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1. Introduction

In this paper, we study a family of audio-visual event

temporal localization tasks as a proxy to the broader audio-

visual scene understanding problem for unconstrained

videos. We pose and seek to answer the following ques-

tions: (Q1) Does inference jointly over auditory and visual

modalities outperform inference over them independently?

(Q2) How does the result vary under noisy training condi-

tions? (Q3) How does knowing one modality help model

the other modality? (Q4) How do we best fuse information

over both modalities? (Q5) Can we locate the content in

one modality given its observation in the other modality?

Notice that the individual questions might be studied in the

literature, but we are not aware of any work that conducts

a systematic study to answer these collective questions as a

whole.

In particular, we define an audio-visual event as an event

that is both visible and audible in a video segment, and

we establish three tasks to explore aforementioned research

questions: 1) supervised audio-visual event localization, 2)

weakly-supervised audio-visual event localization, and 3)

event-agnostic cross-modality localization. The first two

tasks aim to predict which temporal segment of an input

video has an audio-visual event and what category the event

belongs to. The weakly-supervised setting assumes that

we have no access to the temporal event boundary but an

event tag at video-level for training. Q1-Q4 will be explored

within these two tasks. In the third task, we aim to locate

the corresponding visual sound source temporally within a

video from a given sound segment and vice versa, which

will answer Q5.

We propose both baselines and novel algorithms to solve

the above three tasks. For the first two tasks, we start with

a baseline model treating them as a sequence labeling prob-

lem. We utilize CNN to encode audio and visual inputs,

adapt LSTM [6] to capture temporal dependencies, and ap-

ply Fully Connected (FC) network to make the final pre-

dictions. Upon this baseline model, we introduce an audio-

guided visual attention mechanism to verify whether audio

can help attend visual features; it also implies spatial loca-

tions for sounding objects as a side output. Furthermore,

we investigate several audio-visual feature fusion methods

and propose a novel dual multimodal residual fusion net-

work that achieves the best fusion results. For weakly-

supervised learning, we formulate it as a Multiple Instance

Learning (MIL) [10] task, and modify our network struc-

ture via adding a MIL pooling layer to handle the problem.

To address the harder cross-modality localization task, we

propose an audio-visual distance learning network that mea-

sures the relativeness of any given pair of audio and visual

content. It projects audio and visual features into subspaces

with the same dimension. Contrastive loss [5] is introduced

to learn the network.

Observing that there is no publicly available dataset di-

rectly suitable for our tasks, we collect a large video dataset

that consists of 4143 10-second videos with both audio and

video tracks for 28 audio-visual events and annotate their

temporal boundaries. Videos in our dataset are originated

from YouTube, thus they are unconstrained. Our exten-

sive experiments support the following findings: model-

ing jointly over auditory and visual modalities outperforms

modeling independently over them, audio-visual event lo-

calization in a noisy condition can still achieve promising

results, the audio-guided visual attention can well capture

semantic regions covering sounding objects and can even

distinguish audio-visual unrelated videos, temporal align-

ment is important for audio-visual fusion, the proposed dual

multimodal residual network is effective in addressing the

fusion task, and strong correlations between the two modal-

ities enable cross-modality localization.

2. Dataset and Problems

Audio-Visual Event Dataset To the best of our knowledge,

there is no publicly available dataset directly suitable for our

purpose. Therefore, we introduce the Audio-Visual Event

(AVE) dataset , a subset of AudioSet [4], that contains 4143

videos covering 28 event categories and videos in AVE

are temporally labeled with audio-visual event boundaries.

Each video contains at least one 2s long audio-visual event.

The dataset covers a wide range of audio-visual events (e.g.,

man speaking, woman speaking, dog barking, playing gui-

tar, and frying food etc.) from different domains, e.g., hu-

man activities, animal activities, music performances, and

vehicle sounds.We provide examples from different cate-

gories and show the statistics in Fig. 1. Each event category

contains a minimum of 60 videos and a maximum of 188

videos, and 66.4% videos in the AVE contain audio-visual

events that span over the full 10 seconds.

Fully and Weakly-Supervised Event Localization The

goal of event localization is to predict the event label for

each video segment, which contains both audio and vi-

sual tracks, for an input video sequence. Concretely, for
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Figure 1. The AVE dataset. Some examples in the dataset are shown. The distribution of videos in different categories and the distribution

of event lengths are illustrated.

a video sequence, we split it into T non-overlapping seg-

ments {Vt, At}
T
t=1

, where each segment is 1s long (since

our event boundary is labeled at second-level), and Vt and

At denote the visual content and its corresponding audio

counterpart in a video segment, respectively. Let yt =

{ykt |y
k
t ∈ {0, 1}, k = 1, ..., C,

∑C

k=1
ykt = 1} be the event

label for that video segment. Here, C is the total number

of AVE events plus one background label. Different than

the supervised setting, in the weakly-supervised manner we

have only access to a video-level event tag, and we still aim

to predict segment-level labels during testing. The weakly-

supervised task allows us to alleviate the reliance on well-

annotated data for modelings of audio, visual and audio-

visual.

Cross-Modality Localization In the cross-modality lo-

calization task, given a segment of one modality (audi-

tory/visual), we would like to find the position of its syn-

chronized content in the other modality (visual/auditory).

Concretely, for visual localization from audio (A2V), given

a l-second audio segment Â from {At}
T
t=1

, where l < T ,

we want to find its synchronized l-second visual segment

within {Vt}
T
t=1

. Similarly, for audio localization from vi-

sual content (V2A), given a l-second video segment V̂ from

{Vt}
T
t=1

, we would like to find its l-second audio segment

within {At}
T
t=1

.

3. Overview of Proposed Methods

Audio-Visual Event Localization Network: Our network

mainly consists of five modules: feature extraction, audio-

guided visual attention, temporal modeling, multimodal fu-

sion and temporal labeling (see Fig. 2(a)). The feature

extraction module utilizes pre-trained CNNs to extract vi-

sual features vt = [v1t , ..., v
k
t ] ∈ R

dv×k and audio features

at ∈ R
da from each Vt and At, respectively. Here, dv

denotes the number of CNN visual feature maps, k is the

vectorized spatial dimension of each feature map, and da
denotes the dimension of audio features. We use an audio-

guided visual attention model to generate a context vector

vattt ∈ R
dv . Two separate LSTMs take vattt and at as inputs

to model temporal dependencies in the two modalities re-

spectively. For an input feature vector Ft at time step t, the

LSTM updates a hidden state vector ht and a memory cell

state vector ct, where Ft refers to vattt or at in our model.

For evaluating the performance of the proposed attention

mechanism, we compare to models that do not use attention;

we directly feed global average pooling visual features and

audio features into LSTMs as baselines. To better incorpo-

rate the two modalities, we introduce a multimodal fusion

network. The audio-visual representation h∗

t is learned by

a multimodal fusion network with audio and visual hidden

state output vectors hv
t and ha

t as inputs. This joint audio-

visual representation is used to output event category for

each video segment. For this, we use a shared FC layer with

the Softmax activation function to predict probability distri-

bution over C event categories for the input segment and

the whole network can be trained with a multi-class cross-

entropy loss.

Audio-Guided Visual Attention: Given that attention

mechanism has shown superior performance in many ap-

plications such as neural machine translation [3] and image

captioning [12, 9], we use it to implement our audio-guided

visual attention. The attention network will adaptively learn

which visual regions in each segment of a video to look for

the corresponding sounding object or activity. Concretely,

we define the attention function fatt and it can be adaptively

learned from the visual feature map vt and audio feature

vector at. At each time step t, the visual context vector vattt

is computed by:

vattt = fatt(at, vt) =

k∑

i=1

wi

tv
i

t , (1)

where wt is an attention weight vector corresponding to the

probability distribution over k visual regions that are at-

tended by its audio counterpart. The attention weights can

be computed based on MLP with a Softmax activation func-

tion. The attention map visualization results show that the

audio-guided attention mechanism can adaptively capture

the location information of sound source, and it can also

improve temporal localization accuracy.
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Audio-Visual Feature Fusion: To combine features com-

ing from visual and audio modalities, we introduce a Dual

Multimodal Residual Network (DMRN). Given audio and

visual features ha
t and hv

t from LSTMs, the DMRN will

compute the updated audio and visual features:

ha
′

t = tanh(ha

t + f(ha

t , h
v

t )) , (2)

hv
′

t = tanh(hv

t + f(ha

t , h
v

t )) , (3)

where f(·) is an additive fusion function, and the average of

ha
′

t and hv
′

t is used as the joint representation h∗

t for labeling

the video segment. Here, the update strategy in DMRN can

both preserve useful information in the original modality

and add complimentary information from the other modal-

ity.

Weakly-Supervised Event Localization: To address the

weakly-supervised event localization, we formulate it as a

MIL problem and extend our framework to handle noisy

training condition. Since only video-level labels are avail-

able, we infer label of each audio-visual segment pair in the

training phase, and aggregate these individual predictions

into a video-level prediction by MIL pooling as in [11]:

m̂ = g(m1,m2, ...,mT ) =
1

T

T∑

t=1

mt , (4)

where m1, ...,mT are predictions from the last FC layer of

our audio-visual event localization network, and g(·) aver-

ages over all predictions. The probability distribution of

event category for the video sequence can be computed us-

ing m̂ over the Softmax. During testing, we can predict the

event category for each segment according to computed mt.

Cross-Modality Localization: To address the cross-

modality localization problem, we propose an audio-visual

distance learning network (AVDLN) as illustrated in Fig.

2(b). Our network can measure the distance Dθ(Vi, Ai) for

a given pair of Vi and Ai. At test time, for visual localiza-

tion from audio (A2V), we use a sliding window method.

Let {Vi, Ai}
N
i=1

be N training samples and {yi}
N
i=1

be

their labels, where Vi and Ai are a pair of 1s visual and

audio segments, yi ∈ {0, 1}. Here, yi = 1 means that Vi

and Ai are synchronized. The AVDLN will learn to mea-

sure distances between these pairs. In practice, we use the

Euclidean distance as the metric and contrastive loss [5] to

optimize the AVDLN.

4. Experimental Results

Table 1 compares different variations of our proposed

models on supervised and weakly-supervised audio-visual

event localization tasks. Table 2 shows event localization

performance of different fusion methods. Figures 3 illus-

trates generated audio-guided visual attention maps.

Figure 2. (a) Audio-visual event localization framework with

audio-guided visual attention and multimodal fusion. One

timestep is illustrated, and note that the fusion network and FC

are shared for all timesteps. (b) Audio-visual distance learning

network.

Figure 3. Qualitative visualization of audio-guided visual atten-

tion. The semantic regions containing many different sound

sources, such as barking dog, crying boy/babies, speaking woman,

guitar etc, can be adaptively captured by our attention model.

Table 1. Event localization prediction accuracy (%) on AVE

dataset. A, V, V-att, A+V, A+V-att denote that these models use

audio, visual, attended visual, audio-visual and attended audio-

visual features, respectively. W-models are trained in a weakly-

supervised manner. Note that audio-visual models all fuse features

by concatenating the outputs of LSTMs.

Models A V V-att A+V A+V-att W-A W-V W-V-att W-A+V W-A+V-att

Accuracy 59.5 55.3 58.6 71.4 72.7 53.4 52.9 55.6 63.7 66.7

Audio and Visual: From Tab. 1, we observe that A outper-

forms V and W-A is also better than W-V. It demonstrates

that audio features are more powerful to address audio-

visual event localization task on the AVE dataset. However,

when we look at each individual event, using audio is not

always better than using visual. We observe that V is bet-

ter than A for some events (e.g. car, motocycle, train, bus).

Actually, most of these events are outdoor. Audios in these

videos can be very noisy: several different sounds may be

mixed together (e.g. people cheers with a racing car), and

may have very low intensity (e.g. horse sound from far dis-

tance). For these conditions, visual information will give us

more discriminative and accurate information to understand

events in videos. A is much better than V for some events

(e.g. dog, man and woman speaking, baby crying). Sounds

will provide clear cues for us to recognize these events. For

example, if we hear barking sound, we know that there may
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Table 2. Event localization prediction accuracy (%) of different

feature fusion methods on AVE dataset. These methods all use

same audio and visual features as inputs. Top-2 results in each

line are highlighted.

Methods Additive MP Gated MB GMU GMB Concat MRN DMRN

Early Fusion 59.9 67.9 67.9 69.2 70.5 70.2 61.0 69.8 68.0

Late Fusion 71.3 71.4 70.5 70.5 71.6 71.0 72.7 70.8 73.1

Decision Fusion 70.5 64.5 65.2 64.6 67.6 67.3 69.7 63.8 70.4

be a dog. We also observe that A+V is better than both A

and V, and W-A+V is better than W-A and W-V. From the

above results and analysis, we can conclude that auditory

and visual modalities will provide complementary informa-

tion for us to understand events in videos.

Audio-Guided Visual Attention: The quantitative results

(see Tab. 1) show that V-att is much better than V (a 3.3%
absolute improvement) and A+V-att outperforms A+V by

1.3%. We show qualitative results of our attention method

in Fig. 3. We observe that a range of semantic regions

in many different categories and examples can be attended

by sound, which validates that our attention network can

learn which visual regions to look at for sounding objects.

An interesting observation is that the audio-guided visual

attention tends to focus on sounding regions, such as man’s

mouth, head of crying boy etc, rather than whole objects in

some examples.

Audio-Visual Fusion: We compare our fusion method:

DMRN with several network-based multimodal fusion

methods: Additive, Maxpooling (MP), Gated, Multimodal

Bilinear (MB), and Gated Multimodal Bilinear (GMB) in

[7], Gated Multimodal Unit (GMU) in [2], Concatenation

(Concat), and MRN [8]. Three different fusion strategies:

early, late and decision fusions are explored. Here, early fu-

sion methods directly fuse audio features from pre-trained

CNNs and attended visual features; late fusion methods

fuse audio and visual features from outputs of two LSTMs;

and decision fusion methods fuse the two modalities before

Softmax layer. Table 2 shows audio-visual event localiza-

tion prediction accuracy of different multimodal feature fu-

sion methods on AVE dataset. Our DMRN model in the late

fusion setting can achieve better performance than all com-

pared method. We also observe that late fusion is better than

early fusion and decision fusion. The superiority of late fu-

sion over early fusion demonstrates that temporal modeling

before audio-visual fusion is useful. We know that audi-

tory and visual modalities are not completely aligned, and

temporal modeling can implicitly learn certain alignments

between the two modalities, which is helpful for the audio-

visual feature fusion task. The decision fusion can be regard

as a type of late fusion but using lower dimension (same as

the category number) features. The late fusion outperforms

the decision fusion, which validates that processing multi-

ple features separately and then learning joint representa-

tion using a middle layer rather than the bottom layer is an

efficient fusion way.

Full and Weak Supervision: Obviously, supervised mod-

els are better than weakly supervised ones, but quantita-

tive comparisons show that weakly-supervised approaches

achieve promising event localization performance, which

demonstrates the effectiveness of the MIL frameworks, and

validates that the audio-visual event localization task can be

addressed even in a noisy condition.

Cross-Modality Localization: We compare our method:

AVDLN with DCCA [1] on cross-modality localization

tasks: A2V (visual localization from audio segment query)

and V2A (audio localization from visual segment query).

The prediction accuracy of AVDLN and DCCA on the A2V

and V2A tasks are 44.8/36.6 and 34.8/34.1, respectively.

Our AVDL outperforms DCCA over a large margin both

on A2V and V2A tasks. Even using the strict evaluation

metric (which counts only the exact matches), our models

on both subtasks: A2V and V2A, show promising results,

which further demonstrates that there are strong correlations

between audio and visual modalities.
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