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A. Ablation Study
A.1. Different Image Loss

Inspired by the GAN-based image-to-image transla-
tion [12], we also try to apply adversarial loss Ladv using
discriminator D, whose structure is shown in Fig. 1. The
adversarial loss is expressed as:

Ladv =− E(I0,Ig)[log(D(I0, Ig, Q))]

− E(I0,IT )[log(1−D((I0, IT , Q)))]. (1)

Denote the whole parameter for the T2ONet as ΘG and
discriminator as ΘD, the objective for adversarial loss is
minΘG(maxΘD Ladv). The effect of L1 and adversarial
loss is shown in Tab. 3. We observe that adding the image
level loss can significantly improve T2ONet, because the
operation supervision is trained in teacher forcing fashion,
which easily accumulates error at each step. A supervision
at the final image help correct the error at the final image.
And without image supervision, the variance drops signif-
icantly, indicating the model has a very similar output for
different requests. Moreover, the L1 loss is better than the
adversarial loss. It might because adversarial loss is good at
generating sharper and more detailed images [2, 5], but our
operation will not reduce the detail/texture of the image, so
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L1 Adv L1↓ SSIM ↑ FID ↓ σ×102↑

7 7 0.0949 0.8300 8.2482 0.0532
3 7 0.0784 0.8459 6.7571 0.7190
7 3 0.0901 0.8031 9.4600 0.5825
3 3 0.0801 0.8464 6.9436 0.5671

Table 1. Ablation study of different losses and network structures
on the MA5k-Req test set. L1, Adv represent L1 and adversarial
loss, respectively.

h L1↓ SSIM ↑ FID ↓ σ×102↑
0 0.0784 0.8459 6.7571 0.7190

0.01 0.0809 0.8487 7.2789 1.1008
0.1 0.0979 0.8090 8.8763 2.1482

Table 2. L1 and variance trade-off by training with different pa-
rameter sampling variance (reflected by h) on the MA5k-Req test
set.

L1↓ SSIM ↑ FID ↓ σ×102↑

w./o. image 0.0863 0.8332 7.7869 1.1950
w./o. operation 0.0837 0.8424 7.6559 0.3257
w./o. attention 0.1088 0.8087 8.4587 0.8872

full model 0.0784 0.8459 6.7571 0.7190
Table 3. W./o. image, operation, and attention indicate the
T2OCell without using in the intermediate image, operation, and
attention on MA5k-Req test set.

the adversarial loss may not help as much as L1 loss, which
pushes the similarity of the generated image to target image
in a more direct way. And the combination of L1 and ad-
versarial loss is still weaker than solely L1 loss in general,
probably because we directly use L = LL1 + Ladv and
didn’t fine-tune the balance weight. Hence, to facilitate our
model design, we purely use L1 loss as the image loss. The
visual comparison of different final image losses is shown
in Fig. 2 and we find that without L1 loss or changing L1
to adversarial loss, the visual appearance is less similar to
target and less appearing.

A.2. Trade-off between L1 and Variance

Tab. 2 shows the complete evaluation for the trade-off
between L1 and variance.

A.3. Effect of historical operations, images and at-
tention for T2ONet

Our standard T2O Cell takes in the previous operation
and image. The comparison with only either of them is
shown in Tab. 3, indicating that just image or operation per-
forms no better than their combination. One exception is
the variance for the only operation is better than combined,
which means without the historical image as the feedback,

the editing will be less controlled and be more diversified.
Also, the attention mechanism help improve the perfor-
mance according to Tab. 3.

A.4. Comparison of other possible planning method

Since our operation planning is based on greedy best-
search, such greedy method does not guarantee an optimal
solution. Inspired by the ε-greedy policy [10] applied in
RL, we further compare a variant called ε-greedy operation
planning to incorporate randomness to further approach op-
timal. The only difference is that there is 5% possibility
that the operation is randomly selected, rather than the top
choice.

A.5. Effect of different single operation lists and
different maximum operation steps

We further study the comparison of only applying single
operation. Table 4 presents the editing results of planning
and T2ONet using only single operation. The most effective
operations are “tone” and “color”, because they have 8 and
24 parameters, respectively, and thus have stronger editing
ability than single-parameter operations . The results also
suggest that the single-step editing results are worse than
our proposed multi-step editing results. Also, we track the
effect of different maximum operation steps, the planning
results are shown in Tab. 5. From the perspective of plan-
ning, maximum steps 4, 5, 6 do not have much difference.
This suggests that we could reduce the editing step or find
the best trade-off between the editing effect and editing time
complexity in the future.

B. Reinforcement Learning
B.1. Details of RL baseline

Now we reformulate the editing problem into a partial
observed Markov decision process and introduce an RL
baseline. Following the symbol notations and the problem
formulation in the main paper that the editing process is a
sequential action decision problem, we augmented with re-
ward rt+1 for action at, the problem can be reformulated
into a Markov decision process and solved by RL. Follow-
ing [4], the reward is set to indicate the incremental image
quality, which is adapted as the reduction of the image cost

rt = cost(It−1)− cost(It), (2)

where cost(I) can be any image loss and is set as ||I−Ig||1
in our experiment. Since the reward for the “END” action
is hard to design (the reward in Eq. (2) is zero for “END”
action), we set every episode fixed T steps (T = 5 as
[4]). The actions are sampled from policy π = (πo, πα),
where πo = P (o|s), πα = P (α|o, s), leading to the trajec-
tory Π = {s0, a0, s1, r1, ..., sT , rT }. The P (o|s), P (α|o, s)
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Operation Brightness Contrast Saturation Sharpness Tone Color Input

planning (train) 0.0521 0.0859 0.1037 0.1163 0.0277 0.0260 0.1202
T2ONet (test) 0.1315 0.1178 0.1163 0.1256 0.1006 0.1129 0.1190

Table 4. L1 distance to target image over different single operations on MA5k-Req dataset. Input represents the distance of the input
image to the target image. Planning results are on the training set, and T2ONet results are on the testing set.

Max Step 1 2 3 4 5 6 Input

Planning (train) 0.0256 0.0145 0.0139 0.0137 0.0136 0.0136 0.1202
Table 5. L1 distance to the target image with different maximum editing steps on MA5k-Req dataset. Input represents the distance of the
input image to the target image.

is computed the same way as T2ONet. With the accu-
mulated reward defined as Gt =

∑T−t
τ=0 γ

τrt+τ (γ = 1
as [4]), the goal is to optimize the objective J(π) =
E(I0,Q)∼P (D),Π∼πG1, where p(D) is the distribution of the
dataset. Denoting θo and θα as the respective model param-
eter involving in the computation of o and α, the discrete
policy πo is optimized via REINFORCE [13]:

∇θoJ(π) = E
(I0,Q)∼P (D)
ot∼πo,αt∼πα

T−1∑
t=0

Gt+1∇θo log πo(ot). (3)

For the continuous policy πα, we resort to DPG [9]. Dif-
ferent from the common setting [9, 4] where the Q function
is approximated with a neural network to make it differen-
tiable to action, we approximate Q as G since our Gt+1 is
already differentiable to αt, resulting in the DPG as

∇θαJ(π) = E
(I0,Q)∼P (D)

αt∼πα

T−1∑
t=0

∇αtGt+1∇θααt. (4)

In short, the major difference of our RL optimization
from [4] is that we replace Q function approximated by
neural network in [4] with G in both discrete and con-
tinuous policies, avoiding the complexity for training the
Q network. The full algorithm for our RL baseline is in
Appx. B.3.

In our experiments, the sampling for o is based on πo
with ε-greedy policy where the ε = 0.05. The sampling
for α is based on πα where the gaussian width controller
h = 0.1. The other implementation details are the same
with our main experiments.

B.2. Equivalence of image loss and DPG

Now, we show the equivalence between image loss and
DPG using the following theorem:

Theorem 1. The DPG for α in Eq. (4) can be rewrite as

∇θαJ(π) = − E
(I0,Q)∼P (D)

α∼πα

∂cost(IT )

∂θα
. (5)

Proof. Substituting Eq. (2) and γ = 1, Gt can be simplified
as

Gt =

T−t∑
τ=0

(
cost(It+τ−1)− cost(It+τ )

)
= cost(It−1)− cost(IT ). (6)

Since It is independent of αt, we have

∇αtGt+1 =
∂(cost(It)− cost(IT ))

∂αt
= −∂cost(IT )

∂αt
.

(7)
Therefore, the summation in Eq. (4) can be expressed as

T−1∑
t=0

∇αtGt+1∇θααt = −
T∑
t=0

∂cost(IT )

∂αt

∂αt
∂θα

= −∂cost(IT )

∂θα
(8)

According to Eq. (8), Eq. (4) is equivalent to Eq. (5).

B.3. Algorithm for RL baseline

The full algorithm for our RL baseline is shown in Alg. 1.

Algorithm 1: RL
Input: Training dataset D; learning rate β; max

operation step N = 5
1 for episode in 1 : M do
2 Sample I0, Q, Ig from D;
3 Sample one editing episode from πo, πα:
4 {I0, a0, I1, r1, a2, I2, . . . , IT , rT };
5 ∆θoJ =

∑T−1
t=0 Gt+1∇θo log πo(ot);

6 θo ← θo + β∆θoJ ;
7 ∆θαJ = −∂cost(IT )

∂θα
; # cost(I) = ||I − Ig||1

8 θα ← θα + β∆θαJ ;
9 end

10 return (θo, θα)
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Dataset Pretrain L1↓ SSIM ↑ FID ↓ σ×102↑
MA5k-Req 7 0.1007 0.8283 7.4896 1.6175
MA5k-Req 3 0.0955 0.8330 7.1413 1.4672

GIER 7 0.2286 0.3832 132.1785 0.3978
GIER 3 0.1052 0.8075 49.4183 1.0949

Table 6. The RL performance with and without operation-
supervised pretrain on two datasets.

B.4. Can operation planning benefit RL?

Since the success of RL relies on the exploration of the
action space, can the action sequence obtained from the op-
eration planning algorithm help RL to better explore the ac-
tion space, especially the continuous action? To answer this
question, similar to [15], we firstly pretrain the model with
the planned operations as supervision (same as T2ONet
training loss), then finetune it using RL with only the tar-
get image supervision. The result in Tab. 6 show that the
pretraining does not help RL much on MA5k-Req, but sig-
nificantly benefit RL on GIER. As GIER has smaller size
and more complex editing than FiveK, RL is struggling with
the exploration of α. The pretrained model can initialize a
good exploration and thus the RL can work on GIER.

C. Planning for Local Editing

Our operation planning can generalize to local editing.
Given a zero-one image mask M , we redesign the image
editing function as Iout = o(I, α)�M+I�(1−M), where
� is element-wise product; thus only the masked part is
edited. Given K mask candidates, we can add an inner loop
over all K mask candidates to further generate K edited
images each time. In this case, the time complexity goes
to O(NB|O|K). However, K can be removed if we know
the grounded mask for each operation. Its full algorithm is
described in the Alg. 2. We use UPSNet [14] to obtain the
mask candidates and use [6] for removing/inpainting opera-
tion. Given each operation with its region, it could also train
our T2ONet augmented with the grounding model. Since
this paper focuses on global operation planning, it will be
left for future work.

D. Time Analysis

We compare the running time of T2ONet and
Pix2pixAug [11] in Tab. 7. For T2ONet, the computing-
intensive planning is a pre-processing step and only needs to
be computed once, and our model shows faster train and test
speed than Pix2pixAug, indicating that our method not only
has better editing quality, but also is computational cheaper.

Algorithm 2: Operation Planning with Local Edit-
ing

Input: I0, Ig , max operation step N , threshold ε,
beam size B, operation set O, mask setM

1 p=[I0]
2 cost(I) = ||I − Ig||1
3 for t in 1 : N do
4 q ← [ ]
5 for I ∈ p do
6 for o ∈ O do
7 for M ∈M do
8 α∗ = arg minα cost(o(I, α)�M +

I � (1−M))
9 I∗ ← o(I, α∗)�M + I � (1−M)

10 q ← q ∪ I∗
11 end
12 end
13 end
14 q ← Sort(q), sortkey = cost(I∗)
15 p = q[: B]
16 for I ∈ p do
17 if cost(I) < ε then
18 Break All Loop
19 end
20 end
21 end
22 {ot}, {αt}, {Mt}, {It} ← Backtracking(p)
23 return {ot}, {αt}, {Mt}, {It}

Method Planning (s) Train (s) Test (s)

Pix2pixAug [11] 18.58 0.37 0.05
T2ONet - 1.16 0.16

Table 7. The average running time comparison for GAN-based
method Pix2pixAug [11] and our method. The training time is
computed in batch size 64, and test and planning time are com-
puted in batch size 1.

E. More advantages of T2ONet
E.1. Resolution independent editing

Our model will conduct resolution-independent editing
and can produce the output with the same resolution as
the input image. However, the GAN-based method suffers
from generating high-resolution images, such comparison
is shown in Fig. 3.

E.2. Inference with multiple possible output

We have discussed the trade-off between L1 and vari-
ance by sampling the operation parameter during training
stage, and such variance is measured over the outputs edited
from different requests, with the purpose of indicating the
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T2ONet (-L1 + D)

T2ONet

T2ONet (-L1)
Request:
Please increase
the saturation.

Input

Target

tone curve color curve saturation (0.03) contrast (-0.09)

color curve saturation (-0.07) tone curve brightness (-0.05)

tone curve saturation (0.16) color curve

Figure 2. Visualization for ablation study methods. T2ONet(-L1) is the modified version without L1 loss, T2ONet(-L1+D) is to replace
the L1 loss to adversarial loss.

Input GeNeVa Pix2pix Ours

Zoom-in-views

Request: higher brightness and contrast

Figure 3. Compared with the GAN-based method GeNeVa and
Pix2pixAug, although all the methods conduct the correct editing,
our method has no pixel distortion and is independent to image
resolution.

Take gray out of photo to brighten

Make a level on RGB a bit more brightness and a bit sharpen

Make a bit more brightness and a bit sharpen

Request:

Request:

Request:

Input Edit1 Edit2 Edit3Target

Figure 4. Visualization for diversified output given the same in-
put and request by sampling the operation parameter at inference
stage.

model’s language-sensitivity However, our model can even
generate multiple output given the same request by sam-
pling the operation parameter at the inference stage, whose
result is shown in Fig. 4.

F. More visual results

F.1. Comparison Methods

Here we show the comparison visual result of Bilinear-
GAN, TAGAN and ManiGAN in Fig 5. The visual re-
sults for ManiGAN is quite blur, and its L1, SSIM, FID
are 0.1398, 0.5177, 157.4145 on MA5k-Req and 0.1834,
0.4938, 234.6784 on GIER, respectively. Therefore we did
not do user study for this method.

F.2. T2ONet

More visual results for T2ONet on MA5k-Req and GIER
are shown in Fig. 6 and Fig. 7, respectively.

F.3. Operation Planning

More visualization of the operation editing process is
shown in Fig. 8

G. More Experiment Implementation Details

Training images are resized to 128 × 128, and test/val
images are resized to short edge 600 with aspect ratio un-
changed. The pixel value is normalized to 0-1

For T2ONet, ResNet18 [3] is used to encoding image
into a 512-d feature. The word and operation embedding
is 300-d, and the word embedding is initialized by GloVe.
Two-layer bi-LSTM with feature with hidden size 256 is
used to encode the language request, and two-layer LSTM
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ManiGAN

Input

Target

Make a bit more
brightness and a
bit sharpenRequest

Lighten the
input image

Remove the
fuzziness and
make the
colors more
vibrant.

Make more
brightness
and a bit
sharpen

Change the red
to blue including
the outline

Improve
color balance

Increase
color depth
a little bit

Can you
please lighten
and color
correct

Bilinear GAN 

TAGAN

Figure 5. The comparison results for BilinearGAN, TAGAN and ManiGAN on MA5k-Req (left) and GIER (right) datasets

decoder has hidden size 512. All the other FC layers output
with a 512-d feature.

For operation planning, we adopt Nelder-Mead [7] for
parameter optimization. And, for lanugage-guided image
editing, the training is alternatively in two losses. For odd
iteration, we only optimize Lo and Lα in a teacher forcing
fashion. For even iteration, we only optimize LL1 using
the previously generated action and image as the input for
the next state. We take the top-1 operation with its param-
eters every step. The final image-level LL1 can backward
propagate gradients to the weights of T2OCell other than
the weights of the FC layer for prediction of the operation
o. Hence, in all ablation study of the T2ONet, we always
need the loss of Lo to supervise the operation selection. The
model is trained on a single GPU with a 64 batch size.

H. Operation Implementation Details
We adopt six operations: brightness, saturation,

contrast, sharpness, tone, and color. The operation
modular network is composed of these operations in a fixed
order if they are needed. With the input image I , parame-
ter p, and output image I ′, the implementation of operation
submodules are illustrated as follows.

H.1. Brightness and Saturation

The hue, saturation, value in the HSV space of image I
are denoted as H(I), S(I), V (I). Here p is an unbounded
scalar. Let V ′(I) = clip((1 + p) · V (I), 0, 1) and S′(I) =
clip((1 + p) · S(I), 0, 1), the output image for brightness
operation is

I ′ = HSVtoRGB(H(I), S(I), V ′(I)), (9)

and the output image for saturation operation is

I ′ = HSVtoRGB(H(I), S′(I), V (I)). (10)

The HSVtoRGB is a differentiable function mapping the
RGB space to HSV space, implemented via Kornia [8], and
clip(x, 0, 1) is a clip function to clip x within 0 to 1.

H.2. Contrast

Contrast operation is controlled by a scalar parameter p,
implemented following [4]. First compute the luminance of
image I as

Lum(I) = 0.27Ir + 0.67Ig + 0.06Ib, (11)

where Ir, Ig , Ib are the RGB channels of I . The enhanced
luminance is

EnhancedLum(I) =
1

2
(1− cos(π · Lum(I))), (12)

and the image with enhanced contrast is

EnhancedC(I) = I · EnhancedLum(I)

lum(I)
. (13)

The output image I ′ is the combination of the enhanced
contrast and original image

I ′ = (1− p) · I + p · EnhancedC(I). (14)

H.3. Sharpness

The sharpness operation is implemented by adding to the
image with its second-order spatial gradient [1], expressed
as

I ′ = I + p∆2I, (15)
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tone curveInputTarget color curve

Request:
use more filter so that 
the picture can stand 
out. make the colors 
more vibrant. it needs a 
little bit of brightness.

Brightness (1.09)InputTarget color curve tone curve

Request:
Increase the image's 
brightness level so it 
looks earlier in the day.

Brightness (0.64)InputTarget color curve

Request:
Please brighten the 
image

Request:
reduce the brown hue 
and increase the natural 
light by about 20 
percent

color curveInputTarget saturation (-0.13) tone curve

Tone curveInputTarget color curve saturation (0.12)

Request:
Make a bit more 
brightness and a bit 
sharpen

Request:
Increase exposure 
slightly and make 
image color pallet much 
cooler

color curveInputTarget tone curve saturation (- 0.20)

Request:
Increase contrast and 
correct the unwanted 
marks and blemishes

tone curveInputTarget color curve

Brightness (0.44)InputTarget color curve saturation (0.11) contrast (0.07)

Request:
brighten the whole 
picture so the sky looks 
baby blue and the water 
looks more sea green

Figure 6. The visual results for T2ONet on MA5k-Req dataset.

where p is a scalar parameter and (∆2·) is the Laplace op-
erator over the spatial domain of the image. The Laplace
operator is applied to each channel of the image.

H.4. Tone and Color

The tone and color operation follows curve representa-
tion [4]. The curve is estimated as piece-wise linear func-
tions with N pieces. The parameter p = {pi}M−1

i=0 is a vec-
tor of length M . With the input pixel x ∈ [0, 1], the output
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sharpness (0.24)InputTarget color curve tone curve

Request:
Sharpen the entire 
image

brightness (-0.02)InputTarget color curve

Request:
Colorize the photo

tone curveInputTarget color curve

Request:
Could somebody please 
fix this lighting of this? 
It's one of my favorite 
photos from vacation 
but you cannot see 
much. Thank you thank 
you thank you

Request:
increase brightness a 
lot, make it more 
colorful

tone curveInputTarget color curve

color curveInputTarget saturation (0.20)

Request:
improve color balance

Request:
Lighten picture and 
remove eye brightness

color curveInputTarget

tone curveInputTarget sharpness (0.00) color curve

Request:
make the colors more 
dark and saturated

tone curveInputTarget color curve

Request:
Lighten the image to 
look sunnier

Figure 7. The visual results for T2ONet on GEIR dataset.
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(0.0185)
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(0.0185)

Saturation (0.00) 
(0.0185)

Input
(0.2023)

Input
(0.3381)

Brightness (0.52 )
(0.0211)

Color curve 
(0.0102)

Saturation (0.02) 
(0.0102)

Tone curve 
(0.0101)

Contrast (0.00) 
(0.0101)

Brightness (0.64 )
(0.0603)

Color curve 
(0.01891)

Saturation (0.03) 
(0.0180)

Tone curve 
(0.0175)

Contrast (0.00) 
(0.0175)

Input
(0.1040)

Input
(0.0409)

Figure 8. The visual results for operation planning.

pixel intensity is

f(x) =
1

Z

N−1∑
i=0

clip(Nx− i, 0, 1)pi, (16)

where Z =
∑N−1
i=0 pi. For tone operation, N = M = 8,

the same f will apply to each of the RGB channels of the
image I . For color operation, three different f are applied
individually to each of RGB channels. Each f(x) has N =
8, leading to M = 3N = 24.

I. Languages for Image Variance Evaluation

The 10 different requests are as follows:
1. Decrease the brightness.
2. Increase the brightness.
3. Enhance the color.
4. Decrease the color.
5. Improve contrast.
6. Reduce contrast.
7. Increase saturation.
8. Reduce saturation.
9. Increase the brightness a little.

10. Increase the brightness a lot.

J. Dataset

J.1. More Detail of MA5k-Req Collection Process

In this section we We show the worker the input and tar-
get images, and let workers write the editing request. We
deploy the annotation collection interface on Amazon Me-
chanic Turk involving totally 268 workers for FiveK. Each
request annotation is 0.03, and we have the approvals for
crowdsourcing.

We show the worker the input and target images, and let
workers write the editing request. We deploy the annotation
collection interface on Amazon Mechanic Turk involving
totally 268 workers for FiveK and 197 workers for web im-
ages. Each request annotation is $0.03.

For quality control, we initially collect the language re-
quests for a subset of image pairs, and manually select good
workers depending on the annotation quality. Then we only
allow good workers to annotate the full dataset.

J.2. Visualization of Dataset Samples

Some samples draw from MA5k-Req and GIER is
shown in Fig. 9
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Make a bit dark on
RGB and a bit
sharpen

Adjust the Contrast Correct the over
exposure and add
layers to increase
saturation

Increase the brightness
of the image a lot,
increase the contrast a
little bit and increase
the color saturation a
little bit

Request

Input Image

Target Image

Brighten a bit
and enhance
colors

Significantly increase
the brightness, contrast
and overall colors of
the photo, and remove
the greenish tone

Liven up this
picture/make it not
so dull

Sharpen the image
a little and darken
it slightly

Figure 9. Data examples draw from MA5k-Req (left) and GIER (right).

Figure 10. The interface for user study. The edited result of all the methods are shown in random order. The worker should select the star
under each edit to indicate the score they rate.

K. User study details

The interface of the user study is shown in Fig. 10.
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