

Introduction

- > Video Grounding Definition: Given a video segment with its language description, the aim is to localize objects query from the description to the video.
- > Motivation: We investigate the problem of weakly-supervised video grounding, where only video-level sentences are provided. Both videolevel MIL and frame-level MIL can potentially tackle the problem, but video-level MIL has increasingly large bag sizes as frame number increases, and frame-level MIL frequently triggers false-positive bags. Moreover, the video temporal consistency should be considered.

> Frame-level MIL with Ranking loss: We denote the similarity of a frame and a sentence as $S(V_t, \mathcal{Q})$, it is calculated by first computing the similarity between each query and its matched region, then averaging the similarity of all queries in the sentence. The frame ranking loss is

$$L_{rank}^{t} = \max(0, S(V_t, \mathcal{Q}') - S(V_t, \mathcal{Q}) + \Delta)$$
$$\max(0, S(V_t', \mathcal{Q}) - S(V_t, \mathcal{Q}) + \Delta)$$

> Contributions

- Following frame-level MIL, we design a contextual similarity between query and frame to deal with sparse objects association across frames.
- We propose the visual clustering loss that can leverage temporal coherence in the video by strengthening the clustering effect of similar visual features.

Not All Frames Are Equal: Weakly-Supervised Video Grounding with Contextual Similarity and Visual Clustering Losses Jing Shi¹ Jia Xu² Boging Gong² Chenliang Xu¹

¹University of Rochester

Methodology **Contextual Similarity**

Diagram for calculation of the frame-query contextual similarity score

Contextual similarity reweighs the frame importance according to framequery similarity, so as to alleviate false positive bag.

$$S(V_t, q_k) = \max_n a_k^{t,n} \qquad \tilde{S}(V_t, q_k) = \frac{S(V_t, q_k) - \min_t S(V_t, q_k)}{\max_t S(V_t, q_k) - \min_t S(V_t, q_k)}$$

$$\bar{S}(V_t, q_k) = S(V_t, q_k) \tilde{S}(V_t, q_k) \qquad S(V_t, Q) = \frac{1}{K} \sum_{k=1}^K \bar{S}(V_t, q_k)$$

$$S(V_t, q_k) = \max_n a_k^{t,n} \qquad \tilde{S}(V_t, q_k) = \frac{S(V_t, q_k) - \min_t S(V_t, q_k)}{\max_t S(V_t, q_k) - \min_t S(V_t, q_k)}$$

$$\bar{S}(V_t, q_k) = S(V_t, q_k) \tilde{S}(V_t, q_k) \qquad S(V_t, Q) = \frac{1}{K} \sum_{k=1}^K \bar{S}(V_t, q_k)$$

Visual Clustering

 \succ Visual clustering forces the similarity between similar visual features across frames to learn a more discriminative visual feature.

$$\hat{v}_{t,k} = \underset{v_t^n \in \{v_t^1, \dots, v_t^N\}}{\operatorname{arg\,max}} q_k^{\mathbf{T}} v_t^n$$

$$\sum_{vis}^{ctx} = -\sum_k \sum_{t < t'} \cos(\hat{v}_{t,k}, \hat{v}_{t',k}) \tilde{S}(V_t, q_k) \tilde{S}(V_{t'}, q_k)$$

Final loss: combination of ranking loss and visual clustering loss

$$L = \sum_{t=1}^{T} L_{rank}^{t} +$$

²Tencent AI Lab

Experiments

 λL_{vis}^{ctx}

	Box accuracy (%)				Query accuracy (%)			
Method	macro		micro		macro		micro	
	val	test	val	test	val	test	val	test
Upper Bound	62.42	62.41	_	-	_	-	-	-
Compared method								
GroundR [24]	19.63	19.94	-	-	-	-	-	-
$DVSA_{frm} * [11]$	36.90	37.55	44.26	44.16	38.48	39.31	46.27	46.14
$DVSA_{vid} * [11]$	36.67	36.30	43.62	42.87	38.20	37.98	45.60	44.79
Zhou <i>et al</i> . [40]	30.31	31.73	-	-	-	-	-	-
Zhou <i>et al</i> . *[40]	35.69	35.08	43.04	42.42	37.26	36.69	44.99	44.34
Our method								
VisClus	37.80	38.04	45.35	45.53	39.44	39.72	47.41	47.58
CtxSim	38.12	38.78	46.10	45.74	39.78	40.45	48.20	47.80
VisClus+CtxSim	39.54	40.71	46.41	46.33	41.29	42.45	48.52	48.41

Comparison with other methods on YouCookII in Finite-Class Training.

Method	YouCool	κΠ	RoboWatch	ебб	
	val (%)	test (%)	test (%)	-00	
Upper Bound	62.42	62.41	-		
Compared method				mongo	
DVSA _{frm} [11]	35.87	37.33	28.25		
RA-MIL [10]	-	-	19.80	Cream,	
Our method				pan	
VisClus	36.44	37.80	28.68		
CtxSim	37.99	37.67	31.08	hanger	
VisClus+CtxSim	37.43	38.49	31.68	nanger	

Generalizability Test, trained on YouCookII in ICT and testing on RoboWatch

VisClus

CtxSim

VisClus+CtxSim

Reference

[10] D.-A. Huang, S. Buch, L. Dery, A. Garg, L. Fei-Fei, and J. C. Niebles. Finding it: Weakly-supervised reference-aware visual grounding in instructional videos. In CVPR, 2018.

[11] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015. [24] A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and B. Schiele. Grounding of textual phrases in images by re- construction. In

- *ECCV*, 2016.
- interaction. In *BMVC*, 2018

LONG BEACH CALIFORNIA June 16-20, 2019

Qualitative result on RoboWatc

Qualitative comparison on YouCookII. Description: "Put a pan on medium to high heat", query: "pan"

Acknowledgement

This work was supported in part by NSF IIS 1813709, IIS 1741472, and the Tencent Rhino-Bird gift. This article solely reflects the opinions and conclusions of its authors and not the funding agents.

[40] L. Zhou, N. Louis, and J. J. Corso. Weakly-supervised video object grounding from text by loss weighting and object