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Abstract

In this paper, we propose to make a systematic study
on machines’ multisensory perception under attacks. We
use the audio-visual event recognition task against multi-
modal adversarial attacks as a proxy to investigate the ro-
bustness of audio-visual learning. We attack audio, visual,
and both modalities to explore whether audio-visual inte-
gration still strengthens perception and how different fusion
mechanisms affect the robustness of audio-visual models.
For interpreting the multimodal interactions under attacks,
we learn a weakly-supervised sound source visual localiza-
tion model to localize sounding regions in videos. To mit-
igate multimodal attacks, we propose an audio-visual de-
fense approach based on an audio-visual dissimilarity con-
straint and external feature memory banks. Extensive ex-
periments demonstrate that audio-visual models are sus-
ceptible to multimodal adversarial attacks; audio-visual
integration could decrease the model robustness rather
than strengthen under multimodal attacks; even a weakly-
supervised sound source visual localization model can be
successfully fooled; our defense method can improve the in-
vulnerability of audio-visual networks without significantly
sacrificing clean model performance. The source code and
pre-trained models are released in https://github.

com/YapengTian/AV-Robustness-CVPR21.

1. Introduction

Our daily perceptual experiences are specified by mul-
tiple cooperated senses with multisensory integration [50].
When we are talking with a person, we can learn her/his
spoken words and emotions from the seen lip movements,
gestures, facial expressions, and heard speech sounds. Nu-
merous psychological and cognitive studies show that the
availability of sensory inputs from several modalities en-
sures the robustness of the human perception system [66,
29, 75]. However, the robustness highly depends on the re-
liability of multisensory inputs. For our human perception
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Figure 1: Adding imperceptible perturbations into audio
and visual inputs by an audio-visual adversarial attack, our
joint perception model predicts a wrong event class: Guitar
and tend to localize visual regions without the sound source.

system, it might fail if certain senses are attacked. For ex-
ample, the McGurk effect1 [46] indicates a perceptual illu-
sion, which occurs when a speech sound is paired with the
visual component of another sound, leading to the percep-
tion of a third speech sound.

For computation models, our community indeed has
devoted to develop data-driven approaches in lip read-
ing [15, 58, 14], visually indicated sound separation [20, 25,
53, 87, 86, 81, 22], audio-visual event localization [71, 42,
77, 61, 62], audio-visual video parsing [70], audio-visual
embodied navigation [9, 23], and audio-visual action recog-
nition [28, 37, 78] to achieve robust auditory or visual per-
ception by integrating audio and visual information. How-
ever, whether these computational perception models still

1https://www.youtube.com/watch?v=2k8fHR9jKVM



exhibit robustness under attacks or they are vulnerable to
corrupted sensory inputs as in human perception, these have
not been systematically evaluated in previous work.

Inspired by the auditory-visual illusion [46] in human
perception, we present a systematic study on machines’
multisensory integration under attacks. We use the audio-
visual event recognition task against multimodal adver-
sarial attacks as a proxy to investigate the robustness of
audio-visual learning. Adversarial examples are generated
with several different attack methods for audio, visual, and
both modalities to evaluate the robustness of our models.
In addition, different audio-visual fusion methods are ex-
plored to validate the correlation between model robust-
ness and multisensory integration. To visually interpret the
audio-visual interactions under attacks, we learn a weakly-
supervised sound source visual localization model to local-
ize sounding regions in videos. To mitigate the adversar-
ial multimodal attacks, we propose an audio-visual defense
method. It uses external feature memory banks to denoise
corrupted features from each modality and learns compact
unimodal embeddings by enforcing audio-visual dissimilar-
ity to strengthen invulnerability. For fairly evaluating differ-
ent defense approaches, we propose a relative improvement
(RI) metric that considers results from both clean and attack
models and can penalize modality-biased defense models.
One audio-visual attack example is illustrated in Fig. 1.

Extensive experiments can validate that our audio-visual
models are susceptible to adversarial perturbations, audio-
visual integration could weaken model robustness rather
than strengthen under multimodal attacks, even a weakly-
supervised sound source visual localization model can be
successfully fooled, and the proposed audio-visual defense
method can improve network invulnerability without signif-
icantly sacrificing clean model performance.

The main contributions of our work are: (1) system-
atically investigating the robustness of audio-visual event
recognition models against the adversarial multimodal at-
tack with different attackers and fusion methods; (2) quali-
tatively interpreting the robustness over multimodal attacks
in terms of the sound source spatial localization; (3) propos-
ing a novel audio-visual defense method that uses clean ex-
ternal feature memory banks to denoise adversarial audio
and visual features and enforces the multimodal dispersion
and unimodal embedding compactness to strengthen invul-
nerability. (4) finding a shortcut of audio-visual defense
originating from the modality bias issue and proposing a
new evaluation metric: RI.

2. Related Work

In this section, we discuss some related work on audio-
visual learning, adversarial attack, and adversarial defense.

Audio-Visual Learning: Audio and visual modalities in

videos can provide synchronized and/or complementary in-
formation. The multimodal nature of videos enables a se-
ries of new and interesting audio-visual learning problems,
such as self-supervised audio-visual representation learn-
ing [16, 52, 4, 54, 2, 3, 53, 40, 35], visually indicated
sound separation [20, 25, 53, 87, 86, 63, 81, 27, 22, 69],
vision-infused audio inpainting [89, 49], sound source spa-
tial localization [34, 38, 64, 71, 3, 53, 59, 36, 1], lip read-
ing [15, 58, 14], audio-visual event localization [71, 42,
77, 61, 62], audio-visual video parsing [70], audio-visual
embodied navigation [23, 9], audio-visual action recogni-
tion [28, 37, 78, 76], and cross-modal generation and pre-
diction [13, 12, 92, 10, 11, 88, 26, 24, 91, 74, 21, 90, 82].
Although the audio-visual integration with clean data fa-
cilitates many audio-visual learning tasks and strengthens
model robustness, we do not know whether the robustness
still exits when audio and visual modalities are attacked. In
this paper, we take audio-visual event recognition as the pre-
text task to explore audio-visual learning robustness against
multimodal adversarial attacks.

Adversarial Attack: Generating adversarial images to at-
tack deep networks have attracted great interests. A pio-
neer work is proposed by Szegedy et al. in [68], which uses
a box-constrained L-BFGS-based optimization to predict
adversarial perturbations for fooling networks. Following
the line of the work, many white-box (network architecture
and parameters are known) attack approaches are devel-
oped to effectively attack image classifiers, including Fast
Gradient Sign Method (FGSM) [30], iterative FGSM [41],
DeepFool [48], Projected Gradient Descent (PGD) [45],
Jacobian-based Saliency Map Attack (JSMA) [56], Carlini
& Wagner’s attack [6], Diverse Input Iterative Attack [80],
and Momentum-based Iterative Method (MIM) [17]. Build-
ing upon research in the visual domain, recent research
shows that speech recognition models are also susceptible
to adversarial audio examples [5, 65, 85, 7, 60, 18]. But,
how adversarial attacks affect universal sound models has
not been answered yet.

Rather than individual audio and visual adversarial at-
tacks, we investigate audio-visual learning under multi-
modal attacks, which generate adversarial examples for
both audio and visual inputs. Particularly, we explore un-
constrained video data from a range of categories (e.g., mu-
sical instruments and human activities).

Adversarial Defense: The adversarial defense aims to im-
prove the invulnerability of deep models under attacks.
To counter adversarial attacks, adversarial training ap-
proaches [30, 41, 73, 47] are proposed, which incorporate
both clean images and their adversarial counterparts into the
training process. Since it is not possible to exploit all differ-
ent levels of perturbations during adversarial training, the
trained models might not be able to generalize to certain
unknown attacks. To mitigate adversarial attacks, some ap-



proaches [79, 32, 67] apply different pre-processing steps
and transformations on the input image. There are also
some defense methods that propose new objective func-
tions [55, 51] to enforce robustness by encouraging compact
representations. In the audio domain, there are only a few
methods [84, 43] to alleviate adversarial attacks on speech
recognition. However, they can only detect adversarial ex-
amples and are not able to improve model performance.

Not competing with state-of-the-art defense methods in
the image domain, our goal is to investigate how to take the
multimodal nature of audio-visual data into consideration
for audio-visual defenses and devise unified defense meth-
ods, which can alleviate perturbations from both modalities.

3. Method
3.1. Multimodal Adversarial Attack

Let xv be an input video frame, xa be an input audio
waveform, and y be the corresponding groundtruth label
for the multisensory input: {xa, xv}. We denote Fθ as our
audio-visual network, where θ are the model parameters.

The goal of a multimodal attack is to fool the target mul-
timodal model: Fθ by adding human imperceptible pertur-
bations into its inputs from multiple modalities, such as au-
dio: xa and visual: xv in our problem. Since there are mul-
tiple inputs, we can divide our multimodal attack into two
categories: single-modality attacks that only generate au-
dio adversarial example xadva or visual adversarial example
xadvv , and audio-visual attacks that generate both audio and
visual adversarial examples: {xadva , xadvv }.
Adversarial Objective: To force a trained multimodal
modelFθ to make wrong predictions and the corresponding
perturbations be as imperceptible as possible, the objective
function for multimodal attacks against Fθ with audio and
visual inputs is as follows:

argmax
xadv
a ,xadv

v

L(xadva , xadvv , y; θ)

s.t. ||xadva − xa||p 6 εa

||xadvv − xv||p 6 εv,

(1)

where δa = xadva −xa is the audio adversarial perturbation,
δv = xadvv − xv is the visual adversarial perturbation, L(·)
is the loss function to optimize Fθ, || · ||p is the p-norm,
and εa and εv are audio and visual perturbation budgets, re-
spectively. With the adversarial objective, the attacker will
maximize the loss function by seeking small perturbations
within allowed budgets, and try to push the trained model
to make incorrect predictions. For single-modality attacks,
either εa or εv is 0. In this case, our multimodal model
can still access clean inputs from the unattacked modality.
For audio-visual attacks, both audio and visual inputs will
be corrupted. With exploring effects of different single-
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Figure 2: Audio-visual event recognition network. It inte-
grates audio and visual content to predict the event category.

modality and audio-visual attacks, we can investigate the
model robustness under multimodal attacks.

3.2. Audio-Visual Event Recognition

We use audio-visual event recognition task as a proxy
to explore the audio-visual model robustness under multi-
modal attacks. Given an audio waveform: xa and the cor-
responding video frame: xv from a short video clip, the
goal of the task is to predict the event category of the video
clip. To address the problem, we introduce an audio-visual
network2 as shown in Fig. 2, which can integrate informa-
tion from the both modalities to infer event labels. It uses
an 1D convolution-based audio network to extract an au-
dio feature: fa ∈ Rd from xa. ResNet [33] is adopted
as the visual network to extract a visual feature fv ∈ Rd
from xv . The audio and visual features are integrated by
a fusion function outputting a fused feature: fav . In prac-
tice, we obtain fav = [fa; fv] via concatenating the audio
and visual features. Taking the fav as an input, a fully-
connected layer with a softmax is used to predict its event
class probability p. The cross-entropy objective function:
LCE = −

∑k
i=1 yilog(pi), where k is the category num-

ber, is used to force the model to learn discriminative fea-
tures for each class that be mapped to correct output space.

3.3. Audio-Visual Defense

To defend adversaries and improve the robustness of our
audio-visual models, we propose an audio-visual defense
method. It includes two parts: learning discriminative and
compact unimodal embeddings and external feature mem-
ory banks for feature denoising. Next, we will describe the
details of our audio-visual defense mechanism.

3.3.1 Learning Discriminative and Compact Features

Our deep models are threatened by adversarial attacks since
the attackers, by maximizing the loss function, will force
the output across its originally correct decision region. It
has been suggested that high intra-class compactness in the
feature space can strengthen the adversarial robustness of
classifiers since it makes difficulties for the adversarial at-
tackers to find feasible perturbations within its allowed bud-
get and go beyond the correct decision boundary [55, 51].

2We include details of the architecture in the supplementary material.



Nevertheless, audio and visual data captured by different
senses are essentially distinct. The modality gap in our mul-
timodal task makes the encoded audio, and visual features:
fa and fv from the same input video different, and thus
leads intra-class dispersion in the joint audio-visual feature
space. Consequently, our audio-visual model becomes sus-
ceptible to adversarial perturbations. To mitigate the intra-
class dispersion and strengthen our model robustness, we
should learn more compact audio-visual embeddings.

Audio and visual signals that contain synchronized con-
tent are ubiquitous, as demonstrated in a wide range of
audio-visual tasks [16, 52, 4, 40, 71, 23]. Motivated from
the nature synchronization between the two modalities, it
is straightforward to alleviate the intra-class dispersion in
the multimodal data by enforcing similarities between au-
dio and visual features. Maximizing the audio-visual sim-
ilarity can force the model to align the features from the
two modalities and project them in a similar feature space,
which will decrease the intra-class dispersion accompany-
ing the modality gap reduction. However, the synchro-
nization does not mean that the two modalities are identi-
cal. One reason for joint modeling is better than individ-
ual modeling is that the additional modalities can provide
augmented discriminativeness rather than redundant infor-
mation. Thus, the similarity constraint might weaken the
power of our multimodal models since it decreases discrim-
inative information from individual modalities. To further
encourage the multimodal dispersion in the synchronized
audio and visual signals, instead of maximizing, we mini-
mize the audio-visual similarity. The objective function is
formulated as:

LSim =
fa · fv

max(||fa||2 · ||fv||2, η)
, (2)

where we use the cosine similarity as the measurement and
η = 1e−8 is a small scalar to avoid division by zero. Com-
bining the cross-entropy and similarity losses, we can ob-
tain our final objective function:

L = LCE + LSim. (3)

With the LSim, the model will tend to learn separated au-
dio and visual embeddings. Meanwhile, the LCE will still
urge the features to be discriminative, which will implic-
itly encourage the both separated unimodal embeddings to
be more compact and separable. In this manner, we can si-
multaneously strengthen the multimodal dispersion and em-
bedding compactness to make our audio-visual model more
powerful and robust.

3.3.2 External Feature Memory Bank

When audio and visual inputs are attacked, the features:
fadva and fadvv from corresponding audio and visual adver-
sarial examples become noisy and not reliable. To further

defend the attackers, we can estimate cleaner audio and vi-
sual features: f∗a and f∗v to replace fadva and fadvv .

Inspired by conventional sparse representation-based im-
age restoration approaches [19, 83], we propose to adopt
external feature memory banks to denoise attacked audio
and visual examples at a feature level. Since audio and
visual features are reliable in training data, we use them
to build audio and visual external feature memory banks:
Ma ∈ Rd×K and Mv ∈ Rd×K , respectively, where
Ma[:, k] and Mv[:, k] are audio and visual feature vectors
from the same video, and we sample totally K samples. To
estimate clean features, the adversarial features are first en-
coded with the external feature memory banks:

min
αa

||fadva −Maαa||22 + λa||αa||1,

min
αv

||fadvv −Mvαv||22 + λv||αv||1,
(4)

where the parameters: λa and λv balance sparsity of the
solutions and fidelity of the approximation, and αa and
αv are predicted audio and visual coefficients, respectively.
Then, the more reliable audio and visual features can be
reconstructed by the corresponding encoded coefficients:
f∗a = Maαa and f∗v = Mvαv . We solve the Lasso [72]
problems in Eq. 4 using the differentiable Iterative Shrink-
age Thresholding Algorithm (ISTA) [31].

With the discriminative, compact, and cleaner audio and
visual embeddings, our audio-visual model will be more in-
vulnerable to potential multimodal adversarial attacks.

4. Experiments
4.1. Datasets

We use two widely used audio-visual datasets: MIT-
MUSIC and Kinetics-Sounds for training and evaluation.
MIT-MUSIC: This dataset [87] contains clean audio-visual
synchronized musical recordings, which covers 11 instru-
ment categories: accordion, acoustic guitar, cello, clarinet,
erhu, flute, saxophone, trumpet, tuba, violin, and xylo-
phone. 520 available videos with solos in the dataset are
used to conduct experiments. We randomly divide the data
into trian/val/test splits of 312/104/104 videos, respectively.
Kinetics-Sounds: The dataset is a subset of the Kinetics
dataset [8], which contains YouTube videos with manually
annotated human actions. This subset3 contains 15516 10
second video clips (9309 training, 3104 validation, 3103
test) in 27 human action categories. Rather than only mu-
sical instruments, it includes diverse human activities (e.g.,
chopping wood, ripping paper, tap dancing, and singing).
Besides the diversity of scenes, Kinetics-Sounds is more
noisy than the MIT-MUSIC, in which audio and visual con-
tent inside some videos might not be completely related.

3Kinetics-Sounds is firstly used in [2]. Since some videos in the subset
are not available on the Internet, the downloaded dataset is slightly smaller.
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Figure 3: Adversarial robustness against multimodal attacks on the MIT-MUSIC. The x-axis denotes the attack strength
(×10−3) and we set εa = εv in the audio-visual attack for a better illustration. For the single-modality attack, the attacked
audio-visual models in (a) and (b) still have clean visual and audio information, respectively. But, when adversarial per-
turbations become larger, joint perception models with one attacked modality become even worse than the corresponding
individual perception models. Thus, an unreliable modality could weaken perception by the other modality in audio-visual
models. A similar observation can also be found in the audio-visual attack (e.g., -AV vs. -unimodal V).

4.2. Attack Methods

We evaluate the audio-visual model robustness with l∞-
bounded adversarial perturbations, which is widely used as
a standard evaluation metric for adversarial robustness [45].
Three different attack methods are used.
FGSM: The fast gradient sign method (FGSM) [30] com-
putes the gradients of the network to generate adversarial
examples xadv by xadv = x+ε · sign(∇xL(x, y; θ)), where
xadv is the generated adversarial example, x is the original
input, y is the original label, θ refers to model parameters,
ε is the maximum adversarial perturbation value, and L is
the loss function. For our audio-visual model, we can ob-
tain audio and visual adversarial examples: xaadv and xvadv
in terms of xadva = xa + εa · sign(∇xa

L(xa, xv, y; θ)) and
xadvv = xv + εv · sign(∇xvL(xa, xv, y; θ)), respectively.
PGD: Projected Gradient Descent (PGD) [45] is an iterative
variant of the FGSM. We can perform multi-step attacks
based on PGD and generate audio and visual adversarial
examples with respect to εa and εv , respectively.
MIM: Momentum-based Iterative Method (MIM) [17] inte-
grates a momentum term into the iterative process to further
stabilize update directions and mitigate local minima.

4.3. Model Robustness under Multimodal Attacks

We first investigate the model robustness of audio-
visual event recognition under multimodal adversarial at-
tacks. Table 1 shows audio-visual event recognition accu-
racy on MIT-MUSIC and Kinetics-Sounds datasets under
both single-modality and audio-visual attacks with differ-
ent attackers. To better interpret the multimodal robustness,
we also include results from two baselines: Unimodal A
and Unimodal V, which are two single-modality models and
only use audio and visual modalities, respectively. Clearly,

Dataset Attack 3AV 7A 7V 7AV Avg. Unimodal 3A Unimodal 3V

MM
FGSM [30] 50.00 25.00 15.38 30.12
PGD [45] 88.46 13.46 1.92 0.00 5.09 59.62 81.73
MIM [17] 6.73 1.92 0.00 2.88

KS
FGSM [30] 33.38 15.08 8.18 18.88
PGD [45] 72.42 6.22 1.90 0.77 2.96 35.99 66.08
MIM [17] 3.87 1.55 0.32 1.91

Table 1: Audio-visual event recognition accuracy on MIT-
MUSIC and Kinetics-Sounds datasets under different attack
methods. 7A, 7V, and 7AV denote that only audio, only
visual, and both audio and visual inputs for our audio-visual
network are attacked, respectively. We set εa and εv as 0.12
respectively for 7A and 7V, and 0.06 for 7AV. The symbol:
3 means that inputs are clean. The baselines: Unimodal 3A
and Unimodal 3V models are two single-modality models.

all of the three attack methods: FGSM, PGD, and MIM
can significantly decrease recognition results, and the MIM
achieves the lowest accuracy under different multimodal at-
tacks. The results show that audio-visual models are sus-
ceptible to multimodal adversarial attacks, and the MIM is
the most effective attack method among the three attackers.

From Table 1, we can also see that our clean audio-visual
models (3AV) are better than both clean single-modality A
(Unimodal 3A) and V (Unimodal 3V) models, which can
validate that audio-visual integration can strengthen percep-
tion robustness and improve audio-visual event recognition
performance when input modalities are clean and reliable.
But, the conclusion might not hold if the audio-visual model
is attacked. Next, we will analyze it based on multimodal
attack results.
Single-Modality Attack: When we use different attackers
to perform single-modality attacks on the MIT-MUSIC and
Kinetics-Sounds datasets, audio-visual models: 7A and 7V
are always inferior to Unimodal 3V and Unimodal 3A, re-
spectively. For example, the performances drop 91.76% and
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Figure 4: Visualizing sound sources under multimodal attacks. The adversarial perturbations in attacked video frames are
almost imperceptible. Both single-modality and audio-visual attacks can successfully fool the weakly supervised sound
source visual localization model without using sounding object location supervision.

96.77% on MIT-MUSIC with the MIM attack. Note that
7A and 7V have clean visual and audio modalities, respec-
tively. The results can demonstrate that audio-visual inte-
gration could weaken event recognition performance, when
audio or visual inputs are attacked.
Audio-Visual Attack: Obviously, when inputs from the
both modalities are added adversarial perturbations, the
audio-visual models: 7AV obtain even worse performance
than the 7A and 7V. When we compare it to attacked uni-
modal models (see Uimodal A and Unimodal V in Table 3),
we can see that 7A of Unimodal A and 7V of Unimodal V
achieve 0.00% and 11.54%, while 7AV of the audio-visual
model is 15.38% under the same FGSM attack on the MIT-
MUSIC. Interestingly, the audio-visual model is more in-
vulnerable than the unimodal models against attacks. But
when we compare the results from 7AV of the audio-visual
model and 7V of Unimodal V on the Kinetics-Sounds, joint
perception under the audio-visual attack is worse than the
visual perception under the single-modality attack. These
results validate that one corrupted modality could still help
the other modality, but a joint perception is not always better
than individual perceptions under audio-visual attacks.

Figure 3 illustrates the adversarial robustness against
multimodal attacks with different perturbations. The results
can further validate our findings that audio-visual integra-
tion may not always strengthen the audio-visual model ro-
bustness under multimodal adversarial attacks. The adver-
sarial robustness of the audio-visual models highly depends

Method 3AV 7A 7V 7AV Avg.

Sum 88.46 35.58 45.19 3.85 43.27
Concat 88.46 51.92 45.19 15.38 50.24
FiLM [57] 83.65 28.85 39.42 3.85 38.95
Gated-Sum [39] 89.42 33.65 44.23 4.81 43.03
Gated-Concat [39] 89.42 45.19 43.27 13.46 47.84

Table 2: Audio-visual event recognition accuracy with dif-
ferent fusions on the MIT-MUSIC under FGSM attacks.

on the reliability of the multisensory inputs.

4.4. Audio-Visual Fusions Against Attacks

Audio-visual fusion strategy is important for the perfor-
mance of our multimodal model. Here, we are curious about
whether different audio-visual fusions would also affect the
adversarial robustness. To answer the question, we com-
pare several different audio-visual fusion approaches: Sum,
Concatenation (Concat), FiLM [57], Gated Sum (Gated-
Sum) [39], and Gated Concatenation (Gated-Concat) [39],
where FiLM and Gated-Sum mix updated audio and visual
information together as the Sum before the final prediction
layer and the Gated-Concat still preserve the individual in-
formation as the Concat. Table 2 show audio-visual event
recognition results with different fusion methods against
FGSM attacks on the MIT-MUSIC dataset.

From Table 2, we can find that our audio-visual models
with Sum, Concat, Gated-Sum, and Gated-Concat fusion
mechanisms achieve competitive performance on attack-



free inputs, and FiLM is worse than the other fusion ap-
proaches; audio-visual models: 7A and 7V with different
fusions achieve inferior performance than Unimodal 3V
and Unimodal 3A, respectively. The results further support
that audio-visual integration could decrease event recogni-
tion performance when input audio or visual modalities are
not reliable. Another interesting observation is that the Con-
cat and Gated-Concat are much better than the Sum, FiLM,
and Gated-Sum under audio-visual attacks, and Concat is
the most robust fusion among the compared methods. From
the results, we can learn that more audio-visual interactions
inside the fusion function might weaken the audio-visual
model robustness against the audio-visual attacks.

4.5. Visualizing Sound Sources Under Attacks

To visually interpret the audio-visual interactions under
multimodal adversarial attacks, we visualize sound sources
in video frames. To localize sound sources, we train a
weakly-supervised sound source visual localization net-
work. It uses audio-visual event recognition as the pretext
task and adopts an audio-guided visual attention mechanism
similar to [71, 64] as the localization module. Concretely,
we obtain aN×N visual feature map:Fv = [f1v ; ...; f

N2

v ] ∈
RN2×d from an input frame: xv the ResNet [33]. Given
the audio feature vector: fa and Fv , we compute audio-
guided visual attention weights for each spatial position:
wi =

exp(fT
a f

i
v)∑

j exp(f
T
a f

j
v)

and obtain the attended visual feature

fattv =
∑
i wif

i
v to replace fv in the original audio-visual

event recognition network. With optimization, the model
will force the attention weights to learn to localize sound-
ing visual regions. Figure 4 illustrates attacked frames and
localized sound sources under attacks.

Without attacks, we can see that our localization model
can successfully discover the corresponding sounding re-
gions for different events: playing cello, shuffling cards, and
blowing noise. From the generated adversarial frames, we
can not find perceptible perturbations. But, the model with
the attacked frames fails to localize sound sources. Simi-
larly, the model is fooled by the audio and audio-visual at-
tack. The results demonstrate that weakly-supervised sound
source localization models can be attacked even without re-
quiring access to any localization losses for an attacker.

4.6. Audio-Visual Defense vs. Multimodal Attacks

Baselines: To validate the effectiveness of the proposed
audio-visual defense mechanism, we compare it with sev-
eral baselines: 1) None: audio-visual network without de-
fense; 2) Unimodal A: audio-only network; 3) Unimodal
V: visual-only network; 4) PCL [51]: a recent state-of-
the-art adversarial defense approach, which uses a proto-
type conformity loss to enforce intra-class compactness and
an inter-class separation; 5) MaxSim: maximizing audio-

Defense (MUSIC) 3AV 7A 7V 7AV Avg RI

None 88.46 51.92 45.19 15.38 37.50 0.00
Unimodal A 59.62 0.00 59.62 0.00 19.87 -46.47
Unimodal V 81.73 81.73 11.54 11.54 34.94 -9.29
PCL [51] 83.65 81.73 37.50 36.54 51.91 9.60
MaxSim 89.42 52.88 45.19 31.73 43.27 6.73
MinSim 91.35 70.19 46.15 36.54 50.96 16.35
ExFMem 89.42 53.85 50.00 20.19 41.34 4.80
MinSim+ExFMem 90.38 73.08 53.85 42.31 56.41 20.83

Defense (Kinetics) 3AV 7A 7V 7AV Avg. RI

None 72.42 36.40 26.35 8.09 23.61 0.00
Unimodal A 35.99 1.87 35.99 1.87 13.24 -46.80
Unimodal V 66.08 66.08 18.72 18.72 34.50 4.55
PCL [51] 64.50 63.43 29.28 28.67 40.46 8.93
MaxSim 71.39 34.95 29.57 21.46 28.66 4.02
MinSim 70.88 52.42 28.12 21.62 34.05 8.99
ExFMem 72.71 41.56 29.93 10.44 27.31 3.99
MinSim+ExFMem 71.33 55.96 30.57 24.90 37.14 12.44

Table 3: Audio-visual event recognition accuracy on the
MIT-MUSIC and Kinetics-Sounds with different defense
methods. Here, we use the FGSM (εa, εv = 0.06) to generate
audio and visual adversarial examples. Some models (e.g.,
Unimodal A, Unimodal V, and PCL) highly rely on only
one modality, which absolutely makes them more invulner-
able to adversarial attacks for another modality. However,
they will fail to obtain good performance on clean audio
and visual inputs. To better evaluate the robustness of our
multisensory defense models, we need to consider model
performance on both clean and attacked data and the poten-
tial modality bias issue. Top-2 results are highlighted.

visual similarity using the 1−LSim as a loss term to enforce
intra-class compactness of joint audio-visual embeddings;
6) MinSim: the proposed dissimilarity constraint to encour-
age multimodal dispersion and unimodal compactness; 7)
ExFMem: the proposed external feature memory banks; 8)
MinSim+ExFMem: our full defense model.
Evaluation Metrics: To evaluate the performance of dif-
ferent defense methods, we use recognition accuracy as the
metric. Results from both the clean model: 3AV and at-
tacked models: 7A, 7V, and 7AV are computed. Since there
are multiple defense results under multimodal attacks for a
single model, we also use the averaged accuracy:

Avg = 1
3 (7A + 7V + 7AV),

as an overall metric to evaluate different defenses. However,
the metric might not be able to fully reflect the effectiveness
of different audio-visual defense methods. For the audio-
visual defense, there is a possible shortcut due to the modal-
ity bias issue. An audio-visual defense model might mainly
make use of information from one dominant modality. If so,
the attacks on another modality will not much affect per-
formance, which might make the defense method achieve
pretty good results in terms of the Avg. However, the biased
audio-visual defense model fails to joint perception and its
3AV will achieve worse performance. To address the issue,
we propose a relative improvement (RI) metric:



visual

audio

w/o MinSim w/  MinSim

Figure 5: t-SNE visualizations of audio and visual embeddings from w/o MinSim and w/ MinSim models on the MIT-
MUSIC. We use symbols: N and • to denote visual and audio modalities, respectively. Different colors refer to different
categories. Our MinSim model can learn more intra-class compact and separable embeddings in separated unimodal spaces.

RI = (3AVm + Avgm) − (3AVn + Avgn),

where we consider results from both clean and attacked
models, and the m refers to a defense method and n refers
to a base model, which is the baseline: None in our exper-
iments. If a defense method decreases clean model perfor-
mance, the RI will penalize it accordingly.
Results: Table 3 shows defense results of different meth-
ods on the MIT-MUSIC and Kinetics-Sound. Although the
single-modality model: Unimodal A is not affected by the
visual attack, it achieves worse results on the 3AV and 7A.
We can obtain a similar observation from another modality-
biased defense model: Unimodal V. The both defense meth-
ods fail to improve robustness on the MIT-MUSIC dataset.

Interesting results are from the recent defense method:
PCL. We can find that the PCL is almost invulnerable to
audio attacks (see 3AV vs. 7A and 7V vs. 7AV) and can
also improve the model robustness under visual and audio-
visual attacks. From the observation, we can learn that the
PCL is a visual-biased defense model. Although the PCL
can achieve good results in terms of Avg and even RI, it fails
to learn an effective multimodal model. The results further
remind us to consider both the modality issue and defense
results when we evaluate audio-visual defense methods.

The MaxSim can achieve better performance against
audio-visual attacks, however, it is limited in handling
single-modality attacks. The results validate that the
MaxSim fails to learn compact and powerful unimodal au-
dio and visual embeddings. Compared to the MaxSim, our
MinSim is overall more robust against both single-modality
and audio-visual attacks. Adding the external feature mem-
ory bank, the performance of our defense model is further
improved. From the results, we can see that our full de-
fense model outperforms all the compared methods on the
RI and can achieve comparable or even better clean model
performance than the base model.

To further validate our MinSim defense, we show t-
SNE [44] visualizations of learned audio and visual embed-
dings from w/o MinSim and w/ MinSim in Fig. 5. We can
see that our MinSim model learns more intra-class compact
and inter-class separable embeddings (especially for the vi-
sual) in separated unimodal feature spaces.

5. Conclusion and Future Work

In this paper, we investigate the audio-visual model ro-
bustness under multimodal attacks. We cast multimodal
attacks into two different categories: single-modality at-
tacks and audio-visual attacks. Using the audio-visual event
recognition task as a proxy with different fusion and at-
tack methods, we find that audio-visual integration does
not always strengthen the perception robustness under mul-
timodal attacks, and it could even decrease performance
when the input modalities are not reliable.

We use the human perception system as a guidance to
help us develop computational models. However, there
are indeed gaps between AV models and the real percep-
tion system and our research is limited by existing learning
tools. Humans can perceive events from single modalities
when the other modalities are missing. However, our study
shows that AV models are susceptible to attacks since they
try to exploit information from both modalities fully. Con-
sidering the observation and our results, a promising future
direction is to design robust AV models that can perform
attacked modality-aware predictions.
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