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Abstract

Semi-supervised or one-shot video object segmentation
has attracted much attention in the video analysis commu-
nity recently. The OSVOS model [1] achieves state of the
art results on the DAVIS 2016 dataset by first fine-turning a
CNN model on the first pre-segmented frame of a video, and
then independently segmenting the rest of the frames in that
video. However, the model lacks the ability to learn new
information about the object as the object evolves through-
out the video displaying features that were not present in
the first frame. To address this issue, we propose an itera-
tive online training method whereby the model is fine-tuned
on the first frame, segments several consecutive frames in-
dependently, and then gets updated on its own output seg-
mentation. This process is repeated until all frames of a
video are segmented. To segment multiple similar objects
in a video, we use an object tracker to filter the output of
the individually trained CNN object models before being
used for iterative fine-turning. This reduces the possibil-
ity for error propagation, and helps the model increase its
discriminative power as it is being iteratively fine-tuned.
Our method shows improvement over the standard OSVOS
model on both DAVIS 2016 and 2017 datasets.

1. Introduction
In recent years, Convolutional Neural Networks (CNNs)

have achieved state of the art results in many computer vi-
sion tasks, such as image classification [8] and object de-
tection [2]. Video object segmentation, or the separation
of an object from its background in a video sequence, is
a related task that has also come to be dominated by deep
learning methods [3, 9, 1, 4]. Among them, the One-Shot
Video Object Segmentation (OSVOS) model, a fully con-
volutional network introduced in [1], achieves state of the
art performance in the DAVIS 2016 competition [5].

The OSVOS model is based on the VGG [7] network,
which is pre-trained on a generic task of image classification
on the ImageNet. The network performs convolution on in-

Figure 1. The first frame contains relatively little information
about the object, and as a result, the OSVOS model fails to seg-
ment it correctly towards the end. However, earlier correct seg-
mentations contain useful information about the object that can be
used to further train the model

termediate values taken from the VGG network to produce
a segmentation mask. This network is further trained offline
on the training videos of DAVIS 2016 dataset to learn a gen-
eral concept of foreground objects, and hence, it is called
the parent network. To perform video object segmentation
on a given testing video, the parent network is first fine-
tuned on the pre-segmented ground-truth frame to learn the
appearance features of the object in question, and then is
used to independently segment the rest of the frames in the
video. Although this approach has many desirable qualities,
it lacks the ability to learn new information about the object
as it evolves throughout the video. This reduces its per-
formance on sequences where the initial frame lacks infor-
mation about the object that becomes important later on in
the sequence. For instance, Table 1 shows the scooter-black
sequence, in which the first frame contains relatively little
information about the object. As the object gets closer to
the camera, the network fails to segment it properly. How-
ever, segmentations leading up to the failure are correct, and
contain information about the object that could be used to
correct the failure.

We present a method for iterative online fine-tuning of
the OSVOS network. As shown in Fig. 2, we first fine-

1



OSVOS Model

(1)

(2)

(4) +

(3)

Iterative Training + Bounding Box filtering

IT+Box

IT+Box

Contour
 Network

Figure 2. Overview of our method. On the left: (1) The OSVOS model is first trained on the ground truth segmentation of the first frame. (2)
This model is used to segment some number of frames. (3) These segmentations are filtered using a bounding box tracker. (4) The filtered
segmentations are added to the training set, and the model is further fine-tuned. The diagram on the left shows how we independently
manage each object in in a multi-object mask, and then combine the results and snap the boundaries to a contour.

tune the OSVOS parent network on the first frame of the
video. We then use this model to independently segment
some number of frames. These frames are then used to fur-
ther fine-tune the network. This process is repeated until all
frames of the video are segmented. We evaluate our method
on both the DAVIS 2016 and 2017 datasets. As shown in
Fig. 2, we deal with the multiple object masks in the DAVIS
2017 dataset by first separating them into separated binary
masks and running our method independently on each one,
and finally combining the results by taking the maximum
output of all the models and snapping the boundaries to a
contour.

We evaluate our method with three metrics: Intersection-
over-Union (IoU or J), contour accuracy (F) and temporal
stability (T). We compare the performance of our method
on each sequence in the DAVIS 2016 validation set to the
performance of the standard OSVOS model. Furthermore,
we perform additional evaluations on DAVIS 2017 videos
where a single video contains multiple objects. Our method
shows improvement over the standard OSVOS model on
both DAVIS 2016 and 2017 datasets.

2. Method

Our method is straightforward. We use the parent net-
work provided by Caelles, et al. [1], which is trained for
50,000 iterations on the DAVIS 2016 dataset (augmented by
mirroring and zooming) with Stochastic Gradient Descent
and momentum of 0.9. For the online training, we fine-tune
the model for 300 iterations on the first frame of the video
to train the model to recognize the specified object in ques-
tion. We then use this model to independently segment the
next 10 frames in the sequence. These 10 frames are then
added to the training set, and the model is fine-tuned for 100
iterations on them. This process is repeated every 10 frames
until all the frames in the sequence are segmented. To re-
fine the segmentation, we snap the boundaries to contours
generated by the same contour network used by Caelles, et

al. Our method based on iterative fine-tuning adapts the
network to the object as it evolves throughout the sequence.
However, it also presents the possibility to propagate errors
made early on in the segmentation process. To mitigate this
problem, we experiment with several ways of filtering the
output of the network before being used for fine-tuning in
Sec. 3.

For the DAVIS 2017 dataset, we adapt our method to
handle multiple objects. We use the same parent network as
that for the DAVIS 2016 dataset, but train it for additional
10,000 iterations on the DAVIS 2017 TrainVal set, using
the merged binary mask as the ground truth, such that the
model has a better idea of DAVIS 2017 objects. To deal
with the multiple objects in a same video, we first split the
multi-object mask into separate binary masks for each ob-
ject. We then run our method on each mask independently
and get a probability map for each object, which we merge
into a single multi-object mask by taking the maximum out-
put value of each model for each pixel. The mask is then
further refined by snapping the boundaries to contours gen-
erated by the same contour network used by Caelles, et al.
We find that because in many cases the DAVIS 2017 dataset
has multiple objects with similar appearances, the OSVOS
model has a hard time distinguish between them. To miti-
gate this problem, we use the OpenCV KCF object bound-
ing box tracker to filter the output segmentation before be-
ing used to iteratively fine-tune the model. This reduce
the possibility of error propagation, and helps the model
increase its discriminatory ability as it is being iteratively
fine-tuned.

3. Experiments
3.1. DAVIS 2016

Our first set of experiments was performed on the DAVIS
2016 dataset [5], which contains 50 video sequences, each
with one object segmented in all the frames at pixel level.
Our main metrics are Intersection-over-Union (IoU or J)

2



Figure 3. Relative difference in IoU between the normal OSVOS model and our best performing method (IT) on DAVIS 2016.

and Contour Accuracy (F). We mainly compare our re-
sults to the state of the art results obtained by the OSVOS
model [1] in the DAVIS 2016 competition.

Table 1 shows the overall results on the DAVIS 2016
validation set. Our method performs slightly better in all
metrics. Figure 3 shows the relative performance for each
sequence, and reveals that most of the gains come from rel-
atively few sequences, while the accuracy on the majority
of the sequences is slightly reduced. The most improved
sequence (drift-straight, shown in Fig. 4) only displays the
front side of the car in the initial frame. As the sequence
progresses, the broad side of the car is shown, and then the
back side. Similarly, the second and third most improved
sequences display objects at an angle in the first frame and
display more and more features as the sequence progresses.
This demonstrates the methods ability to pick up new fea-
tures as the model is iteratively trained.

On the other end of the spectrum, the most harmed se-
quence (bmx-tree, show in Fig. 5) shows the shortcomings
of the method. The OSVOS model picks up many false
positives in the bmx-trees sequence and the iterative train-
ing method propagates these error. This same effect can
be seen in the other sequences, though to a lesser extent.
To mitigate this issue, we experimented with several ways
of filtering the segmentation before being used for iterative
training. The simplest solution is to only train the model
on the largest blob (shown as IT+LB in Table 1), with the
assumption that the largest blob is most likely to be the cor-
rect object. For some sequences, this method works well,
but fails in many cases because the largest blob may not be
the correct object, or the correct segmentation may not be
a continuous blob. We also experimented with using the
OpenCV KCF bounding box tracker to filter the segmenta-

Table 1. DAVIS 2016 Validation Results (top two results are bold)

Measure OSVOS IT IT+LB IT+Box
Mean (↑) 0.798 0.804 0.794 0.777

J Recall (↑) 0.936 0.974 0.926 0.911
Decay (↓) 0.149 0.091 0.138 0.158
Mean (↑) 0.806 0.809 0.806 0.799

F Recall (↑) 0.926 0.934 0.937 0.915
Decay (↓) 0.150 0.124 0.152 0.157

tion by setting everything outside of the box to zero (shown
as IT+Box in Table 1). However, this method also fails
to improve the results due to the poor performance of the
tracker on the DAVIS 2016 validation set.

3.2. DAVIS 2017

Our second set of experiments was performed on the
DAVIS 2017 data set, which contains 150 sequences (90
in the TrainVal set, 30 in the Test Dev set, and 30 in the Test
Challenge set) [6]. Each sequence has multiple objects seg-
mented at pixel accuracy for all frames in the sequence. The
metrics used to evaluate the results are the same as those
used on the DAVIS 2016 dataset.

Table 2 shows our results on the Test Challenge dataset
for three different methods. IT stands for iterative training
and Box stands for the use of the OpenCV KCF bounding
box tracker for filtering the segmentation before being used
for iterative training. The first thing we found is that the
accuracy on the DAVIS 2017 dataset is much lower than on
the DAVIS 2016 dataset. This could be for several reasons.
Many of the DAVIS 2017 sequences contain objects that
look very similar, which could present a challenge for he
OSVOS model, given that it has no information about mo-
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Figure 4. Comparison of different methods drift-straight from the DAVIS 2016 dataset. In order: OSVOS, IT, IT+LB, IT+Box.

Figure 5. Most harmed sequence (OSVOS on top, IT on bottom) from the DAVIS 2016 dataset.

Figure 6. Comparison between OSVOS(left) and IT+Box (Right)
on DAVIS 2017 videos.

tion or temporal continuity. In addition to this, the 2017
dataset has smaller objects than the 2016 dataset, which
present more opportunities for false positives. Because of
the increase in false positives, simply applying iterative
training causes excessive error propagation and reduces the
accuracy compared to the standard OSVOS model. To miti-
gate this problem, we used the OpenCV KCF bounding box
tracker to filter the output segmentation before being used
for iterative training. This resulted in an improvement over
the standard OSVOS model. Figure 6 shows two examples
where iterative training improves the results. Notably, in
the varanus-tree sequence, the model learns to not segment
the leaves that appears in the background towards the end of
the sequence, which demonstrates the added discriminatory
power that the bounding box adds.

4. Conclusion

In this paper, we show that iterative training provides a
way to learn more information about an objects as it evolves
through a sequence, and that our method shows an improve-
ment over the state of the art on the DAVIS 2016 dataset,
and over the standard OSVOS model on the 2017 dataset.

Table 2. DAVIS 2017 Test Challenge Results (top two results are
in bold). The overall metric is the mean of J and F over all object
instances

Measure OSVOS IT IT+LB IT+Box
Overall (↑) 0.488 0.471 0.500 0.509

Mean (↑) 0.462 0.448 0.481 0.490
J Recall (↑) 0.515 0.479 0.533 0.551

Decay (↓) 0.253 0.286 0.222 0.213
Mean (↑) 0.514 0.494 0.519 0.528

F Recall (↑) 0.582 0.524 0.576 0.583
Decay (↓) 0.257 0.291 0.240 0.237

However, the method is also prone to propagate errors made
early on in the process. Future work may involve finding
ways to reduce the potential for error propagation and learn-
ing an automatic model to decide when to update the object
model throughout the video.
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