t)

If we re-label fp(l) as the working set size, the formula is identical
to that of Denning and Schwartz (Section 2.8). However, the use
of fp(l) is an important difference. The reuse-time conversion is
a modified version of Denning and Schwartz. We may call it an
augmented Denning-Schwartz conversion.

Take the example trace “xxyxxz”. Two of the average footprints
are fp(3) = 2 and fp(4) =

7
3 . The reuse times, i.e. the length

of the reuse windows, are 1, 2,1, 3, 2,1. The reuse-time con-
version is mr

rt

(2) = mr
rt

(fp(3)) =

P1
t=4 P (rt = t) = 50%.

The Filmer conversion is based on the footprint. We call it mr
fp

and have mr
fp

(2) = fp(4)� fp(3) = 33%. In general for small
traces, the reuse-time conversion is more accurate, as is the case in
this example.

Next we prove that for large traces, the miss ratio prediction is
the same whether using the reuse time or using the footprint. Then
we will show the correctness condition of the entire HOTL theory
as a corollary.

From the view of the locality-metrics hierarchy, the reuse-time
conversion is bottom up from a first-order metric to a second-order
metric. The footprint conversion is top-down from a third-order
metric to the same second-order metric. If they meet and produce
the same result, we have the equivalence relation across the entire
hierarchy.

To prove the equivalence, we need the recently published for-
mula that computes the average footprint from the reuse-time dis-
tribution [46].

Lemma 2.1 (Xiang formula [46]).

fp(w) = m� 1

n� w + 1

(

mX

i=1

(f
i

� w)I(f
i

> w)

+

mX

i=1

(l
i

� w)I(l
i

> w)

+n

n�1X

t=w+1

(t� w)P (rt = t)) (1)

The symbols are defined as:
• f

i

: the first access time of the i-th datum.

Xiang formula (any trace)

• l
i

: the reverse last access time of the i-th datum. If the last
access is at position x, l

i

= n + 1 � x, that is, the first access
time in the reverse trace.

• P (rt = t): the fraction of accesses with a reuse time t.
• I(p): the predicate function equals to 1 if p is true; otherwise 0.

If we assume n � w, the equation can be simplified to

fp(w) ⇡ m�
n�1X

t=w+1

(t� w)P (rt = t)

Theorem 2.2 (Footprint and reuse-time conversion equivalence).
For long executions (n � w), the footprint conversion and the
reuse-time conversion produce equivalent miss-ratio predictions.

Proof Let the cache size be c and l and l + x be two consecutive
window sizes such that c 2 [fp(l), fp(l + x)). The miss ratio by
the footprint conversion is fp(l+x)�fp(l)

x

.
Expand the numerator fp(l+x)�fp(l) using the approximate

equation from Lemma 2.1:

fp(l + x)� fp(l)

⇡m�
n�1X

t=l+x+1

(t� l � x)P (rt = t)�m+

n�1X

t=l+1

(t� l)P (rt = t)

=

n�1X

t=l+1

(t� l)P (rt = t)�
n�1X

t=l+x+1

(t� l � x)P (rt = t)

=

l+xX

t=l+1

(t� l)P (rt = t) +

n�1X

t=l+x+1

(t� l)P (rt = t)

�
n�1X

t=l+x+1

(t� l � x)P (rt = t)

=

l+xX

t=l+1

(t� l)P (rt = t) + x

n�1X

t=l+x+1

P (rt = t)

⇡
l+xX

t=l+1

xP (rt = t) + x

n�1X

t=l+x+1

P (rt = t)

=x

n�1X

t=l+1

P (rt = t)

⇡x
1X

t=l+1

P (rt = t)

The miss ratio, fp(l+x)�fp(l)
x

, is approximately
P1

t=l+1 P (rt =
t), which is the result of the reuse-time conversion. Note that the
equation is approximately true also because of the earlier simplifi-
cations made to the Xiang formula.

The two predictions being the same does not mean that they
are correct. They may be both wrong. Since the correct calculation
can be done using reuse distance, the correctness would follow if
from the reuse time, we can produce reuse distance. In other words,
the correctness depends on whether the all-window footprint used
by the reuse time conversion is indeed the reuse distance. We can
phrase the correctness condition as follows:

COROLLARY 2.3 (Correctness). The footprint-based conversions
are accurate if the footprints in all reuse windows have the same
distribution as the footprints in all windows, for every reuse win-
dow length l.

When the two are equal, using the all-window footprint is the
same as using the reuse distance. We posit as a hypothesis that the
condition holds in practice, so the HOTL conversion is accurate.
We call it the reuse-window hypothesis.

Consider the following two traces. The second trace has a
smaller difference between the all-window footprint fp and the
reuse-window footprint rfp. The smaller difference leads to more
accurate miss ratio prediction by HOTL. The hypothesis does not
hold in either trace, so the prediction is not completely accurate.
As to real applications, we will show an empirical evaluation for
the full suite of SPEC CPU2006 benchmark programs [23] and a
number of PARSEC parallel programs [6].

mr(1) error
trace fp(2) rfp(2) pred real |pred� real|

wwwx 4/3 1 1/3 2/4 17%
wwwwx 5/4 1 1/4 2/5 5%

Finally, we show another consequence of Theorem 2.2.

COROLLARY 2.4 (Concavity). The average footprint fp(x) is a
concave function.

Since fp(l+x)�fp(l)
x

⇡
P1

t=l+1 P (rt = t), fp(l) always
increases but increases at a slower rate for a larger l. The function
is obviously concave. In the higher order relation, the concavity
guarantees that the miss ratio predicted by HOTL is non-increasing
with the cache size (as expected from the inclusion property [31]).

2.8 Comparison with Working Set Theory
The first higher-order locality theory is the working set theory,
pioneered in Peter Denning’s thesis work [13]. His 1968 paper
established the relation between the working set size, the miss rate,
and the inter-reference interval (iri). The last one is the same as
reuse time. The notion of reuse distance or the LRU stack distance
was not formalized until 1970 [31]. Figure 4 shows the parallels
between the working set locality theory (WSLT) and the new cache
locality theory of this paper (CLT).

HOTL
hierarchy

working set locality
theory (WSLT)

cache locality theory
(CLT)

data volume
(3rd order) mean WS size s(T) mean footprint fp(T),

mean fill time vt(c)

miss rate
(2nd order)

time-window miss
rate m(T),

lifetime L(T)=1/m(T)

LRU miss rate mr(c),
inter-miss time
im(c)=1/mr(c)

reference
behavior

(1st order)

inter-reference
interval (reuse time)
distribution P(iri=x)

reuse distance
distribution P(rd=x)

Figure 4: Comparison between two higher order locality theories:
the working set locality theory (WSLT) for dynamic partitioned
primary memory and the cache locality theory (CLT) for cache
memory.

WSLT computes the metrics bottom-up. The base metric, P (iri =
x), is the histogram of the inter-reference intervals (reuse time),
measured in linear time in a single pass of the address trace. The
time-window miss ratio m(T) is the sum of reuse time. The mean
working set size s(T) is the sum of m(T).

m(T) = P (rt > T)

s(T + 1) = s(T) +m(T)

Taking together, the working set size s(T) is the second order sum
of the reuse frequency.

The s(T) formula was first proved by Denning and Schwartz
in 1972 [15]. The formulation assumes an infinitely long execution
with a “stationary” state (“the stochastic mechanism ... is station-
ary”). The working set, w(t, T), is the number of distinct pages
accessed between time t � T + 1 and t. The average working set
size, s(T), is the limit value when taking the average of w(t, T) for
all t. The proof is based on the fact that only recurrent pages with
an infinite number of accesses contribute to the mean working set
size.

In 1978, Denning and Slutz defined the generalized working set
(GWS) as a time-space product [16]. The product, denoted here
as st(T), is defined for finite-length execution traces, variable-size
memory segments, all cache replacement policies that observe the
stack property. Interestingly, they found the same recursive relation.
The GWS formula is as follows, where the last term is the extra
correction to take into account the finite trace length.

st(T + 1) = st(T) + Tm(T)� a(T)

Dividing both sides by T , we have the last term vanishing for large
T and see the same recursive relation for GWS in finite-length
traces as s(T) in infinitely long traces.

In the present paper, the same recurrence emerges in Section 2.7
as an outcome of Theorem 2.2. For the average footprint, we have
effectively

fp(T + 1) = fp(T) +m(T)

If we view the following three as different definitions of the
working set: the limit value in 1972 [15], the time-space product in
1978 [16], and the average footprint in 2011 [46], we see an iden-
tical equation which Denning envisioned more than four decades
ago (before the first proof in 1972). We state it as a law of locality
and name it after its inventor:

Denning’s Law of Locality The working set is the second-order
sum of the reuse frequency, and conversely, the reuse frequency is
the second-order difference of the working set.

As the relativity theory gives the relation between space and
time, Denning’s law gives the relation between memory and com-
putation: the working set is the working memory, and the reuse
frequency is a summary of program actions (time transformed into
frequency and a spectrogram of time). The law states that the rela-
tion is higher order.

Our work augments Denning’s law in two ways. First, it is the
final step to conclusively prove Denning’s Law — that it holds for
the footprint working set in finite-length program executions. The
1972 proof depends on the idealized condition in infinite-length
executions. Subsequent research has shown that the working set
theory is accurate and effective in managing physical memory for
real applications [14]. The new proof subsumes the infinitely long
case and makes Denning’s law a logical conclusion for all (long
enough) executions. It gives a theoretical explanation to the long
observed effectiveness of the working set theory in practice.

Second, we extend HOTL to include cache memory. For main
memory, the locality is parameterized in time: the working set of
a program in a time quantum. For cache, the primary constraint is
space: the miss ratio for a given cache size. Denning et al. named
them the “time-window miss ratio” and the “LRU miss ratio” and

noted that the two are not necessarily equal [15, 16]. The following
formulas show the two miss ratios:

working set m(T) = P (rt > T)
cache locality mr(fp(T)) = P (rt > T)

In the above juxtaposition, the only difference is the parame-
ter to the miss rate function. In m(T), the parameter is the time
window length. In mr(fp(T)), the parameter is the cache size.
Through the second formula, this work connects the cache size and
the reuse frequency. In Section 2.4, we show how the time-centric
and the space-centric views have different derivations but the same
miss ratio. Then in Section 2.7, we give the reuse-window hypoth-
esis as the condition for correctness, which implies the equality
between the time-window miss ratio and the LRU miss ratio.

3. Sampling-based Locality Analysis
The footprint can be analyzed through sampling, e.g. by tracing
a window of program execution periodically. Sampling has two
benefits. First, by reducing the sampling frequency, the cost can be
arbitrarily reduced. Second, sampling may better track a program
that has significant phase behavior.

Uniform sampling We implement footprint sampling using a
technique pioneered by shadow profiling [32] and SuperPin [42].
When a program starts, we set the system timer to interrupt at some
preset interval. The interrupt handler is shown in Figure 5. It forks
a sampling task and attaches the binary rewriting tool Pin [29].
The Pin tool instruments the sampling process to collect its data
access trace, measures all-window footprints using the Xiang for-
mula [46]. In the meanwhile, the base program runs normally until
the next interrupt.

Require: This handler is called whenever a program receives the
timer interrupt

1: pid fork()
2: if pid = 0 then
3: Attach the Pin tool and begin sampling until seeing c distinct

memory accesses
4: Exit
5: else
6: Reset the timer to interrupt in k seconds
7: Return
8: end if

Figure 5: The timer-interrupt handler for footprint sampling

Footprint Sampling Footprint by definition is amenable to sam-
pling. We can start a sample at any point in an execution and con-
tinue until the sample execution accesses enough data to fill the
largest cache size of interest. We can sample multiple windows in-
dependently, which means they can be parallelized. It does not mat-
ter whether the sample windows are disjoint or overlapping, as long
as the choice of samples is random and unbiased.

The Associative Cache A program execution produces a series of
m samples at regular intervals, x1, x2, . . . , xm

. We use them in the
following way:

1. For each sample x
i

, with trace length n
i

, predict the miss ratio
function mr(x

i

, c) for each cache size c by the following:
(a) Use the analysis of Xiang et al. [46] to compute the average

footprint function fp.
(b) Use the footprint conversion to compute the capacity miss

ratio for cache size c.

LRU miss rate
correctness condition

(Corollary 2.3)

Reuse Window Hypothesis

The footprints in all reuse windows have the
same distribution as the footprints in all windows

Chen Ding, HOTL theory, University of Rochester

Modeling of Cache Sharing w/o Parallel Testing

• 20 SPEC 2006 programs
• 190 different pair runs

• Modeling
• per program footprint
• composition

• Xiang et al. (POPP’11/PACT’11) based on Chandra et al.
(HPCA’05), Suh et al. (ICS’01), and Thiebaut & Stone (TOCS’87)

• a few hours
• prediction for all cache sizes

• Measurement
• 190 pair runs
• 380 hw counter reads (OFFCORE.DATA_IN, 8MB 16-way L3)
• ~9 days total CPU time

19

Chen Ding, HOTL theory, University of Rochester

4.4 Direct Fill Time vs. Filmer Fill Time
The measurement of the direct fill time, definition in Section 2.3
and algorithm in Section A, takes so long that the only programs
we could finish are 10 of the 11 SPEC 2000 integer benchmark
programs. Table 4 compares the average time for these programs.
An unmodified SPEC 2000 program runs for 3 minutes on aver-
age, the direct fill time analysis takes over 22 hours. The average
overhead is more than 7 hours for each minute. In comparison, the
per minute overhead is an hour and a half for reuse distance and 7
minutes if we first compute footprint and then derive the Filmer fill
time.

analysis avg. time avg. slowdown
direct fill time (Section A) 22h12m11s 446x
reuse distance 3h57m36s 84x
Filmer fill time (Section 2.3) 22m4s 8x

Table 4: Speed comparison for 10 SPEC 2000 integer benchmarks.
The average trace length n is 47 billion, data size m is 73MB, and
baseline run time is 3 minutes and 16 seconds.

More problematic is that with the direct fill time, the predicted
miss ratio is not monotone. Worse, the miss ratio may be negative.
Consider an example trace with 100 a’s followed by 11 b’s, 1 c, 20
d’s, 15 e’s, 1 f and 320 g’s. The average time to fill a 4-element
cache, vt(4), is 161.5, is longer than the average time to fill a
5-element cache, vt(5), which is 149.5. Since the direct fill time
decreases when the cache size v increases, the predicted miss ratio
is negative!

The preceding example was constructed based on an analysis of
real traces. During experimentation, we found that the miss ratios
of some cache sizes were negative. While most of the 3000 or so
sizes had positive predictions, the negatives were fairly frequent
and happened in most test programs. It seemed contradictory that
it could take a program longer to fill a smaller cache. The reason
is subtle. To compute the direct fill time, we find windows with
the same footprint and take the average length. As we increase the
footprint by 1, the length of these windows will increase but the
number of such windows may increase more, leading to a lower
average, as happened in the preceding example.

In contrast, the Filmer fill time is a positive, concave function
(Corollary 2.4). Its miss-ratio prediction is monotone and can be
measured in near real time (Section 4.2.2).

4.5 Predicting Cache Interference
A complete 2-program co-run test for the 29 SPEC 2006 bench-
marks would include

�
29
2

�
= 406 program pairs. To reduce the

clutter in the graphs we show, we choose 20 programs. To avoid
bias, we pick programs with the smallest benchmark ids. Since we
profile data accesses only, we exclude perlbench and gcc because
their large code size may cause significant instruction misses in the
data cache. After the removal, we have 20 SPEC benchmark pro-
grams from 401.bzip2 to 464.h264ref. The trimming reduces the
number of pair-run tests to

�
20
2

�
= 190.

Cache interference models were pioneered by Thiebaut and
Stone [41], Suh et al. [39] and Chandra et al. [9], who computed
the cache interference by the impact of the peer footprint on the self
locality.2 The footprint is measured for a single window length [41]
and approximated for multiple lengths [9, 39]. Our subsequent
work found a way to measure all-window footprints precisely and

2 Chandra et al. also gave a model that used only the reuse distance [9].
Zhuravlev et al. used it and two other such models and found that in task
scheduling, they did not significantly outperform a simple model that used
only the miss rate [51].

0 100 200 300 400

0
5

10
15

20

tests

co
ru

n
m

is
s

ra
tio

 (%
)

hardware counter
prediction

(a) linear scale miss ratios

tests

co
ru

n
m

is
s

ra
tio

 (%
)

0 100 200 300 400

1e
−5

1e
−3

0.
1

10 hardware counter
prediction

(b) logarithmic scale miss ratios

Figure 9: The predicted and measured miss ratios of the 380 exe-
cutions in 190 pair runs. The executions are ordered by the ascend-
ing miss ratio as measured by the hardware counters in exhaustive
testing. For each execution, the solid (black) line shows the hard-
ware counter result, and the dotted (red) line shows the prediction.
The prediction takes about a half percent of the time of exhaustive
testing. Just two executions have a significant error in both graphs,
which are a half percent of all executions.

efficiently [17, 45, 46]. The self locality is measured by the reuse
distance. As the measurement problem for the footprint is solved,
the speed of reuse-distance analysis becomes the bottleneck. We
found that by profiling up to two days for each program, the reuse
distance analyzer by Zhong et al. [49] could finish only 8 SPEC
2006 programs [46]. The total modeling time was over 106 CPU
hours, 94% of which was spent on the reuse-distance analysis. In

Chen Ding, HOTL theory, University of Rochester

4.4 Direct Fill Time vs. Filmer Fill Time
The measurement of the direct fill time, definition in Section 2.3
and algorithm in Section A, takes so long that the only programs
we could finish are 10 of the 11 SPEC 2000 integer benchmark
programs. Table 4 compares the average time for these programs.
An unmodified SPEC 2000 program runs for 3 minutes on aver-
age, the direct fill time analysis takes over 22 hours. The average
overhead is more than 7 hours for each minute. In comparison, the
per minute overhead is an hour and a half for reuse distance and 7
minutes if we first compute footprint and then derive the Filmer fill
time.

analysis avg. time avg. slowdown
direct fill time (Section A) 22h12m11s 446x
reuse distance 3h57m36s 84x
Filmer fill time (Section 2.3) 22m4s 8x

Table 4: Speed comparison for 10 SPEC 2000 integer benchmarks.
The average trace length n is 47 billion, data size m is 73MB, and
baseline run time is 3 minutes and 16 seconds.

More problematic is that with the direct fill time, the predicted
miss ratio is not monotone. Worse, the miss ratio may be negative.
Consider an example trace with 100 a’s followed by 11 b’s, 1 c, 20
d’s, 15 e’s, 1 f and 320 g’s. The average time to fill a 4-element
cache, vt(4), is 161.5, is longer than the average time to fill a
5-element cache, vt(5), which is 149.5. Since the direct fill time
decreases when the cache size v increases, the predicted miss ratio
is negative!

The preceding example was constructed based on an analysis of
real traces. During experimentation, we found that the miss ratios
of some cache sizes were negative. While most of the 3000 or so
sizes had positive predictions, the negatives were fairly frequent
and happened in most test programs. It seemed contradictory that
it could take a program longer to fill a smaller cache. The reason
is subtle. To compute the direct fill time, we find windows with
the same footprint and take the average length. As we increase the
footprint by 1, the length of these windows will increase but the
number of such windows may increase more, leading to a lower
average, as happened in the preceding example.

In contrast, the Filmer fill time is a positive, concave function
(Corollary 2.4). Its miss-ratio prediction is monotone and can be
measured in near real time (Section 4.2.2).

4.5 Predicting Cache Interference
A complete 2-program co-run test for the 29 SPEC 2006 bench-
marks would include

�
29
2

�
= 406 program pairs. To reduce the

clutter in the graphs we show, we choose 20 programs. To avoid
bias, we pick programs with the smallest benchmark ids. Since we
profile data accesses only, we exclude perlbench and gcc because
their large code size may cause significant instruction misses in the
data cache. After the removal, we have 20 SPEC benchmark pro-
grams from 401.bzip2 to 464.h264ref. The trimming reduces the
number of pair-run tests to

�
20
2

�
= 190.

Cache interference models were pioneered by Thiebaut and
Stone [41], Suh et al. [39] and Chandra et al. [9], who computed
the cache interference by the impact of the peer footprint on the self
locality.2 The footprint is measured for a single window length [41]
and approximated for multiple lengths [9, 39]. Our subsequent
work found a way to measure all-window footprints precisely and

2 Chandra et al. also gave a model that used only the reuse distance [9].
Zhuravlev et al. used it and two other such models and found that in task
scheduling, they did not significantly outperform a simple model that used
only the miss rate [51].

0 100 200 300 400

0
5

10
15

20

tests

co
ru

n
m

is
s

ra
tio

 (%
)

hardware counter
prediction

(a) linear scale miss ratios

tests

co
ru

n
m

is
s

ra
tio

 (%
)

0 100 200 300 400

1e
−5

1e
−3

0.
1

10 hardware counter
prediction

(b) logarithmic scale miss ratios

Figure 9: The predicted and measured miss ratios of the 380 exe-
cutions in 190 pair runs. The executions are ordered by the ascend-
ing miss ratio as measured by the hardware counters in exhaustive
testing. For each execution, the solid (black) line shows the hard-
ware counter result, and the dotted (red) line shows the prediction.
The prediction takes about a half percent of the time of exhaustive
testing. Just two executions have a significant error in both graphs,
which are a half percent of all executions.

efficiently [17, 45, 46]. The self locality is measured by the reuse
distance. As the measurement problem for the footprint is solved,
the speed of reuse-distance analysis becomes the bottleneck. We
found that by profiling up to two days for each program, the reuse
distance analyzer by Zhong et al. [49] could finish only 8 SPEC
2006 programs [46]. The total modeling time was over 106 CPU
hours, 94% of which was spent on the reuse-distance analysis. In

half percent time,
half percent error

Chen Ding, HOTL theory, University of Rochester

Summary of the Theory

• Locality metrics
• miss rate in hardware
• reuse distance and footprint in a program

• The higher-order theory of locality
• mutual conversion
• may all be computed from reuse time

• Denning’s law, the Xiang formula
• Correctness

• theoretical
• reuse-window hypothesis

• empirical
• “half and half” in pair-run tests

22

Chen Ding, HOTL theory, University of Rochester

Recent Developments

• Parallel reuse distance measurement
• cluster [OSU, IPDPS 2012]
• GPU [ICT and NCSU, IPDPS 2012]
• sampling

• footprint shadow sampling [this paper]
• multicore reuse distance [Purdue, PACT 2010]

• Reuse distance in threaded code
• multicore reuse distance [Purdue, PACT 2010]
• CRD/PRD scaling [Maryland, ISCA 2013, to appear]

• Shared footprint [Rochester, WODA 2013]
• Static reuse distance analysis in Matlab [Indiana, ICS 2010]
• Static footprint analysis [Rochester, CGO 2013]

23

