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Abstract. In this paper, we introduce a novel problem of audio-visual
event localization in unconstrained videos. We define an audio-visual
event as an event that is both visible and audible in a video seg-
ment. We collect an Audio-Visual Event (AVE) dataset to systemically
investigate three temporal localization tasks: supervised and weakly-
supervised audio-visual event localization, and cross-modality localiza-
tion. We develop an audio-guided visual attention mechanism to explore
audio-visual correlations, propose a dual multimodal residual network
(DMRN) to fuse information over the two modalities, and introduce
an audio-visual distance learning network to handle the cross-modality
localization. Our experiments support the following findings: joint model-
ing of auditory and visual modalities outperforms independent modeling,
the learned attention can capture semantics of sounding objects, tempo-
ral alignment is important for audio-visual fusion, the proposed DMRN is
effective in fusing audio-visual features, and strong correlations between
the two modalities enable cross-modality localization.

Keywords: Audio-visual event · Temporal localization · Attention
Fusion

1 Introduction

Studies in neurobiology suggest that the perceptual benefits of integrating visual
and auditory information are extensive [9]. For computational models, they
reflect in lip reading [5,12], where correlations between speech and lip movements
provide a strong cue for linguistic understanding; in music performance [32],
where vibrato articulations and hand motions enable the association between
sound tracks and the performers; and in sound synthesis [41], where physical
interactions with different types of material give rise to plausible sound patterns.
Albeit these advances, these models are limited in their constrained domains.

Indeed, our community has begun to explore marrying computer vision with
audition in-the-wild for learning a good representation [2,6,42]. For example, a
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Fig. 1. (a) illustrates audio-visual event localization. The first two rows show a 5 s video
sequence with both audio and visual tracks for an audio-visual event chainsaw (event
is temporally labeled in yellow boxes). The third row shows our localization results
(in red boxes) and the generated audio-guided visual attention maps. (b) illustrates
cross-modality localization for V2A and A2V (Color figure online)

sound network is learned in [6] by a visual teacher network with a large amount
of unlabeled videos, which shows better performance than learning in a single
modality. However, they have all assumed that the audio and visual contents
in a video are matched (which is often not the case as we will show) and they
are yet to explore whether the joint audio-visual representations can facilitate
understanding unconstrained videos.

In this paper, we study a family of audio-visual event temporal localization
tasks (see Fig. 1) as a proxy to the broader audio-visual scene understanding
problem for unconstrained videos. We pose and seek to answer the following
questions: (Q1) Does inference jointly over auditory and visual modalities out-
perform inference over them independently? (Q2) How does the result vary under
noisy training conditions? (Q3) How does knowing one modality help model the
other modality? (Q4) How do we best fuse information over both modalities?
(Q5) Can we locate the content in one modality given its observation in the
other modality? Notice that the individual questions might be studied in the
literature, but we are not aware of any work that conducts a systematic study
to answer these collective questions as a whole.

In particular, we define an audio-visual event as an event that is both visible
and audible in a video segment, and we establish three tasks to explore afore-
mentioned research questions: (1) supervised audio-visual event localization, (2)
weakly-supervised audio-visual event localization, and (3) event-agnostic cross-
modality localization. The first two tasks aim to predict which temporal segment
of an input video has an audio-visual event and what category the event belongs
to. The weakly-supervised setting assumes that we have no access to the tem-
poral event boundary but an event tag at video-level for training. Q1–Q4 will
be explored within these two tasks. In the third task, we aim to locate the cor-
responding visual sound source temporally within a video from a given sound
segment and vice versa, which will answer Q5.

We propose both baselines and novel algorithms to solve the above three
tasks. For the first two tasks, we start with a baseline model treating them as
a sequence labeling problem. We utilize CNN [31] to encode audio and visual
inputs, adapt LSTM [26] to capture temporal dependencies, and apply Fully
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Connected (FC) network to make the final predictions. Upon this baseline model,
we introduce an audio-guided visual attention mechanism to verify whether audio
can help attend visual features; it also implies spatial locations for sounding
objects as a side output. Furthermore, we investigate several audio-visual feature
fusion methods and propose a novel dual multimodal residual fusion network that
achieves the best fusion results. For weakly-supervised learning, we formulate
it as a Multiple Instance Learning (MIL) [35] task, and modify our network
structure via adding a MIL pooling layer. To address the harder cross-modality
localization task, we propose an audio-visual distance learning network that
measures the relativeness of any given pair of audio and visual content.

Observing that there is no publicly available dataset directly suitable for
our tasks, we collect a large video dataset that consists of 4143 10-s videos
with both audio and video tracks for 28 audio-visual events and annotate their
temporal boundaries. Videos in our dataset are originated from YouTube, thus
they are unconstrained. Our extensive experiments support the following find-
ings: modeling jointly over auditory and visual modalities outperforms modeling
independently over them, audio-visual event localization in a noisy condition
can still achieve promising results, the audio-guided visual attention can well
capture semantic regions covering sounding objects and can even distinguish
audio-visual unrelated videos, temporal alignment is important for audio-visual
fusion, the proposed dual multimodal residual network is effective in addressing
the fusion task, and strong correlations between the two modalities enable cross-
modality localization. These findings have paved a way for our community to
solve harder, high-level understanding problems in the future, such as video cap-
tioning [56] and movieQA [53], where the auditory modality plays an important
role in understanding video but lacks effective modeling.

Our work makes the following contributions: (1) a family of three audio-visual
event localization tasks; (2) an audio-guided visual attention model to adap-
tively explore the audio-visual correlations; (3) a novel dual multimodal resid-
ual network to fuse audio-visual features; (4) an effective audio-visual distance
learning network to address cross-modality localization; (5) a large audio-visual
event dataset containing more than 4K unconstrained and annotated videos,
which to the best of our knowledge, is the largest dataset for sound event detec-
tion. Dataset, code, and supplementary material are available on our webpage:
https://sites.google.com/view/audiovisualresearch.

2 Related Work

In this section, we first describe how our work differs from closely-related topics:
sound event detection, temporal action localization and multimodal machine
learning, then discuss relations to recent works in modeling vision-and-sound.

Sound event detection considered in the audio signal processing commu-
nity aims to detect and temporally locate sound events in an acoustic scene.
Approaches based on Hidden Markov Models (HMM), Gaussian Mixture Mod-
els (GMM), feed-forward Deep Neural Networks (DNN), and Bidirectional
Long Short-Term Memory (BLSTM) [46] are developed in [10,23,36,43]. These

https://sites.google.com/view/audiovisualresearch
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methods focus on audio signals, and visual signals have not been explored.
Corresponding datasets, e.g., TUT [36], for sound event detection only contain
sound tracks, and are not suitable for audio-visual scene understanding.

Temporal action localization aims to detect and locate actions in videos. Most
works cast it as a classification problem and utilize a temporal sliding window
approach, where each window is considered as an action candidate subject to
classification [39]. Escorcia et al. [14] present a deep action proposal network
that is effective in generating temporal action proposals for long videos and
can speed up temporal action localization. Recently, Shou et al. [48] propose an
end-to-end Segment-based 3D CNN method (S-CNN), Zhao et al. [60] present
a structured segment network (SSN), and Lea et al. [30] develop an Encoder-
Decoder Temporal Convolutional Network (ED-TCN) to hierarchically model
actions. Different from these works, an audio-visual event in our consideration
may contain multiple actions or motionless sounding objects, and we model
over both audio and visual domains. Nevertheless, we extend the ED-TCN and
SSN methods to address our supervised audio-visual event localization task and
compare them in Sect. 6.3.

Multimodal machine learning aims to learn joint representations over mul-
tiple input modalities, e.g., speech and video, image and text. Feature fusion is
one of the most important part for multimodal learning [8], and many differ-
ent fusion models have been developed, such as statistical models [15], Multiple
Kernel Learning (MKL) [19,44], Graphical models [20,38]. Although some muti-
modal deep networks have been studied in [27,28,37,38,50,51,58], which mainly
focus on joint audio-visual representation learning based on Autoencoder or deep
Boltzmann machines [51], we are interested in investigating the best models to
fuse learned audio and visual features for localization purpose.

Recently, some inspiring works are developed for modeling vision-and-sound
[2,6,22,41,42]. Aytar et al. [6] use a visual teacher network to learn powerful
sound representations from unlabeled videos. Owens et al. [42] leverage ambient
sounds as supervision to learn visual representations. Arandjelovic and Zisser-
man [2] learn both visual and audio representations in an unsupervised manner
through an audio-visual correspondence task, and in [3], they further locate
sound source spatially in an image based on an extended correspondence net-
work. Aside from works in representation learning, audio-visual cross-modal syn-
thesis is studied in [11,42,61], and associations between natural image scenes
and accompanying free-form spoken audio captions are explored in [22]. Concur-
rently, some interesting and related works on sound source separation, localiza-
tion and audio-visual representation learning are explored in [13,16,40,47,59].
Unlike the previous works, in this paper, we systematically investigate audio-
visual event localization tasks.

3 Dataset and Problems

AVE: TheAudio-Visual Event Dataset. To the best of our knowledge, there
is no publicly available dataset directly suitable for our purpose. Therefore, we
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Church bell Man speaking Dog barking Airplane Racing car Women speaking Helicopter Violin Flute

Ukulele Frying food Truck Shofar Motocycle Guitar Train Clock Banjo

Goat Bady crying Bus Chainsaw Cat Horse Toilet flush Rodent Accordian

Fig. 2. The AVE dataset. Some examples in the dataset are shown. The distribution
of videos in different categories and the distribution of event lengths are illustrated

introduce the Audio-Visual Event (AVE) dataset, a subset of AudioSet [18], that
contains 4143 videos covering 28 event categories and videos in AVE are tem-
porally labeled with audio-visual event boundaries. Each video contains at least
one 2 s long audio-visual event. The dataset covers a wide range of audio-visual
events (e.g., man speaking, woman speaking, dog barking, playing guitar, and
frying food etc.) from different domains, e.g., human activities, animal activi-
ties, music performances, and vehicle sounds. We provide examples from different
categories and show the statistics in Fig. 2. Each event category contains a min-
imum of 60 videos and a maximum of 188 videos, and 66.4% videos in the AVE
contain audio-visual events that span over the full 10 s. Next, we introduce three
different tasks based on the AVE to explore the interactions between auditory
and visual modalities.

Fully and Weakly-Supervised Event Localization. The goal of event local-
ization is to predict the event label for each video segment, which contains both
audio and visual tracks, for an input video sequence. Concretely, for a video
sequence, we split it into T non-overlapping segments {Vt, At}T

t=1, where each
segment is 1 s long (since our event boundary is labeled at second-level), and Vt

and At denote the visual content and its corresponding audio counterpart in a
video segment, respectively. Let yt = {yk

t |yk
t ∈ {0, 1}, k = 1, . . . , C,

∑C
k=1 yk

t =
1} be the event label for that video segment. Here, C is the total number of AVE
events plus one background label.

For the supervised event localization task, the event label yt of each visual
segment Vt or audio segment At is known during training. We are interested in
event localization in audio space alone, visual space alone and the joint audio-
visual space. This task explores whether or not audio and visual information
can help each other improve event localization. Different than the supervised
setting, in the weakly-supervised manner we have only access to a video-level
event tag, and we still aim to predict segment-level labels during testing. The
weakly-supervised task allows us to alleviate the reliance on well-annotated data
for modelings of audio, visual and audio-visual.

Cross-Modality Localization. In the cross-modality localization task, given
a segment of one modality (auditory/visual), we would like to find the position
of its synchronized content in the other modality (visual/auditory). Concretely,
for visual localization from audio (A2V), given a l-second audio segment Â from
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Fig. 3. (a) Audio-visual event localization framework with audio-guided visual atten-
tion and multimodal fusion. One timestep is illustrated, and note that the fusion net-
work and FC are shared for all timesteps. (b) Audio-visual distance learning network

{At}T
t=1, where l < T , we want to find its synchronized l-second visual segment

within {Vt}T
t=1. Similarly, for audio localization from visual content (V2A), given

a l-second video segment V̂ from {Vt}T
t=1, we would like to find its l-second audio

segment within {At}T
t=1. This task is conducted in the event-agnostic setting such

that the models developed for this task are expected to work for general videos
where the event labels are not available. For evaluation, we only use short-event
videos, in where the lengths of audio-visual event are all shorter than 10 s.

4 Methods for Audio-Visual Event Localization

First, we present the overall framework that treats the audio-visual event local-
ization as a sequence labeling problem in Sect. 4.1. Upon this framework, we
propose our audio-guided visual attention in Sect. 4.2 and a novel dual multi-
modal residual fusion network in Sect. 4.3. Finally, we extend this framework to
work in weakly-supervised setting in Sect. 4.4.

4.1 Audio-Visual Event Localization Network

Our network mainly consists of five modules: feature extraction, audio-guided
visual attention, temporal modeling, multimodal fusion and temporal label-
ing (see Fig. 3(a)). The feature extraction module utilizes pre-trained CNNs to
extract visual features vt = [v1

t , . . . , vk
t ] ∈ R

dv × k and audio features at ∈ R
da

from each Vt and At, respectively. Here, dv denotes the number of CNN visual
feature maps, k is the vectorized spatial dimension of each feature map, and da

denotes the dimension of audio features. We use an audio-guided visual atten-
tion model to generate a context vector vatt

t ∈ R
dv (see details in Sect. 4.2). Two

separate LSTMs take vatt
t and at as inputs to model temporal dependencies in

the two modalities respectively. For an input feature vector Ft at time step t,
the LSTM updates a hidden state vector ht and a memory cell state vector ct:

ht, ct = LSTM(Ft, ht−1, ct−1), (1)

where Ft refers to vatt
t or at in our model. For evaluating the performance of the

proposed attention mechanism, we compare to models that do not use attention;
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we directly feed global average pooling visual features and audio features into
LSTMs as baselines. To better incorporate the two modalities, we introduce a
multimodal fusion network (see details in Sect. 4.3). The audio-visual representa-
tion h∗

t is learned by a multimodal fusion network with audio and visual hidden
state output vectors hv

t and ha
t as inputs. This joint audio-visual representation

is used to output event category for each video segment. For this, we use a shared
FC layer with the Softmax activation function to predict probability distribu-
tion over C event categories for the input segment and the whole network can
be trained with a multi-class cross-entropy loss.

4.2 Audio-Guided Visual Attention

Fig. 4. (a) Audio-guided visual
attention mechanism. (b) Dual
multimodal residual network for
audio-visual feature fusion

Psychophysical and physiological evidence
shows that sound is not only informative about
its source but also its location [17]. Based on
this, Hershey and Movellan [24] introduce an
exploratory work on localizing sound sources
utilizing audio-visual synchrony. It shows that
the strong correlations between the two modal-
ities can be used to find image regions that are
highly correlated to the audio signal. Recently,
[3,42] show that sound indicates object prop-
erties even in unconstrained images or videos.
These works inspire us to use audio signal as
a means of guidance for visual modeling.

Given that attention mechanism has shown
superior performance in many applications
such as neural machine translation [7] and
image captioning [34,57], we use it to implement our audio-guided visual atten-
tion (see Fig. 3(a) and Fig. 4(a)). The attention network will adaptively learn
which visual regions in each segment of a video to look for the corresponding
sounding object or activity.

Concretely, we define the attention function fatt and it can be adaptively
learned from the visual feature map vt and audio feature vector at. At each time
step t, the visual context vector vatt

t is computed by:

vatt
t = fatt(at, vt) =

k∑

i=1

wi
tv

i
t, (2)

where wt is an attention weight vector corresponding to the probability distri-
bution over k visual regions that are attended by its audio counterpart. The
attention weights can be computed based on MLP with a Softmax activation
function:

wt = Softmax(xt), (3)

xt = Wfσ(WvUv(vt) + (WaUa(at))1T ), (4)
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where Uv and Ua, implemented by a dense layer with nonlinearity, are two trans-
formation functions that project audio and visual features to the same dimension
d, Wv ∈ R

k × d, Wa ∈ R
k × d, Wf ∈ R

1× k are parameters, the entries in 1 ∈ R
k

are all 1, σ(·) is the hyperbolic tangent function, and wt ∈ R
k is the computed

attention map. The attention map visualization results show that the audio-
guided attention mechanism can adaptively capture the location information of
sound source (see Fig. 5), and it can also improve temporal localization accuracy
(see Table 1).

4.3 Audio-Visual Feature Fusion

Our fusion method is designed based on the philosophy in [51], which processes
multiple features separately and then learns a joint representation using a mid-
dle layer. To combine features coming from visual and audio modalities, inspired
by the Mutimodal Residual Network (MRN) in [29] (which works for text-and-
image), we introduce a Dual Multimodal Residual Network (DMRN). The MRN
adopts a textual residual branch and feeds transformed visual features into differ-
ent textual residual blocks, where only textual features are updated. In contrary,
the proposed DMRN shown in Fig. 4(b) updates both audio and visual features
simultaneously.

Given audio and visual features ha
t and hv

t from LSTMs, the DMRN will
compute the updated audio and visual features:

ha′
t = σ(ha

t + f(ha
t , hv

t )), (5)

hv′
t = σ(hv

t + f(ha
t , hv

t )), (6)

where f(·) is an additive fusion function, and the average of ha′
t and hv′

t is used
as the joint representation h∗

t for labeling the video segment. Here, the update
strategy in DMRN can both preserve useful information in the original modality
and add complimentary information from the other modality. Simply, we can
stack multiple residual blocks to learn a deep fusion network with updated ha′

t

and hv′
t as inputs of new residual blocks. However, we empirically find that it does

not improve performance by stacking many blocks for both MRN and DMRN.
We argue that the network becomes harder to train with increasing parameters
and one block is enough to handle this simple fusion task well.

We would like to underline the importance of fusing audio-visual features
after LSTMs for our task. We empirically find that late fusion (fusion after tem-
poral modeling) is much better than early fusion (fusion before temporal mod-
eling). We suspect that the auditory and visual modalities are not temporally
aligned. Temporal modeling by LSTMs can implicitly learn certain alignments
which can help make better audio-visual fusion. The empirical evidences will be
shown in Table 2.

4.4 Weakly-Supervised Event Localization

To address the weakly-supervised event localization, we formulate it as a MIL
problem and extend our framework to handle noisy training condition. Since
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only video-level labels are available, we infer label of each audio-visual segment
pair in the training phase, and aggregate these individual predictions into a
video-level prediction by MIL pooling as in [55]:

m̂ = g(m1,m2, . . . , mT ) =
1
T

T∑

t=1

mt, (7)

where m1, . . . , mT are predictions from the last FC layer of our audio-visual
event localization network, and g(·) averages over all predictions. The probability
distribution of event category for the video sequence can be computed using m̂
over the Softmax. During testing, we can predict the event category for each
segment according to computed mt.

5 Method for Cross-Modality Localization

To address the cross-modality localization problem, we propose an audio-visual
distance learning network (AVDLN) as illustrated in Fig. 3(b); we notice simi-
lar networks are studied in concurrent works [3,52]. Our network can measure
the distance Dθ(Vi, Ai) for a given pair of Vi and Ai. At test time, for visual
localization from audio (A2V), we use a sliding window method and optimize
the following objective:

t∗ = argmin
t

l∑

s=1

Dθ(Vs+t−1, Âs), (8)

where t∗ ∈ {1, . . . , T − l + 1} denotes the start time when visual and audio
content synchronize, T is the total length of a testing video sequence, and l is
the length of the audio query Â. This objective function computes an optimal
matching by minimizing the cumulative distance between the audio segments
and the visual segments. Therefore, {Vi}t∗+l−1

i=t∗ is the matched visual content.
Similarly, we can define audio localization from visual content (V2A); we omit
it here for a concise writing. Next, we describe the network used to implement
the matching function.

Let {Vi, Ai}N
i=1 be N training samples and {yi}N

i=1 be their labels, where Vi

and Ai are a pair of 1 s visual and audio segments, yi ∈ {0, 1}. Here, yi = 1 means
that Vi and Ai are synchronized. The AVDLN will learn to measure distances
between these pairs. The network encodes them using pre-trained CNNs, and
then performs dimensionality reduction for encoded audio and visual represen-
tations using two different two-layer FC networks. The outputs of final FC layers
are {Rv

i , Ra
i }N

i=1. The distance between Vi and Ai is measured by the Euclidean
distance between Rv

i and Ra
i :

Dθ(Vi, Ai) = ||Rv
i − Ra

i ||2. (9)

To optimize the parameters θ of the distance metric Dθ, we introduce the con-
trastive loss proposed by Hadsell et al. [21]. The contrastive loss function is:

LC = yiD
2
θ(Vi, Ai) + (1 − yi)(max(0, th − Dθ(Vi, Ai)))2, (10)
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where th > 0 is a margin. If a dissimilar pair’s distance is less than th, the loss
will make the distance Dθ bigger; if their distance is bigger than the margin, it
will not contribute to the loss.

6 Experiments

First, we introduce the used visual and audio representations in Sect. 6.1. Then,
we describe the compared baseline models and evaluation metrics in Sect. 6.2.
Finally, we show and analyze experimental results of different models in Sect. 6.3.

6.1 Visual and Audio Representations

It has been suggested that CNN features learned from a large-scale dataset (e.g.
ImageNet [45], AudioSet [18]) are highly generic and powerful for other vision
or audition tasks. So, we adopt pre-trained CNN models to extract features for
visual segments and their corresponding audio segments.

For each 1 s visual segment, we extract pool5 feature maps from sampled
16 RGB video frames by VGG-19 network [49], which is pre-trained on Ima-
geNet, and then utilize global average pooling [33] over the 16 frames to generate
one 512 × 7 × 7-D feature map. We also explore the temporal visual features
extracted by C3D [54], which is capable of learning spatio-temporal visual fea-
tures. But we do not observe significant improvements when combining C3D
features. We extract a 128-D audio representation for each 1 s audio segment via
a VGG-like network [25] pre-trained on AudioSet.

6.2 Baselines and Evaluation Metrics

To validate the effectiveness of the joint audio-visual modeling, we use single-
modality models as baselines, which only use audio-alone or visual-alone features
and share the same structure with our audio-visual models. To evaluate the
audio-guided visual attention, we compare our V-att and A+V-att models with
V and A+V models in fully and weakly supervised settings. Here, V-att models
adopt audio-guided visual attention to pool visual feature maps, and the other V
models use global average pooling to compute visual feature vectors. We visualize
generated attention maps for subjective evaluation. To further demonstrate the
effectiveness of the proposed networks, we also compare them with a state-of-
the-art temporal labeling network: ED-TCN [30] and proposal-based SSN [60].

We compare our fusion method: DMRN with several network-based multi-
modal fusion methods: Additive, Maxpooling (MP), Gated, Multimodal Bilin-
ear (MB), and Gated Multimodal Bilinear (GMB) in [28], Gated Multimodal
Unit (GMU) in [4], Concatenation (Concat), and MRN [29]. Three differ-
ent fusion strategies: early, late and decision fusions are explored. Here, early
fusion methods directly fuse audio features from pre-trained CNNs and attended
visual features; late fusion methods fuse audio and visual features from out-
puts of two LSTMs; and decision fusion methods fuse the two modalities before
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Fig. 5. Qualitative visualization of audio-guided visual attention. The semantic regions
containing many different sound sources, such as barking dog, crying boy/babies, speak-
ing woman, horning bus, guitar etc, can be adaptively captured by our attention model

Fig. 6. Visualization of visual attention maps on two challenging examples. The first
and third rows are 10 video frames uniformly extracted from two 10 s videos, and the
second and fourth rows are generated attention maps. The yellow box (groundtruth
label) denotes that the frame contain audio-visual event in which sounding object
is visible and sound is audible. If there is no audio-visual event in a frame, random
background regions will be attended (5th frame of the second example); otherwise, the
attention will focus on sounding sources (Color figure online)

Softmax layer. To further enhance the performance of DMRN, we also intro-
duce a variant model of DMRN called dual multimodal residual fusion ensemble
(DMRFE) method, which feeds audio and visual features into two separated blocks
and then use average ensemble to combine the two predicted probabilities.
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Table 1. Event localization prediction accuracy (%) on AVE dataset. A, V, V-att,
A+V, A+V-att denote that these models use audio, visual, attended visual, audio-
visual and attended audio-visual features, respectively. W-models are trained in a
weakly-supervised manner. Note that audio-visual models all fuse features by con-
catenating the outputs of LSTMs

Models A V V-att A+V A+V-att W-A W-V W-V-att W-A+V W-A+V-att

Accuracy 59.5 55.3 58.6 71.4 72.7 53.4 52.9 55.6 63.7 66.7

For supervised and weakly-supervised event localization, we use overall accu-
racy as an evaluation metric. For cross-modality localization, e.g., V2A and A2V,
if a matched audio/visual segment is exactly the same as its groundtruth, we
regard it as a good matching; otherwise, it will be a bad matching. We com-
pute the percentage of good matchings over all testing samples as prediction
accuracy to evaluate the performance of cross-modality localization. To validate
the effectiveness of the proposed model, we also compare it with deep canonical
correlation analysis (DCCA) method [1].

6.3 Experimental Comparisons

Table 1 compares different variations of our proposed models on supervised
and weakly-supervised audio-visual event localization tasks. Table 2 shows event
localization performance of different fusion methods. Figures 5 and 6 illustrate
generated audio-guided visual attention maps.

To benchmark our models with state-of-the-art temporal action localization
methods, we extend the SSN [60] and ED-TCN [30] to address the supervised
audio-visual event localization, and train them on AVE. The SSN and ED-TCN
achieve 26.7% and 46.9% overall accuracy, respectively. For comparison, our V
model with the same features achieves 55.3%.

Audio and Visual. From Table 1, we observe that A outperforms V and W-A
is also better than W-V. It demonstrates that audio features are more powerful
to address audio-visual event localization task on the AVE dataset. However,
when we look at each individual event, using audio is not always better than
using visual. We observe that V is better than A for some events (e.g. car,
motocycle, train, bus). Actually, most of these events are outdoor. Audios in
these videos can be very noisy: several different sounds may be mixed together
(e.g. people cheers with a racing car), and may have very low intensity (e.g.
horse sound from far distance). For these conditions, visual information will give
us more discriminative and accurate information to understand events in videos.
A is much better than V for some events (e.g. dog, man and woman speaking,
baby crying). Sounds will provide clear cues for us to recognize these events.
For example, if we hear barking sound, we know that there may be a dog. We
also observe that A+V is better than both A and V, and W-A+V is better
than W-A and W-V. From the above results and analysis, we can conclude that
auditory and visual modalities will provide complementary information for us to
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Table 2. Event localization prediction accuracy (%) of different feature fusion methods
on AVE dataset. These methods all use same audio and visual features as inputs. Top-2
results in each line are highlighted

Methods Additive MP Gated MB GMU GMB Concat MRN DMRN DMRFE

Early fusion 59.9 67.9 67.9 69.2 70.5 70.2 61.0 69.8 68.0 -

Late fusion 71.3 71.4 70.5 70.5 71.6 71.0 72.7 70.8 73.1 73.3

Decision fusion 70.5 64.5 65.2 64.6 67.6 67.3 69.7 63.8 70.4 -

understand events in videos. The results also demonstrate that our AVE dataset
is suitable for studying audio-visual scene understanding tasks.

Audio-Guided Visual Attention. The quantitative results (see Table 1) show
that V-att is much better than V (a 3.3% absolute improvement) and A+V-
att outperforms A+V by 1.3%. We show qualitative results of our attention
method in Fig. 5. We observe that a range of semantic regions in many different
categories and examples can be attended by sound, which validates that our
attention network can learn which visual regions to look at for sounding objects.
An interesting observation is that the audio-guided visual attention tends to
focus on sounding regions, such as man’s mouth, head of crying boy etc, rather
than whole objects in some examples. Figure 6 illustrates two challenging cases.
For the first example, the sounding helicopter is quite small in the first several
frames but our attention model can still capture its locations. For the second
example, the first five frames do not contain an audio-visual event; in this case,
attentions are spread on different background regions. When the rat appears in
the 5th frame but is not making any sound, the attention does not focus on the
rat. When the rat sound becomes audible, the attention focuses on the sounding
rat. This observation validates that the audio-guided attention mechanism is
helpful to distinguish audio-visual unrelated videos, and is not just to capture a
saliency map with objects.

Audio-Visual Fusion. Table 2 shows audio-visual event localization prediction
accuracy of different multimodal feature fusion methods on AVE dataset. Our
DMRN model in the late fusion setting can achieve better performance than all
compared methods, and our DMRFE model can further improve performance.
We also observe that late fusion is better than early fusion and decision fusion.
The superiority of late fusion over early fusion demonstrates that temporal mod-
eling before audio-visual fusion is useful. We know that auditory and visual
modalities are not completely aligned, and temporal modeling can implicitly
learn certain alignments between the two modalities, which is helpful for the
audio-visual feature fusion task. The decision fusion can be regard as a type of
late fusion but using lower dimension (same as the category number) features.
The late fusion outperforms the decision fusion, which validates that process-
ing multiple features separately and then learning joint representation using a
middle layer rather than the bottom layer is an efficient fusion way.
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Full and Weak Supervision. Obviously, supervised models are better
than weakly supervised ones, but quantitative comparisons show that weakly-
supervised approaches achieve promising event localization performance, which
demonstrates the effectiveness of the MIL frameworks, and validates that the
audio-visual event localization task can be addressed even in a noisy condition.
Notice that W-V-att achieves slightly better performance than V, which suggests
that the audio-guided visual attention is effective in selecting useful features.

Table 3. Accuracy on cross-
modality localization. A2V:
visual localization from audio
segment query; V2A: audio
localization from visual seg-
ment query

Models AVDLN DCCA

A2V 44.8 34.8

V2A 35.6 34.1

Cross-Modality Localization. Table 3 reports
the prediction accuracy of our method and DCCA
[1] on cross-modality localization task. Our AVDL
outperforms DCCA over a large margin both on
A2V and V2A tasks. Even using the strict evalua-
tion metric (which counts only the exact matches),
our models on both subtasks: A2V and V2A,
show promising results, which further demon-
strates that there are strong correlations between
audio and visual modalities, and it is possible to
address the cross-modality localization for uncon-
strained videos.

7 Conclusion

In this work, we study a suit of five research questions in the context of three
audio-visual event localization tasks. We propose both baselines and novel algo-
rithms to address each of the three tasks. Our systematic study well supports
our findings: modeling jointly over auditory and visual modalities outperforms
independent modeling, audio-visual event localization in a noisy condition is still
tractable, the audio-guided visual attention is able to capture semantic regions
of sound sources and can even distinguish audio-visual unrelated videos, tem-
poral alignments are important for audio-visual feature fusion, the proposed
dual residual network is capable of audio-visual fusion, and strong correlations
existing between the two modalities enable cross-modality localization.

Acknowledgement. This work was supported by NSF BIGDATA 1741472. We grate-
fully acknowledge the gift donations of Markable, Inc., Tencent and the support of
NVIDIA Corporation with the donation of the GPUs used for this research. This arti-
cle solely reflects the opinions and conclusions of its authors and neither NSF, Markable,
Tencent nor NVIDIA.

References

1. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis.
In: Proceedings of ICML, pp. 1247–1255. PMLR (2013)

2. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: Proceedings of ICCV.
IEEE (2017)



266 Y. Tian et al.
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