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We introduce the network details in Sec. A. In Sec. B, we show more results
in qualitative and quantitative perspective. Note that the actual results of other
comparison methods could be better, since we replicate them by ourselves. We
will update those results once the code is publicly available.
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Fig. 1. The details of the head motion learner, which consists of a encoder f (blue
part), an extrapolator (green part), and a discriminator (yellow part).

A Network Details

A.1 Details of The Head Motion Learner (Φ)

The head motion learner Φ consists of three sub-networks: a head motion en-
coding network f , a head motion extrapolation network Extrapolator, and a
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discriminator D. Fig. 1 shows the detailed network structure. Specifically, we
first use f to encode the raw audio x1:τ and its paired head motion h1:τ to
network weights w, which contains weights and biases {W, b} for a linear layer.
Since the audio sampling rate is 50000 and the image sampling rate is 25FPS,
the size of the input xτ+1:T should be (T − τ) × 0.04 × 50000. At time step t,
we use xt−3:t+4 to represent the audio signal. So, after stacking, the size of the
input to Extrapolator is (7, (T − τ) × 0.04 × 50000). In the Extrapolator, we
apply two 2D convolutional layers on the inputs and then flatten it. Then we
apply a 1D temporal convolution layer to encode it to audio feature with the size
of (T − τ, 256). Then at each time step t, we forward the feature chunk (size of
1, 256) to a linear layer, where the weights and biases {W, b} are learned from f .

Once the Extrapolator generates all the fake head motion ĥτ+1:T , we forward
it with ground truth motion hτ+1:T to discriminator D. The D calculates the
mean and standard deviation from real and fake sequences and then output a
real/fake score based on the mean and standard deviation.

A.2 Details of The Facial Expression Learner (Ψ)
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Fig. 2. The details of the facial expression learner. PCAR denotes reversed PCA op-
eration.

The facial expression learner Ψ is a linear regression network, which takes
current audio chunk xt−3:t+4 and reference landmark PCA components ptM
as input and output current facial expression p̂t. We use 20 PCA coefficients
to represent facial expression. We list the details in Fig. 2. We directly train
and optimize the model on the PCA components output. During inference, we
reconstruct the 3D landmark points from the 20 PCA coefficients.
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Fig. 3. The details of the unprojector. We use the method proposed in [4] as the
unprojector.

A.3 Details of The 3D Unprojection Network

The unprojection network receives a RGB image ytM and predict the position
map image. We follow the same training strategy and network structure as [4],
which employs an encoder-decoder structure to learn the transfer function. we
train the unprojection network on 300W-LP [9], since it contains face images
across different angles with the annotation of estimated 3DMM coefficients, from
which the 3D point cloud could be easily generated. We calculate MSE loss
between the predicted position map and the ground truth position map. For
training details, please refer to [4].
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Fig. 4. The testing results on President Barack Obama’s weekly address footage
dataset [5].

B More Results

B.1 Controllable Videos

We show one testing results on VoxCeleb2 dataset to demonstrate our ability of
generating controllable head motion and facial expression. From Fig. 5, we can
find that our model can generate controllable videos with desired head motion
and facial expressions.
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B.2 Test on President Barack Obama Footage Dataset

To further improve the image quality, we fine-tuned our model with K = 8 on
five videos from the President Barack Obama’s weekly address footage dataset
[5] and leave the rest videos as testing set. Fig. 4 shows two example testing
results.

Table 1. Ablation studies on VoxCeleb2 dataset. Our model mentioned in this table
are trained from scratch.

Method CSIM↑ SSIM↑ FID↓
Baseline 0.19 0.67 112
Full Model 0.44 0.71 40.8
w/o 3D-Aware 0.21 0.61 109
w/o Hybrid-Attention 0.37 0. 73 57.8
w/o Non-Linear Comp. 0.40 0.69 64.5
w/o warping 0.34 0.67 78.2

B.3 Ablation Studies

We conduct ablation experiments to study the contribution of four components:
3D-Aware, Hybrid-Attention, Non-Linear Composition, and warping. The Base-
line model is a straightforward model without any features (e.g. 3D-Aware,
Hybrid-Attention). Table. 1 shows the quantitative results of ablation studies.

B.4 Settings of User Studies

Human subjects evaluation is conducted to investigate the visual qualities of our
generated results compared with Zakharov et al. [8], Wang et al. [6] and Wiles [7].
The ground truth videos are selected from different sources: we randomly select
samples from the testing set of LRW [3], VoxCeleb2 [2] and LRS3 [1]. Three
methods are evaluated w.r.t. two different criteria: whether participants could
regard the generated videos as realistic and whether the generated talking-head
videos temporally sync with the corresponding audio. We shuffle all the sample
videos and the participants are not aware of the mapping between videos to
methods. They are asked to score the videos on a scale of 0 (worst) to 10 (best).
There are overall 20 participants involved (at least 50% of them are native En-
glish speaker), and the results are averaged over persons and videos.
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Fig. 5. The controllable results. The videos in upper part are manipulated with target
facial expressions while keep the head motion unchanged. We show the target facial
expression in the first row. The videos in lower part are manipulated with target head
motion while keep the facial expression unchanged.
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