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Figure 1: Example of space-time video super-resolution. We propose a one-stage space-time video super-resolution

(STVSR) network to directly predict high frame rate (HFR) and high-resolution (HR) frames from the corresponding low-

resolution (LR) and low frame rate (LFR) frames without explicitly interpolating intermediate LR frames. A HR intermediate

frame t and its neighboring low-resolution frames: t− 1 and t+ 1 as an overlayed image are shown. Compare to a state-of-

the-art two-stage method: DAIN [1]+EDVR [37] on the HR intermediate frame t, our method is more capable of handling

visual motions and therefore restores more accurate image structures and sharper edges. In addition, our network is more

than 3 times faster on inference speed with a 4 times smaller model size than the DAIN+EDVR.

Abstract

In this paper, we explore the space-time video super-

resolution task, which aims to generate a high-resolution

(HR) slow-motion video from a low frame rate (LFR), low-

resolution (LR) video. A simple solution is to split it into two

sub-tasks: video frame interpolation (VFI) and video super-

resolution (VSR). However, temporal interpolation and spa-

tial super-resolution are intra-related in this task. Two-

stage methods cannot fully take advantage of the natural

property. In addition, state-of-the-art VFI or VSR networks

require a large frame-synthesis or reconstruction module

for predicting high-quality video frames, which makes the

two-stage methods have large model sizes and thus be time-

consuming. To overcome the problems, we propose a one-

stage space-time video super-resolution framework, which

directly synthesizes an HR slow-motion video from an LFR,

LR video. Rather than synthesizing missing LR video frames

as VFI networks do, we firstly temporally interpolate LR

frame features in missing LR video frames capturing local

temporal contexts by the proposed feature temporal inter-

∗Equal contribution; †Equal advising.

polation network. Then, we propose a deformable ConvL-

STM to align and aggregate temporal information simulta-

neously for better leveraging global temporal contexts. Fi-

nally, a deep reconstruction network is adopted to predict

HR slow-motion video frames. Extensive experiments on

benchmark datasets demonstrate that the proposed method

not only achieves better quantitative and qualitative perfor-

mance but also is more than three times faster than recent

two-stage state-of-the-art methods, e.g., DAIN+EDVR and

DAIN+RBPN.

1. Introduction

Space-Time Video Super-Resolution (STVSR) [30] aims

to automatically generate a photo-realistic video sequence

with a high space-time resolution from a low-resolution and

low frame rate input video. Since HR slow-motion videos

are more visually appealing containing fine image details

and clear motion dynamics, they are desired in rich applica-

tions, such as film making and high-definition television.

To tackle the problem, most existing works in previous

literatures [30, 22, 33, 28, 6, 14] usually adopt hand-crafted
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regularization and make strong assumptions. For example,

space-time directional smoothness prior is adopted in [30],

and [22] assumes that there is no significant change in illu-

mination for the static pixels. However, these strong con-

straints make the methods have limited capacity in model-

ing various and diverse space-time visual patterns. Besides,

the optimization for these methods is usually computation-

ally expensive (e.g., ∼ 1 hour for 60 frames in [22]).

In recent years, deep convolutional neural networks have

shown promising efficiency and effectiveness in various

video restoration tasks, such as video frame interpolation

(VFI) [24], video super-resolution (VSR) [4], and video de-

blurring [32]. To design an STVSR network, one straight-

forward way is by directly combining a video frame interpo-

lation method (e.g., SepConv [25], ToFlow [40], DAIN [1]

etc.) and a video super-resolution method (e.g., DUF [11],

RBPN [8], EDVR [37] etc.) in a two-stage manner. It firstly

interpolates missing intermediate LR video frames with

VFI and then reconstructs all HR frames with VSR. How-

ever, temporal interpolation and spatial super-resolution in

STVSR are intra-related. The two-stage methods splitting

them into two individual procedures cannot make full use

of this natural property. In addition, to predict high-quality

video frames, both state-of-the-art VFI and VSR networks

require a big frame reconstruction network. Therefore, the

composed two-stage STVSR model will contain a large

number of parameters and is computationally expensive.

To alleviate the above issues, we propose a unified one-

stage STVSR framework to learn temporal interpolation

and spatial super-resolution simultaneously. We propose to

adaptively learn a deformable feature interpolation function

for temporally interpolating intermediate LR frame features

rather than synthesizing pixel-wise LR frames as in two-

stage methods. The learnable offsets in the interpolation

function can aggregate useful local temporal contexts and

help the temporal interpolation handle complex visual mo-

tions. In addition, we introduce a new deformable ConvL-

STM model to effectively leverage global contexts with si-

multaneous temporal alignment and aggregation. HR video

frames can be reconstructed from the aggregated LR fea-

tures with a deep SR reconstruction network. To this end,

the one-stage network can learn end-to-end to map an LR,

LFR video sequence to its HR, HFR space in a sequence-to-

sequence manner. Experimental results show that the pro-

posed one-stage STVSR framework outperforms state-of-

the-art two-stage methods even with much fewer parame-

ters. An example is illustrated in Figure 1.

The contributions of this paper are three-fold: (1) We

propose a one-stage space-time super-resolution network

that can address temporal interpolation and spatial SR

simultaneously in a unified framework. Our one-stage

method is more effective than two-stage methods taking

advantage of the intra-relatedness between the two sub-

problems. It is also computationally more efficient since

only one frame reconstruction network is required rather

than two large networks as in state-of-the-art two-stage ap-

proaches. (2) We propose a frame feature temporal interpo-

lation network leveraging local temporal contexts based on

deformable sampling for intermediate LR frames. We de-

vise a novel deformable ConvLSTM to explicitly enhance

temporal alignment capacity and exploit global temporal

contexts for handling large motions in videos. (3) Our one-

stage method achieves state-of-the-art STVSR performance

on both Vid4 [17] and Vimeo [40]. It is 3 times faster

than the two-stage network: DAIN [1] + EDVR [37] while

having a nearly 4× reduction in model size. The source

code is released in https://github.com/Mukosame/Zooming-

SlowMo-CVPR-2020.

2. Related Work

In this section, we discuss works on three related top-

ics: video frame interpolation (VFI), video super-resolution

(VSR), and space-time video super-resolution (STVSR).

Video Frame Interpolation The target of video frame

interpolation is to synthesize non-existent intermediate

frames in between the original frames. Meyer et al. [21] in-

troduced a phase-based frame interpolation method, which

generates intermediate frames through per-pixel phase mod-

ification. Long et al. [19] predicted intermediate frames di-

rectly with an encoder-decoder CNN. Niklaus et al. [24, 25]

regarded the frame interpolation as a local convolution over

the two input frames and used a CNN to learn a spatially-

adaptive convolution kernel for each pixel for high-quality

frame synthesis. To explicitly handle motions, there are also

many flow-based video interpolation approaches [10, 18,

23, 2, 1]. These methods usually have inherent issues with

inaccuracies and missing information from optical flow re-

sults. In our one-stage STVSR framework, rather than syn-

thesizing the intermediate LR frames as current VFI meth-

ods do, we interpolate features from two neighboring LR

frames to directly synthesize LR feature maps for missing

frames without requiring explicit supervision.

Video Super-Resolution Video super-resolution aims to

reconstruct an HR video frame from the corresponding LR

frame (reference frame) and its neighboring LR frames

(supporting frames). One key problem for VSR is how to

temporally align the LR supporting frames with the refer-

ence frame. Several VSR methods [4, 34, 26, 36, 40] use

optical flow for explicit temporal alignment, which first es-

timates motions between the reference frame and each sup-

porting frame with optical flow and then warps the support-

ing frame using the predicted motion map. Recently, RBPN

proposes to incorporate the single image and multi-frame

SR for VSR in which flow maps are directly concatenated
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Figure 2: Overview of our one-stage STVSR framework. It directly reconstructs consecutive HR video frames without

synthesizing LR intermediate frames ILt . Feature temporal interpolation and bidirectional deformable ConvLSTM are utilized

to leverage local and global temporal contexts for better exploiting temporal information and handling large motions. Note

that we only show two input LR frames from a long sequence in this figure for a better illustration.

with LR video frames. However, it is difficult to obtain

accurate flow; and flow warping also introduces artifacts

into the aligned frames. To avoid this problem, DUF [11]

with dynamic filters and TDAN [35] with deformable align-

ment were proposed for implicit temporal alignment with-

out motion estimation. EDVR [37] extends the deformable

alignment in TDAN by exploring multiscale information.

However, most of the above methods are many-to-one ar-

chitectures, and they need to process a batch of LR frames

to predict only one HR frame, which makes the meth-

ods computationally inefficient. Recurrent neural networks,

such as convolutional LSTMs [39] (ConvLSTM), can ease

sequence-to-sequence (S2S) learning; and they are adopted

in VSR methods [15, 9] for leveraging temporal informa-

tion. However, without explicit temporal alignment, the

RNN-based VSR networks have limited capability in han-

dling large and complex motions within videos. To achieve

efficient yet effective modeling, unlike existing methods,

we propose a novel ConvLSTM structure embedded with

an explicit state updating cell for space-time video super-

resolution.

Rather than simply combining a VFI network and a VSR

network to solve STVSR, we propose a more efficient and

effective one-stage framework that simultaneously learns

temporal feature interpolation and spatial SR without ac-

cessing to LR intermediate frames as supervision.

Space-Time Video Super-Resolution Shechtman et

al. [29] firstly proposed to extend SR to the space-time

domain. Since pixels are missing in LR frames and

even several entire LR frames are unavailable, STVSR

is a highly ill-posed inverse problem. To increase video

resolution both in time and space, [29] combines infor-

mation from multiple video sequences of dynamic scenes

obtained at sub-pixel and sub-frame misalignments with

a directional space-time smoothness regularization to

constrain the ill-posed problem. Mudenagudi [22] posed

STVSR as a reconstruction problem using the Maximum a

posteriori-Markov Random Field [7] with graph-cuts [3] as

the solver. Takeda et al. [33] exploited local orientation and

local motion to steer spatio-temporal regression kernels.

Shahar et al. [28] proposed to exploit a space-time patch

recurrence prior within natural videos for STVSR. How-

ever, these methods have limited capacity to model rich and

complex space-time visual patterns, and the optimization

for these methods is usually computationally expensive. To

address these issues, we propose a one-stage network to

directly learn the mapping between partial LR observations

and HR video frames and to achieve fast and accurate

STVSR.

3. Space-Time Video Super-Resolution

Given an LR, LFR video sequence: IL = {IL2t−1}n+1

t=1 ,

our goal is to generate the corresponding high-resolution

slow-motion video sequence: IH = {IHt }2n+1

t=1 . To inter-

mediate HR frames {IH2t}nt=1, there are no corresponding

LR counterparts in the input sequence. To fast and accu-

rately increase resolution in both space and time domains,

we propose a one-stage space-time super-resolution frame-

work: Zooming Slow-Mo as illustrated in Figure 2. The

framework mainly consists of four parts: feature extractor,

frame feature temporal interpolation module, deformable

ConvLSTM, and HR frame reconstructor.

We first use a feature extractor with a convolutional layer

and k1 residual blocks to extract feature maps: {FL
2t−1}n+1

t=1

from input video frames. Taking the feature maps as input,

we then synthesize the LR feature maps: {FL
2t}nt=1 of inter-

mediate frames with the proposed frame feature interpola-

tion module. Furthermore, to better leverage temporal in-

formation, we use a deformable ConvLSTM to process the

consecutive feature maps: {FL
t }2n+1

t=1 . Unlike vanilla Con-

vLSTM, the proposed deformable ConvLSTM can simulta-

neously perform temporal alignment and aggregation. Fi-

nally, we reconstruct the HR slow-mo video sequence from
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Figure 3: Frame feature temporal interpolation based on de-

formable sampling. Since approximated FL
2 will be used to

predict the corresponding HR frame, it will implicitly en-

force the learnable offsets to capture accurate local temporal

contexts and be motion-aware.

the aggregated feature maps.

3.1. Frame Feature Temporal Interpolation

Given extracted feature maps: FL
1 and FL

3 from input

LR video frames: IL1 and IL3 , we want to synthesize the fea-

ture map FL
2 corresponding to the missing intermediate LR

frame IL2 . Traditional video frame interpolation networks

usually perform temporal interpolation on pixel-wise video

frames, which will lead to a two-stage STVSR design. Un-

like previous methods, we propose to learn a feature tem-

poral interpolation function f(·) to directly synthesize the

intermediate feature map FL
2 (see Fig. 3). A general form

of the interpolation function can be formulated as:

FL

2 = f(FL

1 , FL

3 ) = H(T1(F
L

1 ,Φ1), T3(F
L

3 ,Φ3)) , (1)

where T1(·) and T3(·) are two sampling functions and Φ1

and Φ3 are the corresponding sampling parameters; H(·) is

a blending function to aggregate sampled features.

For generating accurate FL
2 , the T1(·) should capture

forward motion information between FL
1 and FL

2 , and the

T3(·) should capture backward motion information between

FL
3 and FL

2 . However, the FL
2 is not available for comput-

ing forward and backward motion information in this task.

To alleviate this problem, we use motion information be-

tween FL
1 and FL

3 to approximate forward and backward

motion information. Inspired by recent deformable align-

ment in [35] for VSR, we propose to use deformable sam-

pling functions to implicitly capture motion information for

frame feature temporal interpolation. With exploring rich

local temporal contexts by deformable convolutions in sam-

pling functions, our feature temporal interpolation can even

handle very large motions in videos.

The two sampling functions share the same network de-

sign but have different weights. For simplicity, we use the

T1(·) as an example. It takes LR frame feature maps FL
1

and FL
3 as input to predict an offset for sampling the FL

1 :

∆p1 = g1([F
L

1 , FL

3 ]) , (2)

where ∆p1 is a learnable offset and also refers to the sam-

pling parameter: Φ1; g1 denotes a general function of sev-

eral convolution layers; [, ] denotes the channel-wise con-

catenation. With the learned offset, the sampling function

can be performed with a deformable convolution [5, 42]:

T1(F
L

1 ,Φ1) = DConv(FL

1 ,∆p1) . (3)

Similarly, we can learn an offset ∆p3 = g3([F
L
3 , FL

1 ]) as

the sampling parameter: Φ3 and then obtain sampled fea-

tures T3(F
L
3 ,Φ3) with a deformable convolution.

To blend the two sampled features, we use a simple linear

blending function H(·):

FL

2 = α ∗ T1(F
L

1 ,Φ1) + β ∗ T3(F
L

3 ,Φ3) , (4)

where α and β are two learnable 1× 1 convolution kernels

and ∗ is a convolution operator. Since the synthesized LR

feature map FL
2 will be used to predict the intermediate HR

frame IH2 , it will enforce the synthesized LR feature map to

be close to the real intermediate LR feature map. Therefore,

the two offsets ∆p1 and ∆p3 will implicitly learn to capture

the forward and backward motion information, respectively.

Applying the designed deformable temporal interpola-

tion function to {FL
2t−1}n+1

t=1 , we can obtain intermediate

frame feature maps {FL
2t}nt=1.

3.2. Deformable ConvLSTM

Now we have consecutive frame feature maps:

{FL
t }2n+1

t=1 for generating the corresponding HR video

frames, which will be a sequence-to-sequence mapping. It

has been proved in previous video restoration tasks [40, 34,

37] that temporal information is vital. Therefore, rather

than reconstructing HR frames from the corresponding indi-

vidual feature maps, we aggregate temporal contexts from

neighboring frames. ConvLSTM [39] is a popular 2D se-

quence data modeling method and we can adopt it to per-

form temporal aggregation. At the time step t, the ConvL-

STM updates hidden state ht and cell state ct with:

ht, ct = ConvLSTM(ht−1, ct−1, F
L

t ) . (5)

From its state updating mechanism [39], we can learn that

the ConvLSTM can only implicitly capture motions be-

tween previous states: ht−1 and ct−1 and the current input

feature map with small convolution receptive fields. There-

fore, ConvLSTM has limited ability to handle large mo-

tions in natural videos. If a video has large motions, there

will be a severe temporal mismatch between previous states

and FL
t . Then, ht−1 and ct−1 will propagate mismatched
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Figure 4: Deformable ConvLSTM for better exploiting

global temporal contexts and handling fast motion videos.

At time step t, we introduce state updating cells to learn

deformable sampling to adaptively align hidden state ht−1

and cell state ct−1 with current input feature map: FL
t .

“noisy” content rather than useful global temporal contexts

into ht. Consequently, the reconstructed HR frame IHt from

ht will suffer from annoying artifacts.

To tackle the large motion problem and effectively ex-

ploit global temporal contexts, we explicitly embed a state-

updating cell with deformable alignment into ConvLSTM

(see Fig. 4):

∆pht = gh([ht−1, F
L

t ]) ,

∆pct = gc([ct−1, F
L

t ]) ,

ha

t−1 = DConv(ht−1,∆pht ) ,

cat−1 = DConv(ct−1,∆pct) ,

ht, ct = ConvLSTM(ha

t−1, c
a

t−1, F
L

t ) ,

(6)

where gh and gc are general functions of several convolu-

tion layers, ∆pht and ∆pct are predicted offsets, and ha
t−1

and cat−1 are aligned hidden and cell states, respectively.

Compared with vanilla ConvLSTM, we explicitly enforce

the hidden state ht−1 and cell state ct−1 to align with the

current input feature map FL
t in our deformable ConvL-

STM, which makes it more capable of handling motions

in videos. Besides, to fully explore temporal information,

we use the Deformable ConvLSTM in a bidirectional man-

ner [27]. We feed temporally reversed feature maps into

the same Deformable ConvLSTM and concatenate hidden

states from forward pass and backward pass as the final hid-

den state ht
2 for HR frame reconstruction.

3.3. Frame Reconstruction

To reconstruct HR video frames, we use a temporally

shared synthesis network, which takes individual hidden

state ht as input and outputs the corresponding HR frame.

It has k2 stacked residual blocks [16] for learning deep fea-

tures and utilizes a sub-pixel upscaling module with Pix-

elShuffle as in [31] to reconstruct HR frames {IHt }2n+1

t=1 .

To optimize our network, we use a reconstruction loss func-

tion:

lrec =
√

||IGT
t − IHt ||2 + ǫ2 , (7)

2We use ht to denote final hidden state, but it will refer to a concate-

nated hidden state in the Bidirectional Deformable ConvLSTM.

where IGT
t refers to the t-th ground-truth HR video frame,

Charbonnier penalty function [13] is used as the loss term,

and ǫ is empirically set to 1 × 10−3. Since the space and

time SR problems are intra-related in STVSR, our model

is end-to-end trainable and can simultaneously learn this

spatio-temporal interpolation with only supervision from

HR video frames.

3.4. Implementation Details

In our implementation, k1 = 5 and k2 = 40 residual

blocks are used in feature extraction and HR frame recon-

struction modules, respectively. We randomly crop a se-

quence of down-sampled image patches with the size of

32 × 32 and take out the odd-indexed 4 frames as LFR

and LR inputs, and the corresponding consecutive 7-frame

sequence of 4×3 size as supervision. Besides, we per-

form data augmentation by randomly rotating 90◦, 180◦ and

270◦, and horizontal-flipping. We adopt a Pyramid, Cascad-

ing and Deformable (PCD) structure in [37] to employ de-

formable alignment and apply Adam [12] optimizer, where

we decay the learning rate with a cosine annealing for each

batch [20] from 4e− 4 to 1e− 7. The batch size is set to be

24 and trained on 2 Nvidia Titan XP GPUs.

4. Experiments and Analysis

4.1. Experimental Setup

Datasets We use Vimeo-90K as the training set [40], in-

cluding more than 60,000 7-frame training video sequences.

The dataset is widely used in previous VFI and VSR works

[2, 1, 35, 8, 37]. Vid4 [17] and Vimeo testset [40] are used

as the evaluation datasets. To measure the performance

of different methods under different motion conditions, we

split the Vimeo testset into fast motion, medium motion,

and slow motion sets as in [8], which include 1225, 4977
and 1613 video clips, respectively. We remove 5 video clips

from the original medium motion set and 3 clips from the

slow motion set, which have consecutively all-black back-

ground frames that will lead to infinite values on PSNR. We

generate LR frames by bicubic with a downsampling fac-

tor 4 and use odd-indexed LR frames as input to predict the

corresponding consecutive HR and HFR frames.

Evaluation Peak Signal-to-Noise Ratio (PSNR) and Struc-

tural Similarity Index (SSIM) [38] are adopted to evaluate

STVSR performance of different methods on Y channel. To

measure the efficiency of different networks, we also com-

pare the model sizes and inference time of the entire Vid4

[17] dataset measured on one Nvidia Titan XP GPU.

3Considering recent state-of-the-art methods (e.g., EDVR [37] and

RBPN [8]) use only 4 as the upscaling factor, we adopt the same practice.
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Figure 5: Visual comparisons of different methods on video frames from Vid4 and Vimeo datasets. Our one-stage Zooming

SlowMo model can reconstruct more visually appealing HR video frames with more accurate image structures and fewer

blurring artifacts.

4.2. Comparison to State­of­the­art Methods

We compare the performance of our one-stage Zooming

SlowMo network to two-stage methods composed of state-

of-the-art (SOTA) VFI and VSR networks. Three recent

SOTA VFI approaches, SepConv [25], Super-SloMo4 [10],

and DAIN [1], are compared. To achieve STVSR, three

SOTA SR models, including single-image SR model,

RCAN [41], and two recent VSR models, RBPN [8] and

EDVR [37], are used to generate HR frames from both orig-

inal LR and interpolated LR frames.

Quantitative results are shown in Table 1. From the ta-

4Since there is no official source code released, we used an unofficial

PyTorch implementation from https://github.com/avinashpaliwal/Super-

SloMo.

ble, we can learn the following facts: (1) DAIN+EDVR is

the best performing two-stage approach among the com-

pared 12 methods; (2) VFI matters, especially for fast mo-

tion videos. Although RBPN and EDVR perform much

better than RCAN for VSR, however, when equipped with

more advanced VFI network DAIN, DAIN+RCAN can

achieve comparable or even better performance than Sep-

Conv+RBPN and SepConv+EDVR on the Vimeo -Fast set;

(3) VSR also matters. For example, with the same VFI net-

work: DAIN, EDVR consistently achieves better STVSR

performance than other VSR methods. In addition, we

can see that our network outperforms the DAIN+EDVR

by 0.19dB on Vid4, 0.25dB on Vimeo-Slow, 0.75dB on

Vimeo-Medium, and 1dB on Vimeo-Fast in terms of PSNR.
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Table 1: Quantitative comparison of our results and two-stage VFI and VSR methods on testsets. The best two results are

highlighted in red and blue colors, respectively. The total runtime is measured on the entire Vid4 dataset [17]. Note that we

omit the baseline models with Bicubic when comparing in terms of runtime.

VFI

Method

SR

Method

Vid4 Vimeo-Fast Vimeo-Medium Vimeo-Slow Parameters

(Million)

Runtime-VFI

(s)

Runtime-SR

(s)

Total

Runtime (s)

Average

Runtime (s/frame)PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SuperSloMo [10] Bicubic 22.84 0.5772 31.88 0.8793 29.94 0.8477 28.37 0.8102 19.8 0.28 - - -

SuperSloMo [10] RCAN [41] 23.80 0.6397 34.52 0.9076 32.50 0.8884 30.69 0.8624 19.8+16.0 0.28 68.15 68.43 0.4002

SuperSloMo [10] RBPN [8] 23.76 0.6362 34.73 0.9108 32.79 0.8930 30.48 0.8584 19.8+12.7 0.28 82.62 82.90 0.4848

SuperSloMo [10] EDVR [37] 24.40 0.6706 35.05 0.9136 33.85 0.8967 30.99 0.8673 19.8+20.7 0.28 24.65 24.93 0.1458

SepConv [25] Bicubic 23.51 0.6273 32.27 0.8890 30.61 0.8633 29.04 0.8290 21.7 2.24 - - -

SepConv [25] RCAN [41] 24.92 0.7236 34.97 0.9195 33.59 0.9125 32.13 0.8967 21.7+16.0 2.24 68.15 70.39 0.4116

SepConv [25] RBPN [8] 26.08 0.7751 35.07 0.9238 34.09 0.9229 32.77 0.9090 21.7+12.7 2.24 82.62 84.86 0.4963

SepConv [25] EDVR [37] 25.93 0.7792 35.23 0.9252 34.22 0.9240 32.96 0.9112 21.7+20.7 2.24 24.65 26.89 0.1572

DAIN [1] Bicubic 23.55 0.6268 32.41 0.8910 30.67 0.8636 29.06 0.8289 24.0 8.23 - - -

DAIN [1] RCAN [41] 25.03 0.7261 35.27 0.9242 33.82 0.9146 32.26 0.8974 24.0+16.0 8.23 68.15 76.38 0.4467

DAIN [1] RBPN [8] 25.96 0.7784 35.55 0.9300 34.45 0.9262 32.92 0.9097 24.0+12.7 8.23 82.62 90.85 0.5313

DAIN [1] EDVR [37] 26.12 0.7836 35.81 0.9323 34.66 0.9281 33.11 0.9119 24.0+20.7 8.23 24.65 32.88 0.1923

Ours 26.31 0.7976 36.81 0.9415 35.41 0.9361 33.36 0.9138 11.10 - - 10.36 0.0606

The significant improvements obtained on videos with fast

motions demonstrate that our one-stage network with si-

multaneously leveraging local and global temporal contexts

is more capable of handling diverse spatio-temporal pat-

terns, including challenging large motions in videos than

two-stage methods.

Moreover, we also investigate model sizes and runtime

of different networks in Table 1. For synthesizing high-

quality frames, SOTA VFI and VSR networks usually have

very large frame reconstruction modules. Thus, the com-

posed two-stage SOTA STVSR networks will contain a

huge number of parameters. With only one frame recon-

struction module, our one-stage model has much fewer pa-

rameters than the SOTA two-stage networks. From Table 1,

we can see that it is more than 4× and 3× smaller than the

DAIN+EDVR and DAIN+RBPN, respectively. The small

model size makes our network more than 3× faster than

the DAIN+EDVR and 8× faster than DAIN+RBPN. Com-

pared to two-stage methods with a fast VFI network: Su-

perSlowMo, our method is still more than 2× faster.

Visual results of different methods are illustrated in Fig-

ure 5. We see that our method achieves noticeably vi-

sual improvements over other two-stage methods. Clearly,

the proposed network can synthesize visually appealing

HR video frames with more fine details, more accurate

structures, and fewer blurring artifacts even for challeng-

ing fast motion video sequences. We also observe that

current SOTA VFI methods: SepConv and DAIN fail to

handle large motions. Consequently, two-stage networks

tend to generate HR frames with severe motion blurs. In

our one-stage framework, we simultaneously learn temporal

and spatial SR with exploring the natural intra-relatedness.

Even with a much smaller model, our network can well ad-

dress the large motion issue in temporal SR.

4.3. Ablation Study

We have already shown the superiority of our one-stage

framework over two-stage networks. To further demon-

Overlayed LR HR

w/o DFI@model (a) w/ DFI@model (b)

Figure 6: Ablation study on feature interpolation. The naive

feature interpolation model without deformable sampling

will obtain overly smooth results for videos with fast mo-

tions. With the proposed deformable feature interpolation

(DFI), our model can well exploit local contexts in adjacent

frames, thus is more effective in handling large motions.

Table 2: Ablation study on the proposed modules. Proposed

deformable feature interpolation network and deformable

ConvLSTM can effectively handle motions and improve

STVSR performance, while the vanilla ConvLSTM per-

forms worse when meeting large motions in videos.

Method (a) (b) (c) (d) (e)

Naive feature interpolation
√

Deformable feature interpolation (DFI)
√ √ √ √

ConvLSTM
√

Deformable ConvLSTM (DConvLSTM)
√

Bidirectional DConvLSTM
√

Vid4 (slow motion) 25.18 25.34 25.68 26.18 26.31

Vimeo-Fast (fast motion) 34.93 35.66 35.39 36.56 36.81

strate the effectiveness of different modules in our network,

we make a comprehensive ablation study.

Effectiveness of Deformable Feature Interpolation To

investigate the proposed deformable feature interpolation

(DFI) module, we introduce two baselines: (a) and (b),

where the model (a) only uses convolutions to blend LR
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Overlayed LR HR w/ DFI w/ DFI+ConvLSTM w/ DFI+DConvLSTM

Figure 7: Ablation study on Deformable ConvLSTM (DConvLSTM). ConvLSTM will fail when meeting videos with fast

motions. Embedded with state updating cells, the proposed DConvLSTM is more capable of leveraging global temporal

contexts for reconstructing more accurate visual content even for fast motion videos.

HR w/o bidirectional w/ bidirectional

Figure 8: Ablation study on the bidirectional mechanism

in DConvLSTM. Adding the bidirectional mechanism into

DConvLSTM, the model can leverage both previous and fu-

ture contexts, and therefore reconstructs more visually ap-

pealing frames with finer image details, especially for video

frames at the first time step, which can not access any tem-

poral information from other frames.

features without deformable sampling functions as in model

(b). In addition, neither (a) or (b) has ConvLSTM or DCon-

vLSTM. From Table 2, we find that (b) outperforms (a) by

0.16dB on Vid4 with slow motions and 0.73dB on Vimeo-

Fast with fast motions in terms of PSNR. Figure 6 shows a

visual comparison. We can see that (a) produces a face with

severe motion blur, while the proposed deformable feature

interpolation with exploiting local temporal contexts can ef-

fectively address the large motion issue and help the model

(b) generate a frame with more clear face structures and de-

tails. The superiority of the proposed DFI module demon-

strates that the learned offsets in the deformable sampling

functions can effectively exploit local temporal contexts and

successfully capture forward and backward motions even

without any explicit supervision.

Effectiveness of Deformable ConvLSTM To validate the

effect of the proposed Deformable ConvLSTM (DConvL-

STM), we compare four different models: (b), (c), (d), and

(e), where (c) adds a vanilla ConvLSTM structure into (b),

(d) utilizes the proposed DConvLSTM, and (e) adopts a

DConvLSTM in a bidirectional manner.

From Table 2, we can see that (c) outperforms (b) on Vid4

with slow motion videos while it is worse than (b) on

Vimeo-Fast with fast motion sequences. The results val-

idate that vanilla ConvLSTM can leverage useful global

temporal contexts for slow motion videos, but cannot han-

dle large motions in videos. Moreover, we observe that (d)

is significantly better than both (b) and (c), which demon-

strates that our DConvLSTM can successfully learn the

temporal alignment between previous states and the current

feature map. Therefore, it can better exploit global contexts

for reconstructing visually pleasing frames with more de-

tails. Visual results in Figure 7 further support our findings.

In addition, we compare (e) and (d) in Table 2 and Fig-

ure 8 to verify the bidirectional mechanism in DConvL-

STM. From Table 2, we can see that (e) can further improve

STVSR performance over (d) on both slow motion and fast

motion testing sets. The visual results in Figure 8 further

shows that our full model with a bidirectional mechanism

can restore more visual details by making full use of global

temporal information for all input video frames.

5. Conclusion

In this paper, we propose a one-stage framework for

space-time video super-resolution to directly reconstruct

high-resolution and high frame rate videos without synthe-

sizing intermediate low-resolution frames. To achieve this,

we introduce a deformable feature interpolation network

for feature-level temporal interpolation. Furthermore, we

propose a deformable ConvLSTM for aggregating temporal

information and handling motions. With such a one-stage

design, our network can well explore intra-relatedness be-

tween temporal interpolation and spatial super-resolution in

the task. It enforces our model to adaptively learn to lever-

age useful local and global temporal contexts for alleviat-

ing large motion issues. Extensive experiments show that

our one-stage framework is more effective yet efficient than

existing two-stage networks, and the proposed feature tem-

poral interpolation network and deformable ConvLSTM are

capable of handling very challenging fast motion videos.
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