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SUMMARY

Motivation:

* Methods for solving compounding error often need to execute imperfect
policy in the environment, which is infeasible in real world setting.

* The state-of-the-art Learning from Intervention fails to account for delay
caused by the expert’s reaction time and only learns short-term behavior.

Contributions:

A new problem formulation of Lfl
that incorporates the expert’s
reaction delay.

An interpolation trick called
Backtracking

An agent interacting with an
environment in discrete time
steps which is considered as a
Goal-~conditioned MDP
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 Intervention with reaction caused a non-negligible difference between the
intervened trajectory and the desired one.

* We formulate the intervention in terms of sub-goals to minimize this
discrepancy -~~~ The top-level policy to predict the right goal and the bottom
policy will generate the correct actions that will bring the car to the goal

J. Bi, T. Xiao, and C. Xu are supported by NSFIIS 1741472, 1IS 1813709, and NIST 60NANB17D191
(Sub). V. Dhiman is supported by the Army Research Laboratory - Distributed and Collaborative
Intelligent Systems and Technology Collaborative Research Alliance (DCIST-CRA). This article solely
reflects the opinions and conclusions of its authors but not the funding agents.

HIERARCHICAL POLICIES
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The structure of hierarchical policy with triplet network

RESULT AND ANALYSIS

Figure 1: Top view of the map in CARLA simulator and real-
world environment where experiments were conducted.
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Figure 2: Comparison of the number of data-samples per
iteration needed to train the various algorithms.
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Figure 3: Evaluation of the effect of k on our Figure 4: Distances and times without
proposed Subgoal+1LbB algorithm. expert’s intervention.
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