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Abstract

The potential for agents, whether embodied or software, to
learn by observing other agents performing procedures in-
volving objects and actions is rich. Current research on au-
tomatic procedure learning heavily relies on action labels
or video subtitles, even during the evaluation phase, which
makes them infeasible in real-world scenarios. This leads to
our question: can the human-consensus structure of a proce-
dure be learned from a large set of long, unconstrained videos
(e.g., instructional videos from YouTube) with only visual
evidence? To answer this question, we introduce the prob-
lem of procedure segmentation—to segment a video proce-
dure into category-independent procedure segments. Given
that no large-scale dataset is available for this problem, we
collect a large-scale procedure segmentation dataset with pro-
cedure segments temporally localized and described; we use
cooking videos and name the dataset YouCook2. We pro-
pose a segment-level recurrent network for generating pro-
cedure segments by modeling the dependencies across seg-
ments. The generated segments can be used as pre-processing
for other tasks, such as dense video captioning and event pars-
ing. We show in our experiments that the proposed model out-
performs competitive baselines in procedure segmentation.

Introduction
Action understanding remains an intensely studied problem-
space, e.g., action recognition (Donahue et al. 2015; Wang
et al. 2016), action detection (Singh et al. 2016; Yeung et
al. 2016; Shou, Wang, and Chang 2016) and action label-
ing (Kuehne, Richard, and Gall 2017; Huang, Fei-Fei, and
Niebles 2016; Bojanowski et al. 2014). These works all em-
phasize instantaneous or short term actions, which clearly
play a role in understanding short or structured videos (Chen
et al. 2014). However, for long, unconstrained videos, such
as user-uploaded instructional videos of complex tasks—
preparing coffee (Kuehne, Arslan, and Serre 2014), chang-
ing tires (Alayrac et al. 2016)—learning the steps of ac-
complishing these tasks and their dependencies is essen-
tial, especially for agents’ automatic acquisition of language
or manipulation skills from video (Yu and Siskind 2013;
Al-Omari et al. 2017; Yu and Siskind 2015).

We define procedure as the sequence of necessary steps
comprising such a complex task, and define each individual
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step as a procedure segment, or simply segment for conve-
nience, inspired by (Sener et al. 2015; Alayrac et al. 2016).
For example, there are 8 segments in the making a BLT sand-
wich video shown in Fig. 1. We represent these segments
by their start and end temporal boundaries in a given video.
Note that one procedure segment could contain multiple ac-
tions, but it should be conceptually compact, i.e., described
with a single sentence. The number of procedure segments
and their locations reflect human consensus on how the pro-
cedure is structured. Can this human-consensus procedure
structure be learned by an agent?

To that end, we define the Procedure Segmentation prob-
lem as: automatically segment a video containing a pro-
cedure into category-independent procedure segments. Al-
though this is a new problem, there are two related, exist-
ing problems: event proposal and procedure learning. The
event proposal problem (Krishna et al. 2017) is to localize
category-independent temporal events from unconstrained
videos. Both event proposals and procedure segments can
contain multiple actions. However, the event proposal prob-
lem emphasizes the recall quality given a large amount of
proposals, rather than the identification of a procedure (se-
quence of segments) from limited but necessary proposals.
Events might overlap and are loosely-coupled but procedure
segments barely overlap, are closely-coupled and usually
have long-term dependencies.

The existing work in procedure learning is less-supervised
than that of event proposals (no labels are given for the seg-
ments). It emphasizes video-subtitle alignment (Malmaud et
al. 2015; Bojanowski et al. 2015) and discovery of common
procedure steps of a specific process (Alayrac et al. 2016;
Sener et al. 2015). However, the methods proposed in these
works make restrictive assumptions: they typically assume
either language is concurrently available, e.g., from subti-
tles, or the number of procedure steps for a certain procedure
is fixed, or both. Such assumptions are limited: extra textual
input is unavailable in some scenarios; the subtitles or ac-
tion sequences automatically generated by machines, e.g.,
YouTube’s ASR system, are inaccurate and require manual
intervention; and many procedures of a certain type, such
a specific recipe, will vary the number of steps in different
instances (process variation).

Unfortunately, work in neither of these two problems
sheds sufficient light on understanding procedure segmen-
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Grill the tomatoes in 
a pan and then put 
them on a plate. Add oil to a pan and spread 

it well so as to fry the bacon
Place a piece of lettuce as 
the first layer, place the 
tomatoes over it.

Sprinkle salt and 
pepper to taste.

Add a bit of Worcestershire 
sauce to mayonnaise and 
spread it over the bread.

Place the bacon at 
the top.

Place a piece of 
bread at the top.Cook bacon until crispy, 

then drain on paper towel

00:21                      00:54          01:06                                            01:56               02:41              03:08  03:16   03:25    
00:51          01:03                                              01:54                      02:40    03:00    03:15       03:25 03:28    

Start time:
End time:

Figure 1: An example from the YouCook2 dataset on making a BLT sandwich. Each procedure step has time boundaries
annotated and is described by an English sentence. Video from YouTube with ID: 4eWzsx1vAi8.

tation, as posed above. In this paper, we directly focus on
procedure segmentation. We propose a new dataset of suf-
ficient size and complexity to facilitate investigating proce-
dure segmentation, and we present an automatic procedure
segmentation method, called ProcNets.

Our new dataset, called YouCook21, contains 2000 videos
from 89 recipes with a total length of 176 hours. The pro-
cedure steps for each video are annotated with temporal
boundaries and described post-hoc by a viewer/annotator
with imperative English sentences (see Fig. 1). To reflect the
human consensus on how a procedure should be segmented,
we annotate each video with two annotators, one for the ma-
jor effort and the other one for the verification. To the best
of our knowledge, this dataset is more than twice as large
as the nearest in size and is the only one available to have
both temporal boundary annotation and imperative English
sentence annotation for the procedure segments.

We then propose an end-to-end model, named Proce-
dure Segmentation Networks or ProcNets, for procedure
segmentation. ProcNets make neither of the assumptions
made by existing procedure learning methods: we do not
rely on available subtitles and we do not rely on knowl-
edge of the number of segments in the procedure. Proc-
Nets segments a long, unconstrained video into a sequence
of category-independent procedure segments. ProcNets have
three pieces: 1) context-aware frame-wise feature encoding;
2) procedure segment proposal for localizing segment can-
didates as start and end timestamps; 3) sequential predic-
tion for learning the temporal structure among the candi-
dates and generating the final proposals through a Recur-
rent Neural Network (RNN). The intuition is: when humans
are segmenting a procedure, they first browse the video to
have a general idea where are the salient segments, which
is done by our proposal module. Then they finalize the seg-
ment boundaries based on the dependencies among the can-
didates, i.e., which happens after which, achieved by our se-
quential prediction module.

For evaluation, we compare variants of our model with
competitive baselines on standard metrics and the proposed
methods demonstrate top performance against baselines.
Furthermore, our detailed study suggests that ProcNets learn
the structure of procedures as expected.

1Dataset website: http://youcook2.eecs.umich.edu

Our contributions are three-fold. First, we introduce
and are the first to tackle the category-independent pro-
cedure segmentation problem in untrimmed and uncon-
strained videos. Second, we collect and distribute a large-
scale dataset for procedure segmentation in instructional
videos. Third, we propose a segment-level recurrent model
for proposing semantically meaningful video segments, in
contrast to state-of-the-art methods that model temporal de-
pendencies at the frame-level (Zhang et al. 2016). The out-
put procedure segments of ProcNets can be applied for other
tasks, including full agent-based procedure learning (Yu and
Siskind 2013) or smaller-scale video description genera-
tion (Yu et al. 2016; Krishna et al. 2017).

Related Work

The approaches in action detection, especially the recent
ones based on action proposal (Escorcia et al. 2016), in-
spire our idea of segmenting video by proposing segment
candidates. Early works on action detection mainly use slid-
ing windows for proposing segments (Gaidon, Harchaoui,
and Schmid 2013; Oneata, Verbeek, and Schmid 2013).
More recently, Shou et al. (Shou, Wang, and Chang 2016)
propose a multi-stage convolutional network called Seg-
ment CNN (SCNN) and achieves state-of-the-art perfor-
mance (Jiang et al. 2014). The most similar work to ours
is Deep Action Proposals, also DAPs (Escorcia et al. 2016;
Krishna et al. 2017), where the model predicts the likelihood
of an action proposal to be an action while in our case seg-
ment proposal. DAPs determines fixed proposal locations by
clustering over the ground-truth segments, while our model
learns to localize procedures with anchor offsets, which is a
generalization of the location pattern from training to testing
instead of directly transferring.

Another topic similar to ours is action segmentation or
labeling (Kuehne, Gall, and Serre 2016; Kuehne, Richard,
and Gall 2017; Huang, Fei-Fei, and Niebles 2016; Bo-
janowski et al. 2014). It addresses the problem of seg-
menting a long video into contiguous segments that cor-
respond to a sequence of actions. Most recently, Huang
et al. (Huang, Fei-Fei, and Niebles 2016) propose to en-
force action alignment through frame-wise visual similar-
ities. Kuehne et al. (Kuehne, Richard, and Gall 2017) ap-
ply Hidden Markov Models (HMM) to learn the likelihood
of image features given hidden action states. Both meth-
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Figure 2: Mean and standard deviation of number of procedure segments for each recipe.
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(a) Distribution of video duration.
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(b) Distribution of segment duration.

Figure 3: YouCook2 dataset duration statistics.

ods focus on the transitions between adjacent action states,
leaving long-range dependencies not captured. Also, these
methods generally assume contiguous action segments with
limited or no background activities between segments. Yet,
background activities are detrimental to the action localiza-
tion accuracy (Huang, Fei-Fei, and Niebles 2016). We avoid
these problems with a segment proposal module followed by
a segment-level dependency learning module.

YouCook2 dataset

Existing datasets for analyzing instructional videos suffer
from either limited videos (Alayrac et al. 2016; Sener et al.
2015) or weak diversity in background (Regneri et al. 2013)
and activities (Kuehne, Arslan, and Serre 2014)). They pro-
vide limited or no annotations on procedure segment bound-
aries or descriptions (Sigurdsson et al. 2016). To this end,
we collect a novel cooking video dataset, named YouCook2.

YouCook2 contains 2000 videos that are nearly equal-
distributed over 89 recipes. The recipes are from four ma-
jor cuisine locales, e.g., Africa, Americas, Asia and Europe,
and have a large variety of cooking styles, methods, ingredi-
ents and cookwares. The videos are collected from YouTube,
where various challenges, e.g., fast camera motion, camera
zooms, video defocus, and scene-type changes are present.
Table 1 shows the comparison between YouCook2 and other
commonly-used instructional video datasets, e.g., YouCook

(Das et al. 2013), MPII (Rohrbach et al. 2012), 50Salads
(Stein and McKenna 2013), Coffee (Alayrac et al. 2016),
Breakfast (Kuehne, Arslan, and Serre 2014) and Charades
(Sigurdsson et al. 2016).

Most of the datasets mentioned above have temporally lo-
calized action annotations. Compared to action segments,
our procedure segments can contain richer semantic infor-
mation and better capture the human-involved processes in
instructional videos. Due to the variety of instructional pro-
cesses and how each process can be performed, a fixed set
of actions fails to describe the details in the video process
(e.g., attributes and fine-grained objects). For example, the
attribute “crispy” in the recipe step “cook bacon until crispy
then drain on paper towel” (see Fig. 1) cannot be described
by any action nor activity labels.

Annotations

Each video contains 3–16 procedure segments. The seg-
ments are temporally localized (timestamps) and described
by English sentences in imperative form (e.g., grill the toma-
toes in a pan). An example is shown in Fig. 1. The annota-
tors have access to audio and subtitles but are required to
organize and summarize the descriptions in their own way.
As indicated in prior work (Baldassano et al. 2017), people
generally agree with boundaries of salient events in video
and hence we collect one annotation per video. To reflect the
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Figure 4: Schematic illustration of the ProcNets. The input are the frame-wise ResNet features (by row) for a video. The output
are the proposed procedure segments. First, the bi-directional LSTM embeds the ResNet features into context-aware features.
Then, the procedure segment proposal module generates segment candidates. Finally, the sequential prediction module selects
the final proposals for output. During training, the ground-truth segments are embedded to composite the sequential prediction
input, which are replaced with beam-searched segment in testing (as shown in the dashed arrows).

Table 1: Comparisons of instructional video datasets. Un-
Cons. stands for Unconstrained Scene and Proc. Ann. is
short for Procedure Annotation.

Name Duration UnCons. Proc. Ann.

YouCook 140 m Yes No
MPII 490 m No No

50Salads 320 m No No
Coffee 120 m Yes No

Breakfast 67 h Yes No
Charades 82h Yes No

YouCook2 176h Yes Yes

human consensus on how a procedure should be segmented,
we annotate each video with two annotators, one for the ma-
jor effort and the other one for verification. We also set up
a series of restrictions on the annotation to enforce this con-
sensus among different annotators. We have found that con-
sensus is comparatively easy to achieve given the grounded
nature of the instructional video domain.

Note that in this paper, we only use the temporal boundary
annotations. We make the recipe descriptions available for
future research.

Statistics and Splits

The average number of segments per video is 7.7 and the
mean and standard deviation of the number of procedure

segments per recipe are shown in Fig. 2. The distribution of
video duration is shown in Fig. 3(a). The total video length is
175.6 hours with an average duration of 5.27 min per video.
All the videos remain untrimmed and can be up to 10 min.
The distribution of segment durations is shown in Fig. 3(b)
with mean and standard deviation of 19.6s and 18.2s, respec-
tively. The longest segment lasts 264s and the shortest one
lasts 1s. For the recipe descriptions, the total vocabulary is
around 2600 words.

We randomly split the dataset to 67%:23%:10% for train-
ing, validation and testing according to each recipe. Note
that we also include unseen recipes from other datasets for
analyzing the generalization ability of the models discussed.

Procedure Segmentation Networks

We propose Procedure Segmentation Networks (ProcNets)
for segmenting an untrimmed and unconstrained video into
a sequence of procedure segments. We accomplish this by
three core modules: 1) context-aware video encoding; 2)
segment proposal module that localizes a handful of pro-
posal candidates; 3) sequential prediction that predicts final
segments based on segment-level dependencies among can-
didates. At training, ProcNets are given ground-truth pro-
cedure segment boundaries for each video; no recipe cate-
gories or segment descriptions are given. At testing, for any
given unseen video, ProcNets propose and localize proce-
dure segments in the video based on their visual appear-
ance and temporal relations. The overall network structure
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is shown in Fig. 4 and next, we explain each component.

Context-Aware Video Encoding

Define a video as x = {x1, x2, . . . , xL}, where L denotes
the number of sampled frames and xi is the frame-wise
CNN feature vector with fixed encoding size. In this paper
L = 500 and encoding size is 512. We use ResNet (He et
al. 2016) as the appearance feature extractor for its state-
of-the-art performance in image classification. We then for-
ward the ResNet features through a bi-directional long short-
term memory (Bi-LSTM) (Graves and Schmidhuber 2005)
as context encoding. The outputs (forward and backward)
are concatenated with the ResNet feature at each frame and
the feature dimension is reduced to the same as ResNet fea-
ture for a fair comparison. We call these frame-wise context-
aware features, denoted as bi = Bi-LSTM(x). Empirically,
Bi-LSTM encoder outperforms context-free ResNet feature
and LSTM-encoded feature by a relative 9% on our evalua-
tion metric.

Procedure Segment Proposal

Inspired by the anchor-offset mechanism for spatial object
proposal, such as in Faster R-CNN (Ren et al. 2015), we de-
sign a set of K explicit anchors for segment proposal. Each
anchor has the length: lk (k = 1, 2, ..,K) and their centers
cover all the frames.

Each anchor-based proposal is represented by a proposal
score and two offsets (center and length), from the output
of a temporal convolution applied on the context-aware fea-
ture. The score indicates the likelihood for an anchor to be a
procedure segment and the offsets are used to adjust the pro-
posed segment boundaries. By zero-padding the video en-
coding at the boundaries (depending on anchor sizes), we
obtain score and offset matrices of size K × L (see upper
right of Fig. 4) respectively, and hence the output of proposal
module is K ×L× 3. Sigmoid function and Tanh functions
are applied for proposal score and offsets, respectively.

We formulate the proposal generation as a classification
problem and proposal offset as a regression problem. The
segment proposals are classified as procedure segment or
non-procedure segment with binary cross-entropy loss ap-
plied. During training, the segment proposals having at least
0.8 IoU (Intersection over Union) with any ground-truth seg-
ments are regarded as positive samples and these having IoU
less than 0.2 with all the ground-truth are treated as negative
samples. We randomly pick U samples from positive and
negative separately for training. Then for the positive sam-
ples, we regress the proposed length and center offsets to
the ground-truth ones from a relative scale. Given a ground-
truth segment with center cg and length lg , the target offsets
(θc, θl) w.r.t. anchor (center ca and length la) are given by:

θc =
cg − ca

la
θl = log

lg
la

. (1)

Smooth l1-loss (Ren et al. 2015) is applied in a standard
way. For inference, the proposed offsets adjust the anchor
location towards the final prediction location.
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Figure 5: An example on sequential prediction during infer-
ence with unrolled LSTM. The <start> token is feed into
model at time 0. The previously generated segment is feed
into model at time 1. Best view in color.

Sequential Prediction

Contrary to spatial objects, video procedure segments, by
their nature, have strong temporal dependencies and yet am-
biguous temporal boundaries. Therefore, we treat them dif-
ferently. Recently, modeling frame-level temporal depen-
dency in video has been explored (Zhang et al. 2016). How-
ever, memorizing dependencies over enormous frames is
still challenging for recurrent models to date (Singh et al.
2016). In contrast, we propose to learn segment-level de-
pendency because the number of proposal segments could
be fewer so learning dependencies over segments are more
tractable. By leveraging the segment-level dependency, we
predict the sequence of procedure segments while dynami-
cally determine the number of segments to propose.

We use long short-term memory (LSTM) for sequen-
tial prediction due to its state-of-the-art performance in se-
quence modeling (Xu et al. 2016; Zhang et al. 2016). The
input of LSTM is constructed from three parts: 1) Proposal
Vector S: max-pooled proposal scores from the proposal
module, fixed over time; 2) Location Embedding Bt: a set
of vectors that discretely encode the locations of ground-
truth or previously generated segments; 3) Segment Content
Ct: the visual features of the ground-truth or previously gen-
erated segments. The tuple (S, Bt, Ct), t = 1, 2, ..., N , is
concatenated as the input to LSTM at each time step t. Intu-
itively, when we learn to choose a few winners from a pool
of candidates, we need to know who and how good they are
(Proposal Vector), what they look like (Segment Content)
and the target candidates (location embedding). We will de-
tail each component after introducing the overall model first.

The softmax output of LSTM is the likelihood of each
proposal being the next segment prediction. Therefore,
the likelihood for the entire procedure segment sequence
ε1, ..., εS of a video can be formulated as:

log p(ε1, ..., εS |S) (2)

=

N∑

t=1

log p(εt|S, Bt−1, Ct−1, ε0, ..., εt−1) ,

where ε0 is the special <start> segment token, B0 is the em-
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Figure 6: An example on converting ground-truth segments
into one-hot vector representations from Proposal Vector.

bedding for the <start> token, C0 is the meal-pooled video
feature over all frames, Bt−1 and Ct−1 are determined by
εt−1. The objective is to maximize the segment sequence
likelihood for all training videos. We apply cross-entropy
loss to the likelihood output Pt at time step t given the
ground-truth segment index. During inference, we sample
a sequence of segment indexes with beam search (Vinyals
et al. 2015; Donahue et al. 2015). In our experiments, sim-
ply set the beam size to 1 yields the best result, i.e., greedily
picking the index with the maximal likelihood as the next
proposed segment. The algorithm terminates when the spe-
cial <end> token is picked. An example is shown in Fig. 5.
Next, we describe the three input vectors in details.
Proposal Vector. As shown at the middle right of Fig. 4,
we apply max-pooling to proposal score to filter out propos-
als with low proposal scores. The max-pooling kernel size is
h × w and so as its stride, i.e., no overlapping. Empirically,
h = 8 and w at 4 or 5 yields the best results. Given the fil-
tered proposals (score and offsets), we flatten the proposal
scores into a vector S by columns as Proposal Vector, which
encodes the location and confidence information of all likely
segment candidates in a video.
Location Embedding. During training, each ground-truth
segment is represented by a one-hot vector where the index
of one matches to the nearest proposal candidate as illus-
trated in Fig. 6. This discrete representation of location is
easier to learn than continuous location values. Through a
trainable embedding matrix (similar to word embedding in
language modeling), this one-hot vector maps to a vector,
which we call Location Embedding vector and depicts the
location information of a segment. This Location Embed-
ding vector has the same size as the Proposal Vector. During
testing, we greedily sample the softmax output of LSTM at
previous time step to form location embedding for the cur-
rent time step. Location Embedding represents the previous
selected candidate, i.e., who we have and who we need next.
Segment Content. We then encode the visual content for
the candidate represented in the one-hot vector. We mean-
pool the video ResNet feature bounded by the start and end
timestamps of the candidate. Its dimension is reduced to the
same as Proposal Vector by a fully-connected layer. Segment
Content indicates what the candidate looks like.

Relations to Other Models. To the best of our knowledge,
we are the first to apply segment-level sequential modeling

on category-independent procedure segments. The proposed
model builds the video temporal structure without the need
of knowing the hidden states such as in HMM. Note that
there are other design choices.
Non-Maximal Suppression (NMS). In terms of proposal
selection, a commonly adopted method in object detec-
tion (Ren et al. 2015) or action detection (Shou, Wang, and
Chang 2016) is NMS. This approach fails to capture the
temporal structure or segment dependencies of instructional
videos. We consider it as a baseline in our experiment along
with our sequential prediction model.
Other Time Sequence Models. Other methods for
proposing segments have rigid model configurations, such
as an HMM or pre-defined “grammar” for the whole video,
which is infeasible for general video structure inference.

Loss Function

The loss function for procedure segmentation network con-
sists of three parts, the binary cross-entropy loss for proce-
dureness classification, the smooth l1-loss (Ren et al. 2015)
for offset regression and the cross-entropy loss for sequen-
tial prediction. The formulations are as follows:

L = Lcla + αrLreg + αsLseq (3)

Lcla = − 1

Up + Un
(

Up∑

i=1

log(S
(pos)
i ) +

Un∑

i=1

log(1− S
(neg)
i ))

Lreg =
1

Up

Up∑

i=1

||Bi −B
(gt)
i ||smooth−l1

Lseq = − 1

N

N∑

t=1

log(PT
t �

(gt)
t )

where Up and Un are the number of positive and nega-
tive samples, respectively, S(pos)

i and S
(neg)
i represents their

scores, B(gt)
i is the ground-truth boundary corresponding to

positive sample i, Pt is the softmax output of LSTM at time
t and �(gt)

t is one-hot vector of ground-truth segment index.
Discount factors αr and αs are applied to balance the contri-
butions of the regression loss and sequential prediction loss,
respectively. Empirically, equally weighting each part, i.e.
αr = αs = 1, yields good results.

Experiments and Results

In this section, we benchmark our new dataset on proce-
dure segmentation with competitive baselines and our pro-
posed methods under standard metrics. We also show abla-
tion studies, qualitative results and analysis on the procedure
structure learned by our approach.
Baselines. We compare our methods against state-of-the-
art methods in video summarization and action proposal due
to lack of direct baselines in our new problem. These meth-
ods include: 1) Video Summarization LSTM (vsLSTM)
(Zhang et al. 2016), 2) Segment CNN for proposals (SCNN-
prop) (Shou, Wang, and Chang 2016). The major difference
between ProcNets and vsLSTM is, our model learns the
segment-level temporal dependency while vsLSTM learns
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the frame-level temporal dependency. SCNN-prop is the
proposal module of action detector SCNN, which achieves
state-of-the-art performance in action proposal.2 In addi-
tion, we also evaluate a uniform segment baseline (denoted
as Uniform). Two variants of ProcNets are evaluated, one
with all the modules (ProcNets-LSTM) and one that replaces
sequential prediction with NMS (ProcNets-NMS). Finally,
note that we compare with no action segmentation methods
since these approaches require an action pool and directly
model the finite action states (e.g., with HMM) which re-
quires the “grammar” of the video procedure; both of these
needs violate the core assumptions in this paper.
Metrics. For procedure segmentation, we adopt two stan-
dard metrics for evaluating segment proposals: Jaccard (Bo-
janowski et al. 2014) and mean Intersection over Union
(mIoU). In Jaccard measure, the maximal intersection over
prediction between all the final proposals and each ground-
truth segment is computed and averaged. The individual Jac-
card for each video is then averaged as the overall Jaccard.
mIoU replaces the intersection over prediction in Jaccard
with intersection over union (IoU). Hence, mIoU penalizes
all the misalignment of segments while Jaccard only penal-
izes the partition of proposal beyond the ground truth. All
the methods except for ProcNets-LSTM output 7 segments
per video, determined by the average number of segments
in the training set. Note that the average number of propos-
als from ProcNets-LSTM is also around 7, makes that a fair
comparison. Inspired by the average recall metric in action
proposal (Escorcia et al. 2016), we also report the proposal
averaged recall, precision and F1 score but with limited seg-
ments (10 per video), as motivated in Introduction section.
Data Preprocessing. To preserve the overall information
in the videos, we uniformly down-sample 500 frames for
each video in YouCook2. The average sample rate is 1.58
fps. To further enlarge the training samples, we temporally
augment the data, i.e., sample each video 10 times with tem-
poral shifts. Then, we extract the frame-wise ResNet-34 fea-
ture (He et al. 2016),3 pretrained on both ImageNet (Deng et
al. 2009) and MSCOCO caption (Lin et al. 2014; Zhou et
al. 2016). Hence, each video is represented as a sequence of
image spatial features. Local motion features are not used in
our study; they may further improve performance.
Implementation and Training Details. The sizes of the
temporal conv. kernels (also anchor length) are from 3 to
123 with an interval of 8, which covers 95% of the segment
durations in training set. The 16 explicit anchors centered at
each frame, i.e., stride for temporal conv. is 1. We randomly
select U = 100 samples from all the positive and negative
samples respectively and feed in negative samples if positive
ones are less than U . Our implementation is in Torch. All
the LSTMs have one layer and 512 hidden units. For hyper-
parameters, the learning rate is 4× 10−5. We use the Adam
optimizer (Kingma and Ba 2014) for updating weights with
α = 0.8 and β = 0.999. Note that we disable the CNN

2New results comparing DAPs and SCNN-prop: https://github.
com/escorciav/daps/wiki

3Torch implementation of ResNet by Facebook: https://github.
com/facebook/fb.resnet.torch

Table 2: Results on temporal segmentation. Top two scores
are highlighted. See text for details.

validation test
Method (%) Jaccard mIoU Jaccard mIoU

Uniform 41.5 36.0 40.1 35.1
vsLSTM 47.2 33.9 45.2 32.2
SCNN-prop 46.3 28.0 45.6 26.7

ProcNets-NMS (ours) 49.8 35.2 47.6 33.9
ProcNets-LSTM (ours) 51.5 37.5 50.6 37.0

Table 3: Ablation study on LSTM input. We remove either
Proposal Vector (as -Proposal Vec), Location Embedding (as
-Location Emb) or Segment Content (as -Segment Feat).

Jaccard mIoU

Full model 50.6 37.0
-Proposal Vec 47.6 36.1
-Location Emb 46.2 35.1
-Segment Feat 49.0 36.4

fine-tuning which heavily slows down the training process.

Procedure Segmentation Results

We report the procedure segmentation results on both val-
idation and testing sets in Tab. 2. The proposed ProcNets-
LSTM model outperforms all other methods by a huge mar-
gin in both Jaccard and mIoU. SCNN-prop (Shou, Wang,
and Chang 2016) suffers in our sequential segmentation
task result from the lack of sequential modeling. vsLSTM
(Zhang et al. 2016) models frame-level temporal depen-
dency and shows superior results than SCNN-prop. How-
ever, our model learns segment-level temporal dependency
and yields better segmentation results, which shows its ef-
fectiveness. Uniform baseline shows competitive results and
the possible reason is, in instruction videos, generally proce-
dures span the whole video which favors segments that can
cover the majority of video. For the rest experiments, all the
results are on testing set.
Ablation study on sequential prediction. The input of
the sequence modeling LSTM is the concatenation of three
parts: Proposal Vector, Location Embedding and Segment
Content. We remove either one of them as the ablation study.
Results are shown in Tab. 3. Unsurprisingly, the proposal
scores (Proposal Vector) play a significant role in determin-
ing the final proposals. When this information is unavailable,
the overall performance drops by 6% on Jaccard relatively.
The Location Embedding encodes the location information
for ground-truth segments and is the most important com-
ponent for procedure structure learning. Jaccard and mIoU
scores drop by 8.7% and 5.1% relatively when location em-
bedding is not available. The segment visual feature has less
impact on the sequence prediction, which implies the visual
information represented in the video appearance feature is
noisy and less informative.
Proposal localization accuracy. We study the proposal
localization problem when each model proposes 10 seg-

7596



Ground-truth:
Proposed:

Grilled Cheese

Ground-truth:
Proposed:

Ground-truth:
Proposed:

Chapati

Calamari

Figure 7: Qualitative results from test set. YouTube IDs: BlTCkNkfmRY, jD4o Lmy6bU and jrwHN188H2I.

Table 4: Results on segment localization accuracy. Top two
scores are highlighted.

Method (%) Recall Precision F1

vsLSTM 22.1 24.1 23.0
SCNN-prop 28.2 23.2 25.4

ProcNets-NMS 37.1 30.4 33.4

Pancake

Ground-truth:

Original:

Permuted:

Va Vb

Figure 8: An example output of ProcNets on the original and
the permutated video. YouTube ID: ejq2ZsHgwFk.

ments per video. Note that the metrics used here are not
suitable for ProcNets-LSTM as they impose a fixed num-
ber of segments, where ProcNets-LSTM learns that auto-
matically; nonetheless, we evaluate ProcNets-NMS for the
quality of procedure segment proposal. The average recall,
precision and F1 are shown in Tab. 4. The IoU threshold for
true positive is 0.5. SCNN-prop shows competitive localiza-
tion results as expected. vsLSTM yields inferior localization
accuracy even though it performs better than SCNN-prop on
segmentation. Our proposed model has more than 9% and
7% higher recall and precision than the baselines.
Qualitative results. We demonstrate qualitative results
with videos from YouCook2 test set (see Fig. 7). The model
can accurately localize some of the segments and predict
their lengths. Moreover, the number of segments proposed is
adapted to individual videos and the model learns to propose
fewer segments at the beginning and the end of the video,
where usually no cooking processes happen. In the example
of making Grilled Cheese, ProcNets propose the fifth seg-
ment to cover the process of cutting bread slices into two
pieces. This trivial segment is not annotated but is still se-
mantically meaningful.
Analysis on temporal structure learning. We conduct
additional experiments to evaluate the temporal structure
learning capability of ProcNets. For a given testing video,
denote the first half as Va and the second half as Vb. We

inverse the order of VaVb to VbVa to construct the permu-
tated video. We evaluate our model on both original test set
and the permutated test set. The performance of pre-trained
ProcNets decreases by over a half in the permutated set and
10%-20% of the videos only have segments predicted at the
beginning of Vb (see Fig. 8). We believe reasons are two.
First, the model captures the ending content in Vb and termi-
nates the segment generation within Vb. Second, the tempo-
ral structure of Va has no dependencies on Vb and hence is
ignored by the model.

Conclusion

We introduce a new problem called procedure segmenta-
tion to study human consensus on how a procedure is struc-
tured from unconstrained videos. Our proposed ProcNets
take frame-wise video features as the input and predict pro-
cedure segments exist in the video. We evaluate the model
against competitive baselines on the newly collected large-
scale cooking video dataset with standard metrics and show
significant improvements. Besides, ProcNets are capable of
inferring the video structure by video content and modeling
the temporal dependencies among procedure segments. For
future work, there are two extensions of the current work.
The first one is dense video captioning. The other one is
weakly supervised segmentation, which is to first align the
weak audio/subtitle signal with the video and then train our
model with the aligned annotation.
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