
What comprises a good talking-head video generation?

Lele Chen Guofeng Cui Ziyi Kou Haitian Zheng Chenliang Xu
University of Rochester

lchen63@ur.,gcui2@ur.,zkou2@ur.,hzheng15@ur.,chenliang.xu@}rochester.edu

1. Introduction

Over the years, performance evaluation has become
essential in computer vision, enabling tangible progress
in many sub-fields. While talking-head video generation
has become an emerging research topic, existing evalua-
tions on this topic present many limitations. For example,
most approaches use human subjects (e.g., via Amazon
MTurk) to evaluate their research claims directly. This
subjective evaluation is cumbersome, unreproducible, and
may impend the evolution of new research. In this work,
we present a carefully-designed benchmark for evaluating
talking-head video generation. By conducting a thought-
ful analysis across several state-of-the-art talking-head
generation approaches, we aim to uncover the merits and
drawbacks of current methods and point out promising
directions for future work. A full version of this survey
can be found at here.

A sizable volume of follow-up papers have been
published since the introduction of identity-independent
talking-head generation task [9]. While there has been
substantial progress in terms of synthesized video quality,
relatively less effort has been spent in evaluating talking-
head methods, and grounded ways to quantitatively assess
these videos are still missing. While some existing met-
rics are shown to be effective image-level visual quality
evaluation, there are some other issues, such as the variety
of probability criteria and the lack of perceptually mean-
ingful video-level measures, have made evaluating the
talking-head video generative models notoriously tricky.
In this paper, we mainly discuss and assess talking-head
video generative approaches by either designing or choos-
ing evaluation metrics concerning the three desiderata:
Identity Preserving. We compare two existing
identity-preserving evaluation metrics by visualizing the
decision boundaries of inter-class discrepancy ability, and
select cosine similarity between embedding vectors of
ArcFace [6] to measure identity mismatch.
Semantic-level Lip Synchronization. While some
methods can generate realistically looking videos, the
generated lip movements usually present less expres-
sive and discriminative semantic cues, which can not
convey the audio information. To address this semantic
lip-synchronization ability, we critically discuss existing
lip-sync evaluation methods and introduce a new lip-sync
metric—lipreading Similarity Distance (LRSD), which
evaluates the lip movement synchronization in semantic
perspective. The experimental results demonstrate that
our LRSD score agrees with human perceptual judgments
and human rankings of videos.
Natural-spontaneous Motion. Video generative mod-
els have well-known limitations, including a tendency
towards limited diversity in generated video samples. In

Figure 1. The t-SNE plot of identity features of random frames
from VoxCeleb2 testing set. The features are extracted by VG-
GFaceNet and ArcFace, respectively. Frames corresponding to
the same subject have the same color.

order to investigate intra-video diversity, we evaluate the
spontaneous motions emitted in synthesized videos, in-
cluding emotional expression, blinks, and head move-
ments. Meanwhile, we design a new evaluation metric—
Emotion Similarity Distance (ESD) to evaluate the facial
emotional expression distance between the synthesized
video and the ground truth. To quantitatively evaluate
the subconscious blinks in a talking-head video, we intro-
duce a learning-based metric—Blink Similarity Distance
(BSD)to evaluate the quality of the blink motion in the
eye region of a synthesized video.

2. Identity Preserving

People are sensitive to any perceptual identity changes
in a synthesized video, is hard to avoid in the deep gen-
erative model. The reason is that the spatial identity
information may not be preserved perfectly after deep
convolution layers (e.g., encoding and fusion network).

To evaluate the identity-preserving performance, Ja-
maludin et al. [9] use the embedding distance of the gener-
ated video frames and the ground truth using a pre-trained
VGGFaceNet [13] to measure the identity distance since
it is trained with a triplet loss. ArcFace [6] has been
adopted in Zakharov et al. [20].

To compare those two different embedding methods,
we use t-SNE [12] to visualize the extracted feature vec-
tors of video frames sampled from VoxCeleb2 (see Fig. 1).
From the t-SNE plot, we find that ArcFace (Fig. 1a) is
more robust to noise (e.g., hairstyle, lighting, and video
quality) comparing with VGGFaceNet (Fig. 1b). We
attribute this to the Additive Angular Margin Loss (Arc-
Face) [6] since it simultaneously enhances the intra-class
compactness and inter-class discrepancy. Based on the ob-
servation that ArcFace has better inter-class discrepancy
ability, we use ArcSim—the cosine distance between the
two image features extracted by ArcFace to measure the
identity similarity between two images.

https://arxiv.org/abs/2005.03201


Figure 2. The t-SNE plots of semantic-level visual features of
random videos from the LRS3-TED testing set and VoxCeleb2
testing set. Videos corresponding to the same word have the
same color.

3. Semantic-level Lip Synchronization

Another challenge of talking-head generation is to
maintain the synchronization between visual dynamics
(e.g., facial movement, lip movement) and the driven
modality (e.g., audio signal, and landmark) since people
are sensitive to the slight misalignment between facial
movements and speech audio. When humans look at a
talking-head video, we would unintentionally use the se-
mantic information to judge if the audio is synced with
the visual. For example, it is easier for us to tell if the au-
dio is synced with the visual when we know the language.
Thus, in this paper, we propose a lip-synchronization eval-
uation metric—Lip-Reading Similarity Distance (LRSD),
like human perceptual judgments by incorporating the
semantic-level lipreading. Given a synthesized video clip
x̂ and paired ground truth video clip x, the LRSD is ob-
tained by: LRSD(x, x̂) = ||φ(x), φ(x̂)||22, where the φ
is a spatial-temporal lipreading network. Although there
are many lipreading networks proposed in recent years,
most of them do not perform well on videos outside the
dataset, not to mention assessing the similarity between
synthesized videos and real videos. Thus, we propose an
easy but effective multi-view lipreading network, which
is trained on LRS3-TED dataset and works for any video
outside the dataset.

To demonstrate the visual feature extraction ability of
our lipreading network, we show the lipreading results on
the testing set of LRS3-TED and VoxCeleb2 datasets in
Fig. 2. In order to show the inter-class discrepancy ability
of the lipreading feature, we randomly select 20 words
from our vocabulary, each with 30 video clips in each
testing set, and visualize their visual features. We can find
that the features of words with similar visemes are closer
than other features. We also show the lipreading accuracy
in Tab. 3, from where we can find that our lipreading
network achieves 42.46% top-1 classification accuracy
on the VoxCeleb2 testing set (note that our classifier is
trained on LRS3-TED dataset). From the t-SNE plot and
classification accuracy, we can find that our lipreading
network can extract the semantic-level spatial-temporal
features from the input video sequence, and there are
clear margins between the extracted features when they
do not belong to a same word.

4. Natural-spontaneous Motions

People naturally emit spontaneous motions such as
head movements and emotional expressions when they
speak, which contain nonverbal information that helps the
audience comprehend the speech content [3, 8]. Although

Figure 3. The left side shows the video emotion classifier’s
performance on the CREMA-D testing set. The X-axis and Y-
axis are emotion labels and classification accuracy, respectively.
The right side is the t-SNE plot of the emotion encoding of
random video samples from the CREMA-D testing set. Videos
corresponding to the same emotion label have the same color.

Figure 4. The t-SNE plot of the ESD features of synthesized
videos produced by different methods.

speech contains necessary information for generating lip
movements, it can hardly be used to produce natural-
spontaneous motions. Some works [7, 9, 14, 5] ignore
the modeling of spontaneous expressions, resulting in
faces that are mostly static except for the mouth region.
Karras et al. [10] propose a network to synthesize 3D ver-
tex by inferring the information from the audio signal and
emotional state. Vougioukas et al. [16] propose a noise
generator capable of producing noise that is temporally
coherent through a single-layer GRU. This latent repre-
sentation introduces randomness in the face synthesis
process and helps with the generation of blinks and brow
movements. Some works [19, 15, 11, 1, 21] take image
frames that contain the target motion as dense mapping
to guide the video generation, producing video frames
with convoluted head motion and facial expressions.

Investigating the generation of spontaneous expres-
sions is also important since it is one of the main factors
that affect our perception of how natural a video looks. To
evaluate the quality of synthesized spontaneous motion
(emotional expression), we introduce a new emotion sim-
ilarity distance (ESD). We first train a spatial-temporal
convolution network to classify emotions of video clips
in the CREMA-D training set. The left side of Fig. 3
shows the video emotion classification accuracy on the
CREMA-D testing set. According to the user studies in
Cao et al. [2], the human recognition of intended emo-
tion on the CREMA-D dataset are 58.2% (visual-only)
and 63.6% (audio-visual), respectively. Our video-level
emotion classifier achieves 62.9% testing accuracy on
real videos without audio, which is better than individual
human raters (visual-only). Then we training the network
with the metric learning step using ArcLoss, which leads



LRS3-TED VoxCeleb2
Real Chen [5] Baseline Wang [17] Wiles [18] Zakharov [20] Real Chen [5] Baseline Wang [17] Wiles [18] Zakharov [20]

Top-1 72.62% 1.99% 3.85% 2.23% 1.93% 1.77% 42.46% 2.40% 3.04% 1.64% 1.87% 1.99%
Top-5 87.98% 5.01% 11.05% 6.19% 5.73% 5.48% 63.98% 8.12% 7.13% 4.56% 4.80% 4.74%
Top-10 91.53% 8.19% 16.13% 8.37% 8.62% 8.27% 70.82% 10.76% 10.76% 7.13% 7.49% 7.54%
Top-20 94.42% 12.99% 22.11% 12.27% 13.18% 12.53 % 78.30% 15.80% 15.91% 11.23% 11.70% 11.05%
LRSD — 46.35 % 59.60% 56.25% 52.95% 51.93% — 47.93% 62.56% 61.59% 55.14% 53.87%

L2 — 1.03 0.89 0.93 0.96 0.98 — 1.02 0.86 0.87 0.94 0.96

Table 1. Semantic-level video quality of different methods. The L2 row shows the L2 distance between features of the fake video and
the paired real video.

Method Baseline Zakharov [20] Vougioukas [16] Chen [4] Jamaludin [9] Wang [17] Wiles [18]
BSD 0.965 0.935 0.919 0.907 0.807 0.957 0.979

Table 2. The BSD score of different methods on Grid testing set. BSD score measures cosine similarity between blink features
extracted from synthesized video and ground truth video.

Method Baseline Zakharov [20] Wiles [18] Vougioukas [16]
ESD ↑ 0.467 0.391 0.655 0.2665

Table 3. The ESD score across over different methods on
CREMA-D testing set. We bold the leading score.

to a more clear margin between different emotion fea-
tures. We extract the emotion features from real videos in
CREMA-D testing set and show the t-SNE plot in Fig. 3
right side. Since the video features from our model are
optimized on a hypersphere with cosine angles, it is nat-
urally to apply cosine similarity as Emotion Similarity
Distance (ESD). Therefore, after training with ArcLoss,
we utilize the embedding features before the ArcLoss
module to represent each input video and calculate their
similarity distance as:

ESD(vi, vj) =
vi · vj
‖vi‖‖vj‖
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where i and j are indexes for two videos respectively.
The ESD result is shown in Tab. 3 and we will discuss it
in the following part.

Fig. 3 left side shows the emotion classification accu-
racy on different types of videos. Fig. 4 shows the t-SNE
plot of different ESD features on CREMA-D testing set,
from where we observe that the group boundaries of ESD
feature extracted from baseline method, Wiles et al. [18],
and Zakharov et al. [20] are more clear than the ESD
feature extracted from synthesized videos produced by
Vougioukas et al. [16]. The t-SNE visualization is consis-
tent with the classification results in the first row of Fig. 4,
where the emotion classifier achieves lowest accuracy on
synthesized videos produced by Vougioukas et al. [16].
Tab. 3 shows the quantitative result of ESD, from where
we can find that the emotional feature extracted from
Wiles et al. [18] is closest to the feature extracted from
ground truth comparing to other methods. This is con-
sistent with the emotion classification accuracy shown in
Fig. 3 second row, where the synthesized videos produced
by Wiles et al. [18] achieves highest classification accu-
racy (45.3%). In summary, the results shown in Fig. 3,
Fig. 4, and Tab. 3 demonstrate that our ESD is a well-
characterized perceptual similarity measure that aims to
assess the emotional expression ability of synthesized
videos.

We also train the network with ArcLoss and extract
blink features for each slices the same as what we do for
emotion features. The t-SNE plot over blink features of
sampled slices from test set is shown in Fig. 5. Although
confusion slices exist for blink model, the blink features

Figure 5. The evaluation of blink motion. The histogram shows
the performance of blink model on GRID’s testing set. We
evaluate the model on both original real videos in GRID and
also synthesized videos by seven example methods. We also
show the t-SNE plot for blink features extracted by our blink
model. In the bottom figure, points with label 1,0 are belonged
to blink motion, and non-blink motion, respectively.

represent obvious inter-class discrepancy ability, that is
non-blink motion cluster on the left and blink motion clus-
ter on the right. Based on this observation, we introduce
Blinking Similarity Distance (BSD) to better evaluate
blink generation quality of synthesized videos. Similar
to ESD, we calculate the cosine similarity between blink
feature of ground truth videos and that of synthesized
videos (same equation as Eq. 1). A high score of BSD
indicates similarity blink motion between two videos,
which means both of them perform either similar blink
motion or similar non-blink motion.

5. Conclusion

Talking-head generation is an important and challeng-
ing problem in computer vision and has received consid-
erable attention. Thanks to remarkable developments in
GAN techniques, the field of talking-head generation has
dramatically evolved. we introduced three perceptually
meaningful metrics that assess the emotional expression,
semantic-level lip synchronization, and blink motion of
a synthesized video. The proposed metrics agree with
human perceptual judgment, and have low sample and
computational complexity. The performance of talking-
head generation will continue to improve as various struc-
tures are proposed. In the mean time, seeking appropriate
measures for this task continues to be an important open
problem, not only for fair model comparison but also for
understanding, improving, and developing the talking-
head animation models.
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