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Abstract

We address weakly-supervised video actor-action seg-

mentation (VAAS), which extends general video object seg-

mentation (VOS) to additionally consider action labels of

the actors. The most successful methods on VOS synthesize

a pool of pseudo-annotations (PAs) and then refine them

iteratively. However, they face challenges as to how to se-

lect from a massive amount of PAs high-quality ones, how

to set an appropriate stop condition for weakly-supervised

training, and how to initialize PAs pertaining to VAAS. To

overcome these challenges, we propose a general Weakly-

Supervised framework with a Wise Selection of training

samples and model evaluation criterion (WS2). Instead

of blindly trusting quality-inconsistent PAs, WS2 employs

a learning-based selection to select effective PAs and a

novel region integrity criterion as a stopping condition for

weakly-supervised training. In addition, a 3D-Conv GCAM

is devised to adapt to the VAAS task. Extensive experiments

show that WS2 achieves state-of-the-art performance on

both weakly-supervised VOS and VAAS tasks and is on par

with the best fully-supervised method on VAAS.

1. Introduction

Video actor-action segmentation (VAAS) has recently

received significant attention from the community [46, 45,

47, 14, 28, 13, 6]. Extended from general video object seg-

mentation (VOS) which aims to segment out foreground ob-

jects, VAAS goes one step further by assigning an action

label to the target actor. Spatial information within a sin-

gle frame may be sufficient to infer the actors, but it alone

can hardly distinguish the actions, e.g., running v.s. walk-

ing. VAAS requires spatiotemporal modeling of videos.

A few existing works have addressed this problem using

supervoxel-based CRF [45], two-stream branch [14, 13],

Conv-LSTM integrated with 2D-/3D-FCN [28], 3D convo-

lution involved Mask-RCNN [13], or under the guidance of

a sentence instead of predefined actor-action pairs [6]. Al-

Figure 1. Two-stage WS2 for weakly-supervised VAAS. Stage-

1 (left): Given only a video-level actor-action label, 2D-Conv and

3D-Conv GCAM output actor and action masks (binarized from

the actor- and action-guided attention maps). The union of the

masks is refined by SLIC [1], thus providing a rough location of

the target actor doing a specific action for the whole training set.

This constructs the initial version of PA (PA.v0). Stage-2 (right):

PA evolves through the select-train-predict iterative cycles. First,

we select a high-quality subset from the latest version of PA to

train a segmentation network. The well-trained model is used to

predict the next version of PA. When the model’s region integrity

criterion on the validation set converges, the iteration terminates.

though these fully-supervised models have shown promis-

ing results on the Actor-Action Dataset (A2D) [46], the

scarcity of extensive pixel-level annotation prevents them

from being applied to real-world applications.

We approach VAAS in the weakly-supervised setting

where we only have access to video-level actor and action

tags, such that model generalization is boosted by benefiting

from abundant video data without fine-grained annotations.

The only existing weakly-supervised method on A2D we

are aware of is by Yan et al. [47]. Their method replaces the

classifiers in [45] with ranking SVMs, but still uses CRF for

the actual segmentation, which results in slow inference.

We consider weakly-supervised VOS, a more widely-

studied problem. To fill the gap between full- and

weak-supervision, a line of works first synthesize a pool
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of pseudo-annotations (PAs) and then refine them itera-

tively [5, 49, 21]. This synthesize-refine scheme is most

related to our work but faces the following challenges:

Challenge 1: How to select from a massive amount of

PAs high-quality ones? In general, PAs are determined

by unsupervised object proposals [17, 39, 22], superpixel /

supervoxel segmentations [1, 18], or saliency [42] inferred

from low-level features. Hence, they can hardly handle

challenging cases when there is background clutter, objects

of multiple categories, or motion blur. The VOS perfor-

mance is largely limited by the PA quality for models lack-

ing a PA selection mechanism [53, 37], or simply rely-

ing on hand-crafted filtering rules [12, 19] that can barely

generalize to broader cases. To tackle this challenge, we

make a learning-based wise selection among massive PAs

rather than blindly trusting the entire PA set. We will show

that with only about 25%-35% of the full PAs, the selected

PAs manage to provide more efficient and effective super-

vision to the segmentation network that outperforms the

full-PA counterpart by 4.46% mean Intersection over Union

(mIoU ), a relative 22% improvement, on the test set (see

Table 1). Note that there is another selection criterion in

[20, 49, 50] with a focus on easy/hard samples, whereas

ours is good/bad. They are quite different.

Challenge 2: How to select an appropriate stop condi-

tion for weakly-supervised training? In supervised train-

ing, it is safe to stop training upon the convergence of val-

idation mIoU . However, it gets complicated when the ob-

tained validation mIoU is no longer reliable when calcu-

lating against the PAs due to the complete absence of the

real ground-truth. Fixing the number of training iterations

is a simple yet brute solution [32, 37]. Instead, we pro-

pose a novel no-reference metric—region integrity criterion

(RIC)—that does not blindly trust PAs and injects certain

boundary constraints in the model evaluation. The conver-

gence of RIC acts as the stop condition in training. More-

over, it turns out that the model with the highest RIC al-

ways produces better PAs of the next version than the model

with the highest mIoU computed with PAs (see Table 2).

Challenge 3: How to initialize PAs when actions are con-

sidered along with actors? This is a question pertaining to

VAAS. Recent works in weakly-supervised image segmen-

tation [44, 32, 19] and VOS [9] have shown that gradient-

weighted class activation mapping (GCAM) [31] is capa-

ble of generating initial PAs from attention maps. How-

ever, GCAM is implemented with the network composed

of 2D convolutions and trained on object labels; we denote

this type of GCAM as 2D-Conv GCAM. Hence, it can only

operate on video data frame-by-frame as on images. The

spatiotemporal dynamics cannot be captured by 2D-Conv

GCAM. Motivated by the success of 3D convolutions [3]

in action recognition, we extend 2D-Conv GCAM to 3D-

Conv GCAM to generate action-guided attention maps that

Figure 2. Attention maps guided by actor and action.

are eventually converted to PAs with action labels.

In brief, we propose a general Weakly-Supervised

framework with a Wise Selection of training samples

and model evaluation criterion, instead of blindly trusting

quality-inconsistent PAs. We thereby name it WS2, and

Figure 1 depicts the framework. In Stage-1, attention maps

are generated for each frame and subsequently refined to

produce sharp-edged PAs for initializing a segmentation

network. In Stage-2, we devise a simple but effective select-

train-predict cycle to facilitate PA evolution. Upon a novel

region integrity criterion, the performance of video segmen-

tation is enhanced monotonically.

Customizing the above general-purposed WS2 to the

specific VAAS task is achieved by adding an action-guided

attention map obtained by the proposed 3D-Conv GCAM,

which has played a complementary role to its 2D counter-

part in capturing the motion-discriminate part in the frames.

For example, in the first two pairs of Figure 2, where a bird

and an adult are walking, the 3D-Conv GCAM trained on

action classification finds the area around legs most discrim-

inative in identifying walking, regardless of the appearance

difference between adult’s and bird’s legs, as the motion re-

lated to walking always resides on legs.

In summary, our contributions are as follows:

• We propose an effective two-stage framework WS2 for

weakly-supervised VOS with a novel select-train-predict

cycle and a new region integrity criterion to ensure a

monotonic increase of segmentation capability.

• We customize WS2 with a 3D-Conv GCAM model to

reliably locate the motion-discriminate parts in videos to

generate PAs with action labels for the VAAS task.

• Our model achieves state-of-the-art for weakly-

supervised VOS on the YouTube-Object dataset [33, 11],

as well as weakly-supervised VAAS on A2D, which is

on par with the best fully-supervised model [13].

2. Related Work

In addition to the aforementioned weakly-supervised

models of the synthesize-refine scheme for VOS or object

detection [36, 51], we also summarize other non-refinement

literature on weakly-supervised video object segmentation,

as well as action localization.

VOS. Motion cue is a good source of knowledge. Using

optical flow, Pathak et al. [26] group foreground pixels that

move together into a single object, and set it as the segmen-

tation mask to train a model. Similarly, the PAs in [49] are

initialized from segmentation proposals using optical flow
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and fed into a self-paced fine-tuning network. Tokmakov et

al. [37] propose to obtain the foreground appearance from

motion segmentation and object appearance from the fully

convolutional neural network trained with video labels only.

The appearances are then combined to generate the final

labels through graph-based inference. However, we try to

avoid optical flow in our design due to its inability to han-

dle large motion and brightness constancy constraint.

The use of non-parametric segmentation approaches is

also common. For instance, mid-level super-pixels/voxels

are extracted for weakly-supervised semantic segmenta-

tion [16] and human segmentation [21]. Tang et al. [34]

enforce a Normalized Cut (NC) loss in weakly-supervised

learning. Since it is accompanied by relatively strong

supervision—scribbles, the model has already achieved a

85% full-supervised accuracy even without NC loss. Sim-

ilarly, in [35], shallow regularizers, i.e., relaxations of

MRF/CRF potentials, are integrated into the loss. Hence

the model could do away with the explicit inference of PAs.

Action localization. Mettes et al. [23] introduce five

cues, i.e., action proposal, object proposal, person detec-

tion, motion, and center bias, for action-aware PA gener-

ation and a correlation metric for automatically selecting

and combining them. In contrast, our proposed 3D-Conv

GCAM is much simpler by wrapping everything in a uni-

fied model.

3. WS2 for Weakly-Supervised VOS

In this section, we illustrate how we design the two-stage

WS2 framework for weakly-supervised video object seg-

mentation. The first stage provides the initial version of

pixel-wise supervision on the full training set. The second

stage continually improves PAs by iterations of select-train-

predict cycles. In each cycle, a portion of more reliable PAs

are selected to train a segmentation network, which, in turn,

goes through an inference pass to predict a new version of

PAs, and a new cycle starts all over again. The whole itera-

tion stops when the highest RIC in each cycle is converged.

The overall WS2approach is shown in Algorithm 1.

3.1. Initial PseudoAnnotation Generation

We first apply 2D-Conv GCAM [31] to the video frames

to locate the most appearance-discriminate regions with a

classification network trained on the object labels. Training

frames are uniformly sampled over a video. The obtained

attention map is subsequently converted to the binary mask

Minit using Otsu threshold [24], which produces the optimal

threshold such that the intra-class variance is minimized.

Note that the attention maps calculated from the last con-

volutional layer are of low-resolution (typically of size 16x

smaller than the input size using ResNet-50), the resultant

Minit is mostly a blob, which can hardly serve as qualified

PAs to provide segmentation network with supervision that

Algorithm 1 WS2 for weakly-supervised VOS

Require: weakly-labeled video frames {fi}, trained classifier Φ
1: # Stage-1: Initial PA generation

2: for f ∈ {fi} do

3: Generate attention map S = GCAM(Φ, f)
4: Generate initial mask Minit = Otsu(S)
5: Generate refined mask Mrefine = SLIC Refine(Minit)

6: PA.v0 = {Mrefine}
7: # Stage-2: Iterative PA evolution

8: Set current version i = 0
9: do

10: Select a subset of high-quality PAselect from PA.vi

11: RICi
max = 0 ⊲ The maximum RIC achieved at vi

12: do

13: Train model.vi with PAselect

14: Evaluate model.vi using RIC ⊲ for current epoch

15: if RIC > RICi
max then

16: RICi
max = RIC

17: while RIC on the validation set not converge

18: Produce new version PA.vi++ by model.vi with RICi
max

19: while RICi
max on the validation set not converge

20: return model.vi

Algorithm 2 Mask refinement

Require: initial mask Minit, SLIC superpixels {pi}, α, β

1: Pselect = ∅

2: for p ∈ {pi} do

3: if IoU(p,Minit) > α then

4: if Rarea
pi

= Area(pi)
Area(frame)

< β then

5: Pselect add p

6: Mrefine =
⋃

Pselect

7: return Mrefine

precisely pinpoints the borders of objects. This issue nat-

urally suggests the use of simple linear iterative clustering

(SLIC) [1], a fast low-level superpixel algorithm known for

its ability to adhere to object boundaries well. We impose

the Minit on the SLIC segmentation map, thus treating Minit

as a selector of the superpixels {pi}. The superpixel selec-

tion process is described in Algorithm 2.

The basic idea is to select superpixel pi with sufficient

overlap with Minit (line 3), meanwhile pi is not likely to be

a background superpixel (line 4). Some overly-large fore-

ground objects may be rejected by line 4, but there is a

tradeoff between high recall and high precision. For PA.v0,

we aim to construct a more precise PA for the network to

start with. Results in Figure 8 (l-R) show that our model

manages to gradually delineate the entire body of large ob-

jects. Finally, the union of the selected superpixels con-

structs the refined mask Mrefine.

Figure 3 shows how the superpixel selection process re-

fines the initial blob-like mask: the false positive part (red)

is removed, while the false negative part (green) is suc-

cessfully retrieved. Such refinement imposes an effective
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Figure 3. Visual results of the mask refinement algorithm. For

each group (left→right): input frame, SLIC segmentation map,

mask refinement results with initial masks being red ∪ yellow and

refined mask being green ∪ yellow.

Figure 4. Training samples selected from PA.v0 by the relaxed

criterion. PAs among neighboring similar frames provide supple-

mentary information of the object to recover its full body.

boundary constraint on PA, which is very critical to the

dense (pixel-wise accurate) segmentation task.

3.2. Iterative PA Evolution

The quality of PA.v0 is inconsistent over the full train-

ing set, because some challenging cases can hardly be ad-

dressed in the initial PAs. To improve the overall quality

of PAs, we design a select-train-predict mechanism. First,

a subset of PAs is selected to train a segmentation network.

Once the network is well-trained, it will make its predic-

tions on the full training set as the new version of PA. The

same select-train-predict procedure repeats iteratively until

the RIC is converged.

Selection criteria. The PAs are recognized as of high

quality if they either cover the entire object with a sharp

boundary (strict criterion), or cover the most discriminate

part of the object (relaxed criterion). Satisfying the relaxed

criterion means that a classifier is easy to predict its type if

only pseudo-annotated foreground part is visible. This le-

nience seems to risk taking inferior PAs to training samples

as shown in Figure 4. However, these samples are still valu-

able, because they provide abundant training samples with

precise localization. And, its inaccuracy can be remedied

by the temporal consistency in video data, because by ag-

gregating the information in the adjacent similar frames, the

segmentation network could still learn to piece up the full

body of the object despite of the noise in annotations. Tak-

ing the video clip in Figure 4 as an example, the missed arm

in frame t5 can be retrieved from the neighboring frame t4.

To select the training samples using the above criteria,

we employ two networks—a cut-and-paste patch discrimi-

nator and an object classifier, as shown in Figure 5. Inspired

by [29], the samples qualified for the strict criterion will

cover the whole object with a clear boundary. With such a

Figure 5. Select a subset of high-quality PAs for training.

For the latest version of PA, we can generate a foreground

patch (orange-dash) that encloses the object and a corresponding

randomly-cropped background patch (blue-dash). Then we cut the

object using the PA mask and paste it onto the background patch

to construct a cut-and-paste patch. If this patch passes either the

test of the binary discriminator or the object classifier, its PAs will

be selected to train the segmentation network.

mask, we can crop out the foreground object and paste it to

another background region extracted from the same video,

and the cut-and-paste patch still looks real to the binary dis-

criminator. However, the samples matching the relaxed cri-

terion are easily denied by the discriminator, so we add an

object classifier to identify them. As long as the mask un-

veils a certain discriminative part of the object, it will send

a strong signal to the object classifier and guide it to recog-

nize its object category.

To prepare the inputs to these two networks, we first

sample sets of foreground patches {pifg} and background

patches {pibg} for each video. Foreground patches are

squares enclosing the pseudo-annotated objects, and back-

ground patches are those not containing any pseudo-

annotated objects (Background patches are mostly close to

the frame boundary or from frames of scenic shots). Each

foreground patch is coupled with a background patch of the

same size. Note that they do not necessarily need to come

from the same frame but need to be from the same video.

It is particularly useful in close shots, where the foreground

nearly occupies the full portion of the frame, or when there

are multiple objects. In these cases, there is hardly enough

space in the same frame for its paired background patch.

Relation to Remez et al. [29]. Note that our framework

is different from the image-based cut-and-paste model [29]

in two ways. First, their weakly-supervised model is under

the bounding-box level of supervision, whereas our task is

of higher complexity with video-level labels. Second, they

employ a GAN framework, where the generator tries to re-

fine the input bounding-box to a tight mask under the guid-

ance of GAN loss, whereas our model is an iterative evo-

lution framework, in which the discriminator plays the role

of a selector to pick high-quality PAs for training. There is

no generator or adversarial loss involved in our framework,

which eases the training process.
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3.3. Region Integrity Criterion (RIC)

Without the supervision of real ground-truth, it is hard

to evaluate the trained model properly. At the end of each

select-train-predict cycle, if only mean Intersection over

Union (mIoU ) calculated using PAs is considered to evalu-

ate the model on the validation set:

mIoUPA = mIoU(Mrefine, PAs) , (1)

where Mrefine is the refined network prediction, it may risk

misleading the network to learn the noises in PAs as well.

In the absence of ground-truth annotation for reference,

we thereby introduce a new no-reference metric called Re-

gion Integrity Index (RII). This metric to-some-extent esti-

mates how much the prediction has recovered the full body

of the foreground objects from a low-level perspective. As

shown in Figure 3, the initial masks can be refined by SLIC

superpixels to fit the boundary of the object. If the differ-

ence of the masks before and after the refinement is minor,

then it indicates that Minit is already fairly precise. There-

fore, we define RII in a way that measures how close Minit

is to its refined version Mrefine:

RII = mIoU(Minit,Mrefine) . (2)

The trained models are thus evaluated with region in-

tegrity criterion (RIC) that combines mIoUPA
1 with RII:

RIC = mIoUPA + α ∗RII , (3)

where α = 0.5 in our setting. Such design incorporates the

boundary constraint in model evaluation that is necessary to

avoid the blind trust in automated PAs.

Experiments show that at the turn of each evolution, new

version PA generated by the highest RIC model is always

superior to that by the highest mIoUPA model. Also, we

stop the iterative PA evolution when the highest RIC for

each version converges.

4. WS2 for Weakly-Supervised VAAS

In the typical VOS, each pixel is assigned an object la-

bel, whereas in VAAS it is an actor-action label. To adapt

the VOS-oriented WS2 framework to VAAS, we add an-

other branch in Stage-1 for the additional action label as

shown in Figure 1. Hence, apart from the actor-guided at-

tention map that is generated in the same way as in weakly-

supervised VOS by a 2D-Conv GCAM, a 3D-Conv GCAM

is proposed to generate the action-guided attention map. Af-

ter binary thresholding, we take the union of the actor and

action masks, Minit = Mactor

⋃
Maction, as the initial mask.

Next, following the same steps in Section 3.1, we refine the

blob-like mask Minit with SLIC [1] to produce PA.v0.

1To distinguish, mIoUGT is calculated based on the real ground-truth.

Figure 6. 3D-Conv GCAM. Take dog-running as an example, the

3D-Conv Network takes one video clip (consisting of t frames)

and the video-level action label, i.e., running, as inputs. During

back-propagation, the gradients of all classes are set to zeros, ex-

cept running to 1. In total, t′ action-guided attention maps corre-

sponding to t′ frames uniformly sampled from the input clip are

generated to estimate a sparse trajectory of the running dog.

To implement 3D-Conv GCAM for the given action la-

bel, we first obtain a well-trained action classification net-

work denoted as 3D-Conv Model in Figure 6. Then, we

conduct 3D-Conv GCAM to produce action-guided atten-

tion maps with the trained models.

Actor-action attention map generation. GCAM [31] is

very popular in weakly-supervised learning [44, 9, 32, 19],

as it can locate the most appearance-discriminate region

purely using the classification network trained with the

image-level label. We extend GCAM from 2D to 3D to

produce the action-guided attention maps for VAAS.

As shown in Figure 6, the action attention map is cal-

culated as the weighted average of the feature maps in the

last convolutional layer. Specifically, for the target action

class c, a one-hot vector yc is back-propagated to the fea-

ture maps {Am} of the last convolutional layer, the weight

wc
m is the gradient with respect to the mth feature map Am:

ωc
m =

1

Z

∑

i

∑

j

∑

k

∂yc

∂A
ijk
m

, (4)

where Z is a normalization factor. Once the weights are

obtained, the action-guided attention map Sc
action can be cal-

culated by:

Sc
action = ReLU(

d′∑

m=1

ωc
mAm) . (5)

Compared with 2D-Conv CGAM, each Am is a 3-

dimensional feature map of size (t′, h′, w′) with an addi-

tional time dimension, thus the obtained Sc
action is also of

size (t′, h′, w′), which can be split into t′ attention maps

{Sc
action}

t′ . A non-trivial question is how to find the most

critical t′ (out of t) input frames that stimulate the response

in the action-guided attention maps. Our empirical findings

suggest that a uniform sampling works the best.

Discriminate multiple instances. One benefit of using

3D-Conv GCAM as the initialization for weakly-supervised
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Figure 7. Action-guided attention maps help distinguish single-

actor + multi-action cases.

VAAS is its ability to distinguish multiple instances. Unlike

the instance definition in [53, 10], instances here may be the

same-type actors doing different actions or vice versa. For

some easier scenes that contain multiple different actors, we

can set 1 to the interested actor type in the one-hot vector

yc, and localize it only with the actor-guided attention map.

However, the actor-guided attention map cannot discrimi-

nate actors of the same actor type but performing different

actions. As illustrated in Figure 7, showing a flock of birds

on the beach, some are walking while others are flying. In

this case, walking-guided and flying-guided action attention

map will highlight different regions, which enables us to

assign the action label to the corresponding actors.

In light of these observations, we further applied 3D-

Conv GCAM to weakly-supervised spatial-temporal local-

ization on AVA dataset in Section 5.4. It turns out that 3D-

Conv GCAM shows great potential to focus on the object

the person interacts with.

5. Experiments

In this section, we first present the quantitative and

qualitative performance of the proposed WS2 on A2D

for weakly-supervised VAAS and on YouTube-Object for

weakly-supervised VOS. Then we apply the 3D-Conv

GCAM to frame-level weakly-supervised action localiza-

tion on a subset of the AVA dataset to demonstrate its ap-

pealing potential in person-object interaction detection.

5.1. Datasets

A2D [46] is an actor-action video segmentation dataset con-

taining 3782 videos. Different from classic video object

segmentation datasets [27, 2, 30, 11], A2D assigns actor-

action to the mask, e.g., cat-eating. In total, 7 actors and

9 actions are involved. The dataset is quite challenging in

terms of unconstrained video quality, action ambiguity, and

multi-actor/action, etc. We split the 3036 training videos

into two parts, 2748 for training and the rest for validation.

YouTube-Object [33, 11] consists of 5507 video shots that

fall into 10 object classes. Among them, 126 video shots

that have pixel-wise ground-truth annotation in every 10th

frame [11] are used for testing, and the rest are for training

following the same common setting in [43, 52, 38, 49].

AVA [7] is densely annotated with bounding boxes locating

the performers with actions. Videos that fall in 10 classes

with evident interactions and a balanced amount of train-

ing data are selected for weakly-supervised action localiza-

tion.We denote it as AVA-10 hereafter.2

5.2. Implementation Details

In general, weakly-supervised VOS and VAAS share the

two-stage framework, except that the latter has an extra ac-

tion recognition network in initial PA generation of Stage-1

to account for the action label.

Initial PA generation. For A2D, the 2D- and 3D-GCAM

are implemented with ResNet-50 [8] pretrained on Ima-

geNet [30] for actor classification, and inflated 3D Con-

vNet (I3D) [3] pretrained on Kinetics-400 [15] for action

recognition. To finetune the two models on the A2D, 2794

videos with a single-actor label are used in train & vali-

dation set to train a ResNet-50, and 2639 videos with a

single-action label are selected to train an I3D. Once they

are well-trained—ResNet-50 achieves 87.74% accuracy on

the single-actor test set, and I3D achieves 76.60% accuracy

on the single-action test set—we apply the two classifica-

tion networks to its respective GCAM settings for actor-

/action-guided attention map generation. Next, the bina-

rized attention masks are refined by SLIC with the thresh-

olds set to α = 0.5, β = 0.4. For YouTube-Object, we

follow the similar procedure, except that only ResNet-50 is

used for object classification and attention map generation.

Iterative PA evolution. To select a subset of high-

quality PAs, a small network with five layers of Conv-

LeakyRelu is constructed to discriminate original fore-

ground patches from cut-and-paste patches. Note that the

ResNet-50 trained in Stage-1 is directly used here in testing

mode to predict the actor type for the cropped patches.

As for segmentation network, we choose DeepLab-

v2 [4]. During training, the inputs to the network are

patches of size 224 × 224 pixels randomly cropped from

the frame. We use the “poly” learning rate policy as sug-

gested by [4], with base learning rate set to 7 × 10−4 and

power to 0.9. We fix a minibatch size of 12 frames, mo-

mentum 0.9. In the testing, we output the full-size seg-

mentation map for each frame. A simple action-alignment

post-processing is used to unify the action label for the

same actor, since frame-based segmentation network can

hardly capture the temporal information throughout the

2The selected classes are fight/hit (a person), give/serve (an object) to

(a person), ride, answer phone, smoke, eat, read, play musical instrument,

drink, and write.
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Models
Settings mIoUGT (actor-action)

train set model eval val test

Baseline full mIoUPA 24.62 20.38

Model-S subset mIoUPA 27.65 24.84

WS2 subset RIC 29.32 26.74

Table 1. Comparison of model variants with different settings

in Stage-2. The settings specify whether the model is trained on

PAs from the full training set or only the selected subset. And in

each PA version upgrade, whether model with the highest valida-

tion mIoUPA or RIC is selected to predict the next version of PA.

video, which may cause action-inconsistency in the same

actor appearing in multiple frames. To tackle this issue, we

take the poll of neighboring frames, and assign the action

label with the maximum votes to the actor of interest. This

procedure is similar to the effective temporal segment net-

work [41], which belongs to the video-level action recogni-

tion, whereas ours is in instance-level.

Evaluation metrics. We use mean intersection over

union (mIoU ) averaged across all classes to evaluate the

performance of the model. To compare with the weakly-

supervised model [47] on A2D, we also adopt average per-

class pixel accuracy (cls acc) and global pixel accuracy

(glo acc) for evaluation.

5.3. WeaklySupervised VAAS & VOS

We first investigate the effectiveness of the key com-

ponents in iterative PA evolution on A2D. Then we com-

pare our WS2 model with other state-of-the-art fully- and

weakly-supervised methods on A2D and YouTube-Object.

Results show that WS2 outperforms all video-level weakly-

supervised models with the performance that is highly com-

petitive even against the fully-supervised models.

5.3.1 Ablation Study

The iterative PA evolution is running in select-train-predict

cycles, in which train is no more special than training a seg-

mentation network as in the fully-supervised setting. The

two key factors that influence how much PA can be im-

proved iteration by iteration mainly reside in 1) the overall

quality of the selected training samples compared with the

original full set, and 2) the performance of the model chosen

by RIC to predict the next version of PA, compared with

that chosen by plain mIoUPA. To quantitatively evaluate

their respective contribution to the final model, we conduct

an ablation study with three model variants in Table 1.

The results show that, Model-S trained on the subset out-

performs Baseline trained on the full PAs, because the se-

lected training samples are of higher-quality. It is also ver-

ified in Table 2 with the training samples evaluated by the

real ground-truth. The selected subsets always have higher

mIoUGT than the full set, which means the selected train-

ing samples tend to have more clear boundary and complete

version model eval #frames mIoUGT (a.-a./actor/action)

PA.v0
init-full 56120 23.31 / 31.97 / 29.26

init-select 8243 25.67 / 33.62 / 31.14

PA.v1

mIoUPA-full 56120 28.58 / 38.21 / 35.67

RIC-full 56120 29.27 / 38.92 / 36.86

RIC-select 14669 32.99 / 41.47 / 39.33

PA.v2

mIoUPA-full 56120 31.72 / 41.54 / 39.06

RIC-full 56120 32.36 / 42.34 / 39.94

RIC-select 12455 33.35 / 42.27 / 41.16

PA.v3

mIoUPA-full 56120 33.05 / 42.84 / 41.07

RIC-full 56120 33.64 / 43.99 / 42.22

RIC-select 18330 34.76 / 43.60 / 42.31

Table 2. Quantitative comparison of PA on full/selected train-

ing samples produced by models with the highest mIoUPA or

the highest RIC. Here, a.-a. denotes actor-action.

coverage of the full object. In comparison, there is more

noise and inconsistency in the full set, which may confuse

the model and impede it from converging. More impor-

tantly, models can be trained much more efficiently on the

subset than the full set with 65%-75% less training frames.

Employing RIC rather than the plain mIoUPA also

helps us choose better models in each PA version upgrade.

mIoUPA calculated by noisy PAs is not guaranteed to assess

the true performance of the model as in the fully-supervised

setting. It is possible that models with high validation

mIoUPA may also produce noisy prediction that matches

exactly the noise in PAs [49]. To overcome this problem, we

propose RIC that considers both mIoUPA and RII (Eq. 3).

RII measures the shape change ratio in mask before and af-

ter the SLIC refinement. Since refinement drags the seg-

mentation boundary closer to the real object’s boundary, if

there is not much change on the original prediction after

refinement (i.e., high RII), then it is likely that the original

prediction has already produced edge-preserving masks that

approximate the ground-truth segmentation maps. Table 2

clearly exhibits that the-highest-RIC model produces bet-

ter PAs of the next version than the-highest-mIoUPA model.

5.3.2 Comparison with the State-of-the-Art Methods

A2D. We compare our weakly-supervised model with the

state-of-the-art fully- and weakly-supervised models on the

VAAS task. Table 3 indicates that our model evolves iter-

ation by iteration, and eventually achieves about 72% per-

formance of the best fully-supervised model [13], which is

actually a two-stream method that makes use of optical flow

for action recognition, whereas our model only takes RGB

frames as input. To make a fair comparison with the only

existing weakly-supervised model we know of on A2D, we

report in Table 4 with the evaluation metric used in [47].

Figure 8 shows how the model’s prediction power
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Models mIoUGT (actor-action/actor/action)

GPM+TSP [45] 19.953.9% / 33.450.3% / 32.069.1%

TSMT [14]+GBH 24.967.5% / 42.764.3% / 35.576.7%

TSMT [14]+SM 29.780.5% / 49.574.5% / 42.291.1%

DST-FCN [28] 33.490.5% / 47.471.4% / 45.999.1%

Gavrilyuk et al. [6] 34.894.3% / 53.780.9% / 49.4106.7%

Ji et al. [13] 36.9100 % / 66.4100 % / 46.3100 %

WS2(model.v0) 19.452.6% / 38.558.0% / 31.067.0%

WS2(model.v1) 25.067.8% / 47.371.2% / 36.478.6%

WS2(model.v2) 26.672.1% / 49.274.1% / 38.182.3%

WS2(model.v3) 26.772.4% / 49.274.1% / 38.783.6%

Table 3. Comparison with the state-of-the-art fully-supervised

models on the A2D test set. The subscript denotes the perfor-

mance percentage to the best fully-supervised model [13].

Models cls acc glo acc

Yan et al. [47] 41.7 / - / - 81.7 / 83.1 / 83.8

Ours (model.v3) 43.06 / 49.16 / 35.12 87.10 / 91.30 / 87.44

Table 4. Comparison with the state-of-the-art weakly-

supervised model on the A2D test set. cls acc and glo acc are

shown in order of actor-action/actor/action.

Figure 8. Evolution of the model prediction on some tough test

samples. Two samples are shown on each row (left→right): input

frame, prediction by models from v0 to v3, ground-truth (GT).

Although in the complete absence of pixel-wise annotation from

the GT, our model can still handle challenge cases like occlusion

(g-L, i-L, j-L), out of view (a-L, j-R), low illumination ( c-L, b-R,

e-R), small objects (d-R, h-R), blur (k-L), multitype-actors (f-L,

k-R), fast motion (j-R), background clutter (a-R, g-R), etc.

evolves through versions. Especially for challenging cases

like when only the adult’s upper body is observed in a-L,

the model correctly predicts adult-crawling by seeing his

arms erected on the floor. The case of a boy covering his

head with a towel (g-L) really gives our model a hard time

in the beginning, and it finally figures it out in model.v3. In

other hard cases, such as background clutter, motion blur,

low illumination, occlusion, out of view, and small scale,

Models [33] [48] [25] [43] [52] [40] [38] [49] WS2

mIoU 23.9 39.1 46.8 47.7 54.1 60.4 62.3 63.1 64.7

Table 5. Comparison with the state-of-the-art video-level

weakly-supervised models on the YouTube-Object dataset.

the model sometimes fails to output something reasonable

in its early versions. Its ability gradually grows as the PA

evolves, and finally it gets the prediction right. As for the

less complicated cases, the model is able to catch the ap-

proximate location of the actors in its early versions, but the

predicted masks may suffer from under-/over-segmentation,

or wrong action label, which are self-corrected by later ver-

sions (see more examples in the supplementary material).

YouTube-Object. WS2 achieves promising segmen-

tation results which outperform the previous video-level

weakly-supervised methods as shown in Table 5. Qualita-

tive results are given in the supplementary video.

5.4. WeaklySupervised Action Localization

To further validate the ability of the proposed 3D-Conv

GCAM in localizing motion-discriminate part in video, we

apply it to weakly-supervised spatial-temporal action local-

ization on AVA-10. We train an I3D [3] action classifica-

tion network on AVA-10 with only frame-level supervision

(without bounding-boxes). In the testing mode, I3D pre-

dicts an action label, with which 3D-Conv GCAM attends

to the most relevant region. The visualization of the atten-

tion maps in the supplementary material indicates that

3D-Conv GCAM can accurately localize the object the per-

son is interacting with, such as the cigar of a smoking per-

son, or the hand of the person giving/serving something.

6. Conclusion

Given only video-level categorical labels, we tackle the

weakly-supervised VOS and VAAS problems. A two-stage

framework called WS2 is proposed to overcome common

challenges faced by many synthesize-refine scheme-based

methods that are most successful in weakly-supervised

VOS. Our proposed select-train-predict cycle utilizes a dif-

ferent cut-and-past model than [29] to effectively select

high-quality PAs and is customized to handle videos. The

new region integrity criterion (RIC) is proposed to better

guide the convergence of training in the absence of ground-

truth segmentation. Extensive experiments on A2D and

YouTube-Object show that WS2 performs the best among

weakly-supervised methods. Our proposed framework and

techniques are general and can be used for other weakly-

supervised video segmentation problems.
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